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Abstract: We investigated the classical nonlinear Thomson scattering (TS), from a single relativistic
electron, generated by either: (a) an incoming plane wave monochromatic laser radiation and general
elliptical polarization or (b) incoming radiations with intrinsic orbital angular momentum (OAM).
Both (a) and (b) propagate along the z direction, with wave vector k0, frequency ω0, and initial phase
ϕ0 6= 0 and have any intensity. Item (a) enables obtaining general electron TS Doppler frequencies
and other quantities, for fusion plasmas. We explored the possibility of approximating nonlinear TS
with OAM beams (Item (b)) by means of nonlinear TS with plane wave beams (Item (a)). For Item
(a), a general explicit solution of the Lorentz relativistic equation and the subsequent TS are given in
terms of ζ = ω0t− k0z (t denoting time). In particular, it includes the cases for linear and circular
polarizations and ϕ0 6= 0 for fusion plasmas, thereby extending previous studies for ϕ0 = 0. The
explicit solutions give rise to very efficient computations of electron TS Doppler frequencies, periods
of trajectories, and drift velocities, and the comparisons with ab initio numerical solutions (for Item
(a)) yield an excellent match. The approximate approach, using explicit solutions for Item (a), towards
TS OAM (employing ab initio numerical computations for Item (b)), extending previously reported
ones) yields a quite satisfactory agreement over time spans including several optical cycles, for a
wide range of laser intensities, polarizations, and electron energies. The role of ϕ0 6= 0 was analyzed.
A simple quantitative criterion to predict whether the agreement between the two approaches (a)
and (b) would be observed over a given time span is discussed.

Keywords: nonlinear incoherent Thomson scattering; elliptical radiation; linearly and circularly
polarized and Doppler frequencies; radiations with orbital angular momentum; influence of ini-
tial phase

1. Introduction

The scattering of electromagnetic radiation by free charges is a standard diagnostic of
their distribution functions (see for example [1,2] for applications in fusion plasmas) and
also for the diagnosis of intense or ultra-intense laser beams. The diagnoses in both cases
are based on the properties (spectrum, polarization, etc.) of the scattered radiation.

Ultra-intense pulsed lasers have been developed dramatically with the invention
of CPA technology [3]. Intensities in the 1022 W/cm2 range are now feasible with near-
infrared petawatt or multipetawatt lasers [4]. Such laser intensities ionize and accelerate
the released electrons to relativistic speeds, the threshold for that being about 1018 W/cm2.
Hence, at 1022 W/cm2, electron motion is highly relativistic. At those limits, the radiation
reaction starts playing a role, and the electron dynamics has to be calculated according to
that [5]. New realms for light–matter interactions have been opened by these developments
that were simply not available at lower laser peak powers.
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Laser transverse patterns and/or polarization states can have a very rich structure,
the simplest one being the well-known Gaussian (or TEM00) mode. Laser polarization is
often associated with the spin angular momentum of the photon. Laser beams may also
have orbital angular momentum (OAM); see for example [6], the chapter by Allen and
Padgett [7], and also [8–13] for some experiments with light in states having OAM. Those
beams have remarkable properties because of their structure so different from the ordinary
plane wave ones. For example, it is now clear that the photoelectric effect selection rules are
valid for OAM photons provided that the photon orbital angular momentum is added in
the selection rules [14], so the typical dipole transition rules are violated, and an exchange
of more that one unit angular momentum per photon in that process is allowed.

In modern petawatt laser sources, it seems possible to include a variety of transverse
structures, having a strong influence on the laser–atom or laser–electron interaction. It
seems worthwhile to study a general Laguerre–Gauss mode (with a step, or other, function
to describe its time-pulsed structure). Although it is difficult to obtain such OAM pulses
at the multi-joule level, it seems very reasonable to consider various possible physical
processes generated by the former, one of them being the motion of a fully relativistic
electron in such OAM pulses. In this paper, we considered two cases that are of grow-
ing interest: amplifying mechanisms leading to petawatt peak powers generate linearly
polarized laser fields in most cases. That explains why so far, most of the research has
been on such a polarization state or in the other situation of circular polarization; although,
at ultrahigh intensities, circular polarization is difficult to achieve. However, in many
cases, the mirrors of the beam transport from compressor to target can induce some degree
of elliptical polarization (intentional or not). Therefore, the present model describing an
arbitrary degree of polarization can be of broad interest to model future experiments. On
the other hand, there is a growing interest in OAM beams because of the new possibilities
they bring. Until recently, ultra-intense OAM beams were considered very difficult to
achieve; however, in a recent paper [15], it was shown that off axis spiral phase mirrors
can produce vortex beams of extremely high intensity, so the interest in those beams in the
ultrahigh frontier is growing quickly, and the present model can be of relevance for the
understanding of some features of those experiments as well.

The pulse diagnostic is in itself a challenge: at extreme powers, atoms are ionized
during the turn on of the pulse; therefore, the only remaining particles are electrons and
positive ions (protons or other ions). Ions move much slower than electrons due to the
mass/charge difference. Thus, the acceleration of the electrons is the dominant process for
light scattering: laser-driven electrons move relativistically and radiate due to Thomson
scattering (TS), and in turn, this scattering can be used to obtain information on the laser
field itself.

Recently, the authors extended the computation of the electron dynamics and its TS
radiation to the case of ultra-intense beams with net orbital angular momentum [16]. In
that work, the study of TS in OAM beams (heavily) relied on numerical computations.
Analytical tools that contribute to an understanding of these numerical results are worth in-
vestigating. Accordingly, we considered TS with incoming monochromatic plane waves in
the most general state of polarization, i.e., elliptical polarization, and with OAM, both with
a nontrivial initial phase dependence. In the particular case of initial phase dependence,
our results extend previous ones (see for example [17] and the references therein) where
it was clearly shown that in the ultra-intense domain, such an influence has to be taken
into account to fully understand electron dynamics. As shown in this paper, the results for
elliptically polarized plane-wave radiation, besides their own interest, provide an excellent
approximation to the OAM dynamics for short time spans (typically covering a few tens of
optical cycles). We also discuss the conditions for the approximations to hold.

Besides generalizing previous results, another reason to study such plane-wave so-
lutions is to compute TS quantities (Doppler frequencies, spectral or spatial intensity
distribution, etc.), with potential interest for fusion plasmas/laser beam diagnostics. In
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plasma physics, classical incoherent Thomson scattering (TS) is the standard diagnostic
technique for electron temperature and density measurement; see for instance [2,18–24].

Our interest here focused exclusively on incoherent TS by relativistic electrons (which
behave independently of each other). For collective scattering of laser radiation by electron-
density fluctuations with relativistic phase velocities, see [25] for experimental observations
and [26] for a fully relativistic theoretical analysis.

There is a difference in emphasis when TS is used for diagnostic purposes (for example
in plasma physics) and TS as issued from the interaction with ultra-intense lasers; in plasma
fusion diagnosis, the change of the scattering frequency at the detector is mainly (or nearly
completely) due to the initial distribution of velocities in the electron population and the
scattering angle via the Doppler effect (the laser being important in setting the expected
position of scattered frequencies). In TS enacted by an ultra-intense laser, however, the
properties of the scattered radiation should include its effect as well, because it substantially
and nonlinearly perturbs the electron motion. Providing theoretical and/or numerical tools
for a unified understanding of Thomson scattering, either as a diagnostic of the electron
distribution or as a diagnostic of the laser state, could contribute to exploiting to the limits
the application of a technique with a long and fruitful history.

The classical equations of motion for a relativistic electron subject to an incoming
(non-necessarily monochromatic) electromagnetic plane wave have been solved exactly
in an analytical (although implicit) way [27], which provided the basis for subsequent
approximate studies of incoherent TS [28–33], by using the asymptotic Liénard–Wiechert
retarded radiated fields [34]. For further extensions of those researches, see [35,36].

The present paper is organized as follows. Section 2 is devoted to the dynamical
equations of motion, the asymptotic Liénard–Wiechert retarded radiation fields, and the
spectral representation of the latter, in general. In Section 3, incoming elliptically polarized
monochromatic plane-wave radiation is considered: the full solution of the dynamical
equations of motion and several physically interesting quantities. Section 4 deals with the
TS spectral representation of the asymptotic Liénard–Wiechert retarded radiation fields. For
the same incoming radiation as in Section 3, the TS spectral representation of the Liénard–
Wiechert fields and Doppler frequencies are given in Section 4. Section 5 deals with TS
for incoming radiation with OAM and detailed comparisons of it with TS for incoming
plane-wave radiations. Section 6 contains the conclusions and discussions. Appendix A
collects certain useful coefficients that are defined and employed in Section 3. Appendix B
discusses in outline form a new generalization of the Bessel functions, appearing in the
spectral representation of the asymptotic Liénard–Wiechert retarded radiation fields for
elliptic polarization. Appendix C summarizes the essentials of the spectral representation
of the asymptotic Liénard–Wiechert retarded radiation fields with an initial phase depen-
dence, for linear and circular polarizations. Appendix D summarizes the Gauss–Laguerre
polynomials and electric and magnetic fields for incoming radiation with OAM.

2. General Formulation
2.1. Classical Equations of Motion for the Electron

We used the MKS system of units (see, for instance, [34]) throughout the paper. We
considered a classical relativistic electron in R3 with position x(t) and momentum p(t)
at time t. The electron interacts with a classical electromagnetic field in vacuum. The
incoming electric and magnetic fields are Ei and Bi, which by assumption, correspond to a
(in general, non-monochromatic) radiation. The total electric and magnetic fields are, in
general, the sums of the incoming ones and the dynamical fields radiated by the electron
itself (after it interacts with the input beam field).

In order to solve the dynamical problem, an approximation method was used through-
out this work, based on the assumption that the total electric and magnetic fields be re-
placed, respectively, by Ei and Bi. Then, the equations of motion of the relativistic electron,
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subject to the Lorentz force of the incoming electric and magnetic fields Ei = Ei(y = x(t), t)
and Bi = Bi(y = x(t), t), read [27] (γ(t) = [1− c−2(dx/dt)2]−1/2):

p = mγ(t)
dx
dt

,
dp
dt

= eEi + e
dx
dt
× Bi. (1)

e is the charge of the electron. c is the velocity of light in vacuum. Notice that dx/dt =
c2p/[m2c4 + c2p2]1/2. With the above understanding of Ei(y = x(t), t) and Bi(y = x(t), t),
the dynamical problem boils down to solving the nonlinear Equation (1) for the electron
position x(t) and momentum p(t) at time t. Six suitable variables related to the initial
position and momentum of the electron give the initial conditions to solve Equation (1).
Let β0 = v0/c be the normalized initial velocity of the electron before being affected
by the laser. The detailed solution (analytical or numerical) is used later in the radiated
Liénard–Wiechert fields. In the above approximation scheme, the effect of the radiation
reaction (becoming increasingly appreciable, for a near-infrared intense laser pulse, beyond
1023 W/cm2) and the controversial possibility of runaway solutions (a feature associated
with the Abraham–Lorentz equation) [27,34,37] were disregarded from the outset.

2.2. Asymptotic Liénard–Wiechert Retarded Radiation Fields

Let E(y, t)rr,∞ and B(y, t)rr,∞ be the asymptotic Liénard–Wiechert retarded radiation
fields (subscripts rr and ∞) at the position y at (“detection”) time t [34,35] for any incoming
(in general, non-monochromatic) radiation. Both E(y, t)rr,∞ and B(y, t)rr,∞ depend non-
linearly on x(t′), the solution of Equation (1) at the “radiation” time t′, and hence, on the
input beam fields. For the TS situations treated here, it is a good approximation to consider
that the observation point (the point where the detector lies) is located far away from the
radiating electron. In other words, the electron is not far from the origin of the coordinates
initially and does not separate too much from it in the course of its interaction with the
laser. The asymptotic fields read:

E(y, t)rr,∞ =
en× [(n− β)× (d2x/dt′2)]

4πε0c2R[1− n · β]3 , (2)

B(y, t)rr,∞ =
n
c
× E(y, t)rr,∞, (3)

with R = ‖y‖, n = R−1y and β ≡ c−1(dx/dt′) = (β1, β2, β3). ε0 is the dielectric per-
mittivity of the vacuum. n (the scattering unit vector) indicates the direction at which a
detector is located at y. Both β and the acceleration of the relativistic electron d2x/dt′2

in Equations (2) and (3) are taken at time t′. For given detector position y and “detection”
time t, for the asymptotic fields, the time t′ is obtained from t′ − c−1n · x(t′) = t− c−1R
and R� ‖x(t′)‖.

One has: n = (n1, n2, n3) with n2
1 + n2

2 + n2
3 = 1. With standard unit vectors i, j, k, n

is typically chosen to be orthogonal to j: n = n0 = sin θ0i + cos θ0k (hence, the scattering
vector lies in the (y1, y3) plane). A general scattering vector n will also be considered later.

2.3. Spectral Asymptotic Liénard–Wiechert Retarded Radiation Fields: Integral Representations

In what follows, we considered B(y, t)rr,∞ only. We introduced the spectral or fre-
quency Fourier transform of B(y, t)rr,∞, given in (3):

B̃(y, ω) =
∫ +∞

−∞

dt
(2π)1/2 exp(iωt)B(y, t)rr,∞. (4)

We dealt with a general non-monochromatic incoming wave. We employed the
following notations involving Cartesian components: x = (x1, x2, x3) = (x̄, x3) and p =
(p1, p2, p3) = ( p̄, p3). Let ξ = t′ − (x3/c) be the “wave” coordinate ξ.
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One carries out several successive transformations and changes of variables [31,32,37,38]:
from t (“detection” time) to t′ (“radiation” time), with t′ − c−1n · x(t′) = t− c−1R and,
then, from t′ to ξ. See [36]. Thus, one arrives at:

B̃(y, ω) =
iωe exp(iωR/c)

4πε0c2γ1R
[n× p̃(y, ω)], (5)

p̃(y, ω) =
∫ +∞

−∞

dξ

(2π)1/2 p(ξ) exp[iωΛ(ξ)], (6)

Λ(ξ) = t′ − c−1n · x(t′) = ξ +
x3(t′)− n · x(t′)

c
, (7)

Λ(ξ) = ξ +
(1− cos θ0)x3(ξ)− sin θ0x1(ξ)

c
. (8)

Equation (8), to be employed later, holds if n lies in the (y1, y3) plane, so that n =
n0 = (sin θ0, 0, cos θ0).

Once the solution of Equation (1) for an incoming (in general, non-monochromatic)
radiation has been obtained (analytically or numerically), the computation of B(y, t)rr,∞
in Equation (3) requires solving t′ − c−1n · x(t′) = t− c−1R with R� ‖x(t′)‖ numerically,
as was done in [35]. On the other hand, Equations (5)–(8) enable computing the spectral
field B̃(y, ω) just by evaluating those integrals over ξ (numerically or analytically), without
needing to solve for the implicit equation t′ − c−1n · x(t′) = t − c−1R. We carried out
exact analytic computations with Equations (5)–(8) for incoming elliptically, linearly, and
circularly polarized plane-wave radiation in Sections 3, 4 and Appendix C, respectively.
Some numerical computations for them will also be carried out there, in order to check
the feasibility of the latter. Numerical computations for Equations (5)–(8) with incoming
radiation with OAM, for which no analytical solution of Equation (1) is available, will be
considered in Section 5.

3. Elliptically Polarized Radiation: Parametric Representation of Dynamical Variables
3.1. Representation of an Arbitrary Non-Monochromatic Plane Wave through the Vector
Potential Ai(ξ)

The radiation (or Coulomb) gauge was employed. Let Ai be the transverse vector
potential of the incoming electric and magnetic fields Ei and Bi. Ei, Bi, and Ai depend on a
three-dimensional position y = (y1, y2, y3) and on time (t). One has in the radiation gauge:

∇yAi = 0, Ei = −
∂Ai
∂t

, Bi = ∇y ×Ai . (9)

Let the input beam field, corresponding to an arbitrary non-monochromatic plane
wave and fulfilling the charge-free Maxwell equations in vacuum, propagate along the
y3 axis, from −∞ towards +∞. Then, Ai(y; t) = Ai(ξ), where ξ ≡ t− y3/c, lies in the
(y1, y2)-plane:

Ai = (Āi, 0), Āi = Āi(ξ) = (Ai1, Ai2),

Ei = −A′i, Bi = c−1k× Ei (10)

with A′i ≡ dAi/dξ and k being the standard vector along the y3 axis. Variables with
overbars always denote two-dimensional vectors in the (y1, y2)-plane. A general case
was considered in which β0 is not necessarily orthogonal to Ai, that is β0 · Ai = 0 was
not imposed.

The exact analytical solution of Equation (1), with Ei and Bi describing a general
non-monochromatic plane wave, was given in [27–33,35,36]. The general solutions of
Equation (1), with those Ei and Bi, are x = (x̄, x3) = (x1, x2, x3) and p = ( p̄, p3) =
(p1, p2, p3), which contain six suitable integration constants. The latter are: x̄0 = (x10, x20)
and x30 (the three-dimensional vector determining the position of the electron at ξ = 0)
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and the other three variables ( f̄ = ( f1, f2) and γ1) related to the initial momentum of the
electron: [35,36]. The dimensionless γ(t) appearing in Equation (1) should not be confused
with γ1.

The incoming electromagnetic field is described by unique electric and magnetic
fields (Ei and Bi), and the dynamics and trajectory of the relativistic electron are also
uniquely determined. On the other hand, the vector potential Ai or Āi is not unique: the
transformation Āi(ξ)→ Ā′i(ξ) = Āi(ξ) + δĀi, δĀi being ξ-independent, gives rise to the
same Ei and Bi (gauge invariance of the electromagnetic field). The electron trajectory is
independent of δĀi. See [36].

3.2. The Vector Potential and the Solution of the Electron Dynamics for Monochromatic Elliptically
Polarized Radiation

The (real) electric field for a plane wave with elliptic polarization is given by:

Ei = Re[(E0ε1 + iE1ε2)× exp i(k0x3 −ω0t + ϕ0)], (11)

where Re denotes the real part; the amplitudes E0, E1, the unit vectors ε1 and ε2, and the
phase ϕ0 are all real. ε1 and ε2 are:

ε1 = cos θdi + sin θdj,

ε2 = − sin θdi + cos θdj. (12)

θd is a real angle that gives the orientation of the principal axes of the polarization ellipse
with respect to the (x, y) axes. ω0 (real and > 0) is the frequency. The vector potential, with
ζ = ω0ξ, reads:

Ai = Ā0 −
1

ω0
[āco sin(ζ − ϕ0) + āsi cos(ζ − ϕ0)], (13)

where āco = E0ε1, āsi = E1ε2. Let:

c1 = ā2
co + ā2

si = E2
0 + E2

1, (14)

c2 = ā2
co − ā2

si = E2
0 − E2

1. (15)

As an initial condition for Ai, we always imposed that Ai = 0 at ζ = ζ0 (typically and
without loss of generality, ζ0 = 0). Then:

Ā0 =
1

ω0
[āco sin(ζ0 − ϕ0) + āsi cos(ζ0 − ϕ0)]. (16)

Notice that this is a particular choice of gauge; see [36]. The phase ϕ0 has a physical
meaning, and it is gauge-independent. Recall that the physical (gauge-independent) time-
dependent momentum is p̄(ξ) = f̄ − eĀi. Then, with the present gauge choice, the constant
of motion f̄ (gauge-dependent) coincides with the physical p̄(ξ = 0). x̄(ξ), x3(ξ), Λ(ξ) are
gauge-independent.

We solved the equations of motion for the vector potential given by Ai(ξ) by follow-
ing [27]. The initial conditions for the electron coordinates are x10, x20, x30. The initial
conditions for the electron momentum p10, p20, p30 follow from the three integration con-
stants f̄ = ( f1, f2) and γ1; see [36]. Introducing (x̃1 = k0x1, and so on) and (p̃1 = p1/mc,
and so on), we obtained:
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x̃1(ζ) = x̃10 + λ1l(ζ − ζ0) + λ1c[cos(ζ − ϕ0)− cos(ζ0 − ϕ0)] +

λ1s[sin(ζ − ϕ0)− sin(ζ0 − ϕ0)], (17)

x̃2(ζ) = x̃20 + λ2l(ζ − ζ0) + λ2c[cos(ζ − ϕ0)− cos(ζ0 − ϕ0)] +

λ2s[sin(ζ − ϕ0)− sin(ζ0 − ϕ0)], (18)

x̃3(ζ) = x̃30 + λ3l(ζ − ζ0) + λ3c[cos(ζ − ϕ0)− cos(ζ0 − ϕ0)] +

λ3s[sin(ζ − ϕ0)− sin(ζ0 − ϕ0)] +

λ3s2[sin(2(ζ − ϕ0))− sin(2(ζ0 − ϕ0))], (19)

and:

p̃1(ζ) = ( p̃10 − αA01) + αE0 cos θd sin(ζ − ϕ0) + αE1 sin θd cos(ζ − ϕ0), (20)

p̃2(ζ) = ( p̃20 − αA02) + αE0 sin θd sin(ζ − ϕ0)− αE1 cos θd cos(ζ − ϕ0), (21)

p̃3(ζ) = (1− γ2
1n + p̃2

1(ζ) + p̃2
2(ζ))/2γ1n. (22)

The parameters appearing in the formulas above are given in Appendix A.
The Lorentz factor γ, the normalized velocity β = (β1, β2, β3) = v/c, and the ac-

celeration a = (a1, a2, a3) = dv/dt′ can also be computed in closed form in terms of the
parameter ζ, namely:

γ(ζ) =
√

1 + p̃2
1(ζ) + p̃2

2(ζ) + p̃2
3(ζ), (23)

β1(ζ) = p̃1(ζ)/γ(ζ), (24)

β2(ζ) = p̃2(ζ)/γ(ζ), (25)

β3(ζ) = p̃3(ζ)/γ(ζ). (26)

a1 = dv1/dt′ = c(dβ1/dζ)(dζ/dt′) = ω0c(1− β3(ζ))dβ1/dζ, (27)

a2 = dv2/dt′ = c(dβ2/dζ)(dζ/dt′) = ω0c(1− β3(ζ))dβ2/dζ, (28)

a3 = dv3/dt′ = c(dβ3/dζ)(dζ/dt′) = ω0c(1− β3(ζ))dβ3/dζ. (29)

Coordinate time (t′) and also the time at the detector (t) admit closed (although
involved) expressions in terms of ζ: from:

ζ = ω0t′ − k0x3, (30)
dζ

1− β3(ζ)
= ω0dt′, (31)

mcγ(ζ)dζ = (γ1 + p3(ζ))dζ = γ1ω0dt′, (32)

and performing the integration of the left-hand side of the last equation (which involves
only elementary functions), t′ is obtained as an explicit function of ζ, namely:

ω0(t′ − t′0) =

τ′l (ζ − ζ0) +

τ′c(cos(ζ − ϕ0)− cos(ζ0 − ϕ0)) +

τ′s(sin(ζ − ϕ0)− sin(ζ0 − ϕ0)) +

τ′2s(sin(2(ζ − ϕ0))− sin(2(ζ0 − ϕ0))). (33)

The differential relationship that connects trajectory time t′ and the time at the detector
t (“detection” time) is given by dt = (1− n) · β)dt′; see [32,36]. Taking into account that
in radiation problems, it is (in general) a very good approximation to put n = constant, n
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being a constant scattering vector, and making use of the differential relationship between
dt′ and dζ, one obtains after elementary transformations that:

(γ1 + p3(ζ)− n · p(ζ))dζ = γ1ω0dt. (34)

In this case, we considered a unit scattering vector n(= (n1, n2, n3) = (n̄, n3)) that
is not lying necessarily in the (y1, y3)-plane, that being a generalization of the treatment
presented in our previous paper [36]. The integration of the left-hand side of Equation (34)
can also be carried out using elementary functions, and t is also an explicit function of ζ:

ω0(t− t0) =

τl(ζ − ζ0) +

τc(cos(ζ − ϕ0)− cos(ζ0 − ϕ0)) +

τs(sin(ζ − ϕ0)− sin(ζ0 − ϕ0)) +

τ2s(sin(2(ζ − ϕ0))− sin(2(ζ0 − ϕ0))). (35)

The coefficients τ′l , τ′c , τ′s , τ′2s, τl , τc, τs, τ2s are given in Appendix A. t′0 and t0 are inte-
gration constants that satisfy t′ = t′0 and t = t0 at ζ = ζ0.

All this algebraic machinery allows also obtaining explicit formulas for the Liénard–
Wiechert radiated fields at the detector, using their definition from Equations (2) and (3),
with all the variables as functions of the parameter ζ. The parametric formulas, together
with the relationship between ζ and t already mentioned, allow for a complete description
of Liénard–Wiechert fields in the time domain in a computationally very efficient way. This
representation is the counterpart to the frequency domain representation that will be dealt
with in the next section and contains, of course, the same information.

3.3. Magnitudes Derived from the Parametric Representation of Trajectories

The parametric representation of dynamics obtained in the previous subsection allows
for an analytical computation of several quantities of interest associated with the trajec-
tory in a rather straightforward manner, namely the fundamental period/frequency of
the trajectory, the fundamental period/frequency at detector position, the drift velocity
(defined as the velocity at which the particle is at rest on average), the extremal values
for the momentum components and the γ factor. From (33) and (35) and taking two ζ
values 2π apart from each other, one obtains for the fundamental period of the trajectory,
the fundamental period, and the fundamental frequency (ω f = 2π/Tf ) at the detector
the expressions:

τ′f = ω0T′f = 2πτ′l , (36)

τf = ω0Tf = 2πτl , (37)

Ω f = (ω f /ω0) = 1/τl . (38)

Due to the relevance of Ω f in nonlinear TS problems, let us write it down explicitly as:

Ω f =
1

1− n̄( f̄−eĀ0)
γ1

+ (1− n3)(
s
c +

e2c1
4ω2

0γ2
1
− e f̄ Ā0

γ2
1

+
e2 Ā2

0
2γ2

1
)

. (39)

In this form, the dependencies of Ω f on the initial momentum (through f̄ , s/c, γ1),
the scattering vector (through n), and the parameters characterizing the laser (c1, Ā0) are
apparent. Since Ā0 depends on the initial phase of the laser field ϕ0, the fundamental
Thomson scattering frequency also depends on it in the high intensity regime. It is clear that
this dependency on the phase is absent if Ā0 vanishes; moreover, if c1 and Ā0 vanish or are
very small (the case of a low-intensity laser), one recovers the standard Doppler frequency.
The dependency of Ω f on several kinematical (i.e., associated with the initial position and
the initial momentum of electron) and laser parameters (intensity, polarization, helicity)
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makes it possible (to some extent) to select the frequency at an specific detection point, that
is an engineering of the radiated spectrum seems feasible by a judicious choice of the control
parameters. Let us illustrate this in Figure 1 with a simple example with the following
setup. In the upper panel, the electron is initially at the origin of the coordinates with
Ekin0 = 0. The reference electric field of the incoming laser is chosen Er = 5.0× 1012 V/m.
E0, E1 are defined from Er and the angle θs as E0 = Er cos θs, E1 = Er sin θs. In the lower
panel, Ekin0 = 200.0 keV, and the angles giving the orientation of the initial momentum
are θ = π/2, ϕ = π/4; the laser parameters are the same. The point at which the scattered
radiation is measured was assumed to lie 0.5 m along the positive direction of the y axis.
The opportunities for scattered frequency engineering are clearly displayed in the two
panels, by playing with either kinematical or laser parameters, including, in a non-trivial
way, the dependency on the initial phase (ϕ0) and the polarization/helicity of the laser
beam. Please, note that in the figures of the paper, “adim.” stands for “adimensional”,
meaning a magnitude with no dimensions, i.e., a pure number.
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Figure 1. Fundamental scattered frequency for a scattering unit vector n0 = j, as a function of initial
phase angle ϕ0 for Ekin0 = 0 (upper panel) and Ekin0 = 200.0 keV (lower panel). The reference electric
field in the laser is in both cases Er = 5.0× 1012 V/m. Three different polarizations are represented,
keeping the sum E2

0 + E2
1 = E2

r constant. Red curves represent the case of linear polarization, blue
curves are for circular polarization (solid lines, θs = π/4; dashed lines, θs = −π/4) and green curves
are for elliptical polarization with θs = π/8 (solid lines) and θs = −π/8 (dashed lines).
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The fundamental period (Tf und) of the trajectory (and hence, its fundamental fre-
quency) also has a non-trivial dependency on ϕ0 and the laser polarization state, inherited
from the parameters τ′l , τ′c , τ′s and τ′2s. This is shown (Figure 2) in a case where the laser
has a reference peak electric field of Er = 4.257× 1012 V/m, E0 = Er cos θs, E1 = Er sin θs,
and the electron has an initial kinetic energy of Ekin0 = 10.0 keV, its initial velocity being
oriented with respect to the laser propagation direction (z− axis) at angles θ = 0.807433,
ϕ = 4.32799. Three different polarizations corresponding to θs = 0, θs = ±π/4, θs = ±π/8
are displayed. The vertical axis of this figure, labeled as “Fundamental Period (adim.)”, is
defined as ω0 × Tf und.

��
��
��
��
��
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��
��
��

[
��
��

�]
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10

11

12

13

14

������� ����� ϕ� [����]  

Figure 2. The fundamental period of the trajectory, as a function of initial phase angle ϕ0, is given for
three different polarizations. The red curve represents the case of linear polarization; blue curves
are for circular polarization (solid line, θs = π/4; dashed line, θs = −π/4); and green curves are for
elliptical polarization with θs = π/8 (solid line) and θs = −π/8 (dashed line). Laser and electron
parameters are given in the main text.

The important question of the field amplitudes (and hence, the power) associated with
the different frequency components at the detector, i.e., the Thomson scattering spectrum,
is perhaps more conveniently addressed in the frequency domain and shall be dealt with
in the next section.

The drift velocity, defined as the average velocity over a fundamental period of

trajectory, β1,av =< β1(t′) >= 1
T′f

∫ t′0+T′f
t′0

β1(t′)dt′, etc., is obtained after an elementary

change of variables from t′ to ζ as:

β1,av =
1

2πγ1τ′l

∫ ζ0+2π

ζ0

p1(ζ)dζ, (40)

β2,av =
1

2πγ1τ′l

∫ ζ0+2π

ζ0

p2(ζ)dζ, (41)

β3,av =
1

2πγ1τ′l

∫ ζ0+2π

ζ0

p3(ζ)dζ. (42)

Explicit formulas for β1,av, β2,av, β3,av are given in Appendix A. Figure 3 shows (in an
exemplary case) how a transformation to the Lorentz frame with the drift velocity allows
obtaining for x′1 vs. x′3 a shape reminiscent of the “figure of eight” shape as mentioned for
example in [27,28]. x′1 and x′3 are the Lorentz-transformed coordinates corresponding to
x1, x3 under the boost with the drift velocity (cβ1,av, cβ2,av, cβ3,av). The parameters used in
this case are Er = 4.257× 1012 V/m, θs = 0, ϕ0 = −3.57517, Ekin0 = 10.0 keV, θ = 0.807433,
ϕ = 4.32799.
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Figure 3. “Figure of eight” of variables x′1 ≡ x′, x′3 ≡ z′ in the Lorentz frame with velocity equal to
the drift velocity defined in the main text.

Extremal values for momentum and relativistic γ factor can easily be obtained from
dp/dt′ = (dp/dζ)(dζ/dt′) = ω0(1− β3)dp/dζ = 0, dγ/dt′ = (dγ/dζ)(dζ/dt′) = ω0(1−
β3)dγ/dζ = 0 and the fact that (1− β3) is never equal to zero. Hence, extremal values for
momentum components are obtained from:

dp1/dζ = 0⇔
αE0 cos θd cos(ζe − ζ0) = αE1 sin θd sin(ζe − ζ0), (43)

dp2/dζ = 0⇔
αE0 sin θd cos(ζe − ζ0) = −αE1 cos θd sin(ζe − ζ0), (44)

dp3/dζ = 0⇔
p1dp1/dζ + p2dp2/dζ = 0. (45)

The equations for p1, p2 extremal values are easily solved; the one for the extremal
values of p3 or γ (which are the same due to the relationship mcγ = γ1 + p3, γ1 constant) is
slightly more involved, but it is nevertheless amenable to efficient numerical computation.
As an example, the non-trivial dependency of the maximum of γ factor on ϕ0 is shown in
Figure 4, where, for the same conditions as mentioned for Figure 2, the initial phase of the
laser beam is systematically varied in the interval [−π, π].
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Figure 4. Dependency of the maximum of γ factor on initial laser phase ϕ0 for the conditions given
in the main text.

4. Spectral Representation for Elliptically Polarized Incoming Radiation: The
Integrand and Doppler Frequencies

We replaced the general solution in Equations (17)–(19) for elliptic polarization into
Λ(ξ) = Λ(ξ)E (which is gauge-independent). We kept the same integration constants f1,
f2, γ1, x10, x20, and x30. Let ϕ0 + 3π/2 = ϕ1 and n = (n̄, n3).

We omitted a lengthy analytical computation. We found for Λ(ξ)E:

Λ(ξ)E =
1

ω0
[g0,E + g1,Eω0ξ + g2,E sin(ω0ξ − ϕ1 + ϕ1s,E)−

g3,E sin 2(ω0ξ − ϕ1 + ϕ2s,E)] (46)
g0,E

ω0
=

g0,1

ω0
+

g0,2

ω0
+

g0,3

ω0
+

g0,4

ω0
(47)

g0,1

ω0
=

1− n3

c
[x30 −

ce
γ2

1ω2
0

f̄ (āco sin ϕ1 − āsi cos ϕ1)] (48)

g0,2

ω0
=

(1− n3)e2c2 sin 2ϕ1

8γ2
1ω3

0
(49)

g0,3

ω0
= − n̄

c
[x̄0 −

ce
γ1ω2

0
(āco sin ϕ1 − āsi cos ϕ1)] (50)

g0,4

ω0
=

(1− n3)e2

γ2
1ω2

0
Ā0(āco sin ϕ1 − āsi cos ϕ1) (51)

g1,E = 1− n̄( f̄ − eĀ0)

γ1
+ (1− n3)(

s
c
+

e2c1

4ω2
0γ2

1
− e f̄ Ā0

γ2
1

+
e2 Ā2

0
2γ2

1
) (52)

g2,E cos ϕ1s,E

ω0
=

(1− n3)(−e f̄ āco + e2 Ā0 āco)

γ2
1ω2

0
+

en̄āco

γ1ω2
0

(53)

g2,E sin ϕ1s,E

ω0
=

(1− n3)(−e f̄ āsi + e2 Ā0 āsi)

γ2
1ω2

0
+

en̄āsi

γ1ω2
0

(54)

g3,E cos 2ϕ2s,E

ω0
= − (1− n3)e2c2

8γ2
1ω3

0
(55)

g3,E sin 2ϕ2s,E

ω0
= 0 (56)
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All gn,E’s are gauge-independent. The parameter s was defined in [36]. With the
definitions given above, the coefficients gn,E, n = 0, 1, 2, 3 are dimensionless. The treatment
given here includes the cases in which β0 ·Ai may be = 0 or 6= 0.

In order to compute p̃(y, ω) for elliptic polarization, let us introduce the following
scalar functions (n = 0,±1,±2):

bn,E =
∫ +∞

−∞

dξ

(2π)1/2 exp[iωΛ(ξ)E + inω0ξ]. (57)

Notice that bn,E(−ω) = [b−n,E(ω)]∗, where ∗ denotes the complex conjugate. p̃(y, ω) =
p̃(y, ω) = ( p̃1, p̃2, p̃3) can be expressed in terms of the scalar bn,E’s.

Let:

x =
ωg2,E

ω0
, y =

ωg3,E

ω0
. (58)

We considered the generating function:

exp(i[x sin(ω0ξ − ϕ1 + ϕ1s,E)− y sin 2(ω0ξ − ϕ1 + ϕ2s,E)]) =
+∞

∑
l=−∞

JG,l(x, y; ϕ2s,E − ϕ1s,E) exp[il(ω0ξ − ϕ1 + ϕ2s,E)]. (59)

JG,l(x, y; ϕ2s,E − ϕ1s,E) is a generalization of the generalized Bessel functions Jl(x, y).
For an account of the latter, see [36,39] and the references therein. Some properties of
JG,l(x, y; ϕ2s,E − ϕ1s,E) will be given in Appendix B. JG,l(x, y; ϕ2s,E − ϕ1s,E) is a complex
function.

By plugging Equation (59) into bn,E, one finds (ωr = ω/ω0):

bn,E =
(2π)1/2

ω0
exp(iωrg0,E)×

+∞

∑
l′=−∞

JG,−l′−n(ωrg2,E, ωrg3,E; ϕ2s,E − ϕ1s,E)×

exp[i(l′ + n)(ϕ1 − ϕ2s,E)]δ(ωrg1,E − l′), (60)

δ denoting now the Dirac delta function.
The generalized Doppler-like formula for elliptic polarization reads:

ωl′ =
l′ω0

g1,E
=

l′ω0

1− n̄( f̄−eĀ0)
γ1

+ (1− n3)(
s
c +

e2c1
4ω2

0γ2
1
+

e2 Ā2
0

2γ2
1
− e f̄ Ā0

γ2
1
)

, (61)

for the given g1,E and for all the integers l′ (= 0,±1,±2,±3, ...). Of course, ωl′/ω0 for
l′ = 1 from Equation (61) (treatment in the frequency domain) equals Ω f in Equation (39)
(treatment in the time domain).

5. TS for an Incoming Laser Beam with OAM
5.1. Incoming Laser Beam with OAM: Vector Potential and Electromagnetic Fields

The input beam field was chosen to be an electromagnetic wave in vacuum that
propagates along the z axis, from −∞ towards +∞, and corresponds to a Gauss–Laguerre
mode in the (x, y)-plane and, so, having some given orbital angular momentum (OAM).
The fields of the OAM mode are not strictly transverse: they have small components
in the direction of propagation (namely, the z axis). See [6,16,40]. The radiation (or
Coulomb) gauge will be employed. Let Ai be the vector potential of the incoming electric



Photonics 2021, 8, 182 14 of 29

(Ei) and magnetic (Bi) fields. Ei, Bi, and Ai depend on a three-dimensional position
y = (x, y, z) and on time (t). Equation (9) continues to hold in the radiation gauge. By
assumption, the (real) vector potential Ai lies in the (x, y)-plane (namely, the (y1, y2)-plane):
Ai(y; t) = Axi + Ayj, with:

Ax = η0 A0LGl,p(ρ, z) exp iψ + c.c. (62)

Ay = η1 A0LGl,p(ρ, z) exp iψ + c.c. (63)

As usual, c.c. denotes the complex conjugate of the preceding term. A0 is a real
amplitude, ρ = (x2 + y2)1/2. η0 and η1 are complex numbers, with | η0 |2 + | η1 |2= 1.
We write:

η0 = π0 + iπ1, (64)

η1 = σ0 + iσ1. (65)

π0, π1, σ0, and σ1 are real constants fulfilling the condition π2
0 + π2

1 + σ2
0 + σ2

1 = 1 and
describing the polarization state of the field. Although we concentrated on the case of
an incoming laser beam linearly polarized along the x axis, other polarization states can
be treated as well by a suitable selection of π0, π1, σ0, and σ1. The Laguerre–Gauss (LG)
functions LGl,p(ρ, z) are given in Appendix D. On the other hand:

ψ = k0z−ω0t + χ0 + lφ +
k0ρ2

2R(z)
+ φG(z), (66)

1
R(z)

= r(z) =
z

z2 + z2
0

, (67)

φG(z) = −(2p+ | l | +1) arctan(z/z0), (68)

with φ = arctan(y/x). χ0 is a constant phase. w0 is the beam-waist parameter. z0 is
the Rayleigh range, defined by z0 = k0w2

0/2 with k0 = 2π/λ0. ω0 (real and > 0) is the
frequency, and ω0 = k0c.

For an incoming laser beam linearly polarized along the x axis, one has π1 = σ0 =
σ1 = 0 and Ey = 0 for any t, (x, y, z). Then, Ay = 0, Bx = 0, while Ex, By, and Bz are
non-vanishing.

5.2. Approximating the Electron Dynamics in OAM Beams by the Plane-Wave Solution:
Numerical Computations

One of the reasons to study in depth the plane-wave solution, as performed in previous
sections, is of course to generalize previous results, including the most general state of
polarization for this type of wave (i.e., elliptical polarization) and the non-trivial initial
phase dependency of dynamical variables. Another important reason is to provide a tool
for the approximate analytical (or semi-analytical) treatment of more complex laser beams,
like the ones with OAM, where one has to (heavily) rely on numerical computations to
obtain an understanding of their dynamics. See [16] for a description and implementation
of the numerical methods used to characterize the electron dynamics and the ensuing
Thomson scattering emission in laser beams with OAM.

The rule that has been found to apply to obtain a good fit between OAM and plane-
wave solution is as follows. From the characteristics of the OAM beam and the initial
position of the electron, compute the local values of the laser parameter and phase, namely
αlocal = 2A0LGl,p(x10, x20, x30)/(mc) and ψlocal = ψ(x10, x20, x30, t0). Introduce these val-
ues in the plane-wave solution with the same polarization state as the OAM wave and use
the same initial electron kinetic energy and the same values for the angles θ, ϕ.

By means of the examples to follow, we claimed here that the plane-wave solutions for
the dynamics of the electron can be, in some instances to be described, a very good fit to the
actual dynamics in beams with OAM. The conditions to be met for the fitting are basically
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(i) that local values for the adimensional laser parameter and phase are chosen in OAM,
and put into the plane-wave solution, (ii) that the transverse excursion of the electron is
not too large, and (iii) that the dynamics is studied for a limited number of optical cycles. If
these conditions are met, the plane-wave solution can fit OAM solutions to a high degree of
precision for a wide range of parameters in electron energy, laser intensity, or polarization.

The electron dynamics was computed in an OAM laser beam having the follow-
ing parameters: λ0 = 800 nm, w0 = 100 µm, χ0 = 0, (l, p) = (1, 0), A0 ranging from
2.5× 10−3 V·s/m to 7.5× 10−3 V·s/m. Polarization, if not otherwise stated, was linear
along the x axis. Electrons with initial kinetic energy ranging from zero to 100 keV were
studied; their initial positions were randomly chosen in the intervals x10 ∈ [−w0, w0],
x20 ∈ [−w0, w0], x30 ∈ [−λ0/2, λ0/2]. Polar (θ) and azimuthal (ϕ) angles giving the initial
momentum direction (with respect to the z axis or laser propagation direction) were ran-
domly chosen in the intervals [0, π], [0, 2π]. In Figures 5–9, the color code is as follows:
red, green, and blue colors are assigned to the x-, y-, or z-component of the corresponding
magnitude (in the case of vector quantities). For example, the x-component of velocity will
be assigned red color in the figures or the z-component of the radiated electric field will be
assigned blue color, etc.

Figure 5 shows the comparison of normalized velocity components, the γ factor, and
the radiated E field at the detector (two orthogonal quadratures along the x and z axes). The
parameters were A0 = 2.5× 10−3 V·s/m (OAM beam), Ekin0 = 10.0 keV, x10 = 98.4242 µm,
x20 = −52.9688 µm, x30 = −3.57517 µm; θ = 0.807433, ϕ = 4.32799. It can be seen that
the fitting was quite good in this example, and a simple measure of it can be obtained if
maximum values of the γ factor are compared: the maximum of γOAM = 3.213 vs. the
maximum of γplane = 3.216, i.e., a relative difference of less than 10−3. It is clear that
radiated spectra will be very similar due to the similarity of radiated fields at the detector
in the time domain, although no systematic comparison is this connection was attempted
in this paper.

A second example is shown (Figure 6) in which A0 = 2.5× 10−3 V·s/m (OAM beam),
Ekin0 = 0.0 keV, x10 = 28.0601 µm, x20 = −1.38741 µm, x30 = 0.108658 µm. In this case,
some drift was apparent in the velocity of the OAM solution; hence, the fitting was not
perfect, since the plane-wave solution simply cannot capture the changes induced by large
variations in the transverse profile of the OAM mode. It was nevertheless an overall good
fit for a limited section of the trajectory, some of its main characteristics being captured by
the more simple plane-wave solution.

Figure 7 shows a case in which A0 = 5.0× 10−3 V·s/m (OAM beam), Ekin0 = 10.0 keV,
x10 = 71.0055 µm, x20 = 30.9694 µm, x30 = −0.262421 µm, θ = 0.0433, ϕ = 0.6058.
The plane-wave solution closely fits the OAM solution in this case, which showed a
large excursion of the relativistic γ factor, up to nearly seven. The maximum value of
γOAM = 6.70 should be compared with the maximum of γplane = 6.66, i.e., a relative
difference of less than 6.0× 10−3.

To end this relation of comparative studies between the dynamics and radiated fields
in laser beams with OAM and the corresponding analytical solution, let us present a
case in which the OAM beam has a genuine elliptical polarization state, characterized by
(π0, π1, σ0, σ1) = (cos π/8, 0, 0, sin π/8), and compare it with the corresponding elliptically
polarized analytical solution (Figure 8). The rest of the parameters in the comparison were
the same as in Figure 7. The match of OAM vs. the analytical solution was also very good
here, showing the ability of these extended solutions to also cover the case of complex
OAM beams with arbitrary (in particular, genuine elliptical) polarization.
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Figure 5. Comparing the dynamics and radiated field at the detector, OAM laser beam (full lines) vs.
plane-wave solution (open symbols). Normalized velocity components are given in panel (a), panel
(b) gives the relativistic gamma factor, and panel (c) gives the x and z components of radiated electric
field at detection point. See the main text for the details.
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Figure 6. Comparing the dynamics and radiated field at the detector, OAM laser beam (full lines) vs.
plane-wave solution (open symbols). Normalized velocity components are given in panel (a), panel
(b) gives the relativistic gamma factor, and panel (c) gives the x and z components of radiated electric
field at detection point. See the main text for the details.
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Figure 7. Comparing the dynamics and radiated field at the detector, OAM laser beam (full lines) vs.
plane-wave solution (open symbols). Normalized velocity components are given in panel (a), panel
(b) gives the relativistic gamma factor, and panel (c) gives the x and z components of radiated electric
field at detection point. See the main text for the details.
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Figure 8. Comparing the dynamics and radiated field at the detector, OAM laser beam (full lines) vs.
plane-wave solution (open symbols). Normalized velocity components are given in panel (a), panel
(b) gives the relativistic gamma factor, and panel (c) gives the x and z components of radiated electric
field at detection point. See the main text for the details.
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A simple quantitative estimation of the conditions in which a good match between
OAM and plane-wave solutions is expected is as follows: if the transverse excursion of the
electron during the integration time for a particular trajectory is much less than the size
of the OAM laser beam w0, a good match is expected. The reason would be that in that
case, the transverse variation of the laser intensity is less important than the fact that the
local OAM laser field can always be faithfully fitted by a plane wave of adequate intensity,
phase, and polarization. In formulas:

c
√

β2
1,av + β2

2,avTint << w0, (69)

c
√

β2
1,av + β2

2,av2πNcycles/ω0 << w0, (70)

Ncycles

√
β2

1,av + β2
2,av << w0/λ0, (71)

where Tint = 2πNcycles/ω0 means the integration time of the trajectory, β1,av and β2,av are
the transverse components of the drift velocity (as obtained from the plane-wave solution),
w0 sets the transverse spatial scale of the OAM beam (w0 = 100.0 µm is used throughout
this section), and λ0 is the laser wavelength, equal to 800.0 nm in our case.

In the course of the investigations reported here, a new feature was noticed in very
long integrations (involving several hundreds of optical cycles). In such a case and for
OAM beams with (l, p) = (1, 0), we observed trajectories that perform a finite, i.e., not
drifting, movement in the transverse X-Y plane, while they acquired some net drift velocity
in the Z-direction. We provisionally named them as trapped trajectories or solutions. They
typically appeared if the initial conditions in the transverse direction were close to the
beam center and were found not only for Ekin0 = 0, but also for a substantial range
of initial kinetic energy. The character of the dynamics was not easy to ascertain, but
evidence from Fourier analysis was compatible with a quasi-periodic motion involving
combinations of close, but incommensurate frequencies. A specific challenge to study these
solutions is that the integration must cope with both fast and slow time scales, the finite
transverse motion being typically 100 times slower than the optical frequency. Figure 9
shows an example in which 512 optical cycles were integrated with the following initial
conditions for the electron and the OAM beam: x10 = 1.03196 µm, x20 = −4.82347 µm,
x30 = −0.107291 µm, Ekin0 = 2.5 keV, initial velocity along the positive x axis direction;
(l, p) = (1, 0), λ0 = 800.0 nm, w0 = 100.0 µm, χ0 = 0, A0 = 5.0× 10−3 V·s/m, the laser beam
linearly polarized along the x axis. Please note that Figure 9 represents just a particular case
and that the relative amplitude and phase of the X and Y components and the z axis drift
shown in it can substantially change with the initial condition, the initial velocity, and the
laser parameters. There is ongoing research to more fully characterize this kind of solution,
which seems to go beyond the theoretical framework developed in this paper and which
poses some numerical and theoretical challenges to their understanding.
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Figure 9. An example of a trapped trajectory for an OAM beam with (l, p) = (1, 0). The upper panel
shows the normalized (to k0) trajectory components, the lower one the normalized (to c) velocity
components. From the lower panel, the existence of two clearly different time scales is apparent, one
close to the optical frequency and a much slower one related to the finite motion in the X-Y plane.
See the main text for the details.

6. Conclusions and Final Comments

Regarding the interrelated research Items (a) and (b) stated in the Abstract, the follow-
ing results were obtained.

(a) The classical nonlinear incoherent TS from a single relativistic electron with an
incoming plane wave monochromatic laser radiation with frequency ω0, wave vector k0,
initial phase ϕ0, elliptical polarization, and any intensity was investigated analytically and
numerically. A complete explicit solution in terms of the parameter ζ = ω0t− k0z and with
full account of the non-trivial influence of ϕ0 6= 0 in dynamical variables, and hence in
the scattered spectrum, was given. In particular, the cases of TS with linear and circular
polarizations and ϕ0 6= 0 were treated, thereby extending previous studies [36] for ϕ0 = 0.

In so doing, we also carried out a detailed comparison in the TS framework between
the analytical solution and ab initio numerical solutions of the Lorentz relativistic equation.
Specifically, in Equations (5)–(7), we used successively the analytical solution and the nu-
merical solution: an excellent match was found between both approaches. This contributes
to confirming the reliability of Equations (5)–(7) when ab initio numerical solutions are
fed in.

Detailed formulas were provided for the fundamental TS (Doppler) frequency for a
general scattering vector, with full account of the influence of the laser intensity, polar-
ization, and initial phase ϕ0. The dependences of TS frequency on the kinematical and
laser parameters (in particular, on ϕ0) were displayed as a means to engineer the scattered
spectrum. The explicit solutions for general elliptic polarization gave rise to very efficient
computations of the electron TS Doppler frequencies, the period of trajectories, the drift
velocities and relativistic factors for electrons, etc., with potential interest for TS in fusion
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plasmas. The dependences on ϕ0 are displayed in Figure 1 (electron TS Doppler frequencies
for linear, circular, and elliptical polarizations), Figure 2 (periods of electron trajectories for
linear, circular, and elliptical polarizations), Figure 3 (electron drift velocities), and Figure 4
(electron relativistic factor).

(b) The analytical results for incoming plane-wave radiations obtained in this paper
were successfully employed to approximate (for the sake of a tentative understanding)
TS for the more complex laser beams with intrinsic orbital angular momentum (OAM).
Previous numerical TS results for such beams [16] and new and extended numerical
computations for them were used. The results were compared with the ones for the
analytical solutions with plane waves presented here. They were found to be in very good
agreement with each other for time spans of several optical cycles, provided that the local
laser parameter and the local phase read from the OAM beam were used in the analytical
solution. This agreement was shown to hold for a wide range of laser intensities, electron
energies, and for several polarization states (Figures 5–7), in particular and specifically for
genuine elliptical polarization (Figure 8). We also analyzed and stressed the non-trivial role
played by the initial phase ϕ0 on several dynamical variables and in the scattered spectrum.
According to the results presented in the paper, the local phase of the OAM laser beams
and the local (transverse) variation of the laser intensity explained to a large extent the
scattering spectra computed and discussed in [16].

The two cases considered in the paper are of growing current interest: amplifying
mechanisms leading to petawatt peak powers generate linearly polarized laser fields in
most cases. That explains why, so far, most of the research has been on such a polarization
state or in the case of circular polarization, although at ultrahigh intensities, circular polar-
ization is difficult to achieve. However, in many cases, the mirrors of the beam transport
from compressor to target can induce some degree of elliptical polarization (intentional or
not). Therefore, the present model describing an arbitrary degree of polarization can be of
broad interest to model future experiments. On the other hand, there is a growing interest
in OAM beams because of the new possibilities they bring. Until recently, ultra-intense
OAM beams were considered very difficult to achieve; however, it has been shown that
off-axis spiral phase mirrors can produce vortex beams of extremely high intensity, so the
interest in those beams in the ultrahigh frontier is growing quickly, and the present model
can be of relevance for the understanding of some features of those experiments as well.

A new feature was observed, for OAM beams with (l, p) = (1, 0), in very long inte-
grations (involving several hundreds of optical cycles). Specifically, we found trajectories
that perform a finite, i.e., not drifting, movement in the transverse X-Y plane, while they
acquire some net drift velocity in the Z-direction. See Figure 9. Such trajectories typically
appeared if the initial conditions in the transverse direction were close to the beam center
and were found not only for Ekin0 = 0, but for a substantial range of initial kinetic energy.

For TS with an incoming plane-wave radiation with elliptical polarization, the analyti-
cal expressions obtained for the scattered spectrum were given in terms of infinite series
of new generalizations of the standard Bessel function. Such new generalizations (so far
unknown and, hence, not previously reported, to the best of our knowledge) constitute an
extension of the already known generalized Bessel functions [39].

Finally, it is perhaps worth saying that petawatt lasers are a reality (both for shot
pulses, femtoseconds, and for long pulses, picoseconds) and that multi-petawatt lasers are
expected to be fully operative in a few years. Therefore, the results of the paper dealt with
a realistic experimental situation. OAM beams are easily obtained from those lasers, using
for example off-axis spiral phase mirrors; see for example [15]. Off-axis spiral mirrors of
more than 10 cm in diameter and with high precision in the phase exist now. The technique
is quite promising, and larger spiral phase mirrors are in construction; therefore, the study
of the dynamics of electrons driven by such intense OAM beams can be of high interest.
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Appendix A. Miscellaneous Symbol Definitions and Formulas

We introduce the following definitions:

x̃1 = k0x1, (A1)

x̃2 = k0x2, (A2)

x̃3 = k0x3, (A3)

x̃10 = k0x10, (A4)

x̃20 = k0x20, (A5)

x̃30 = k0x30, (A6)

p̃1 = p1/mc, (A7)

p̃2 = p2/mc, (A8)

p̃3 = p3/mc, (A9)

p̃10 = p10/mc, (A10)

p̃20 = p20/mc, (A11)

p̃30 = p30/mc, (A12)

f1n = f1/mc = p̃10, (A13)

f2n = f2/mc = p̃20, (A14)

s = cp30/γ1, (A15)

sn = s/c, (A16)

γ1n = γ1/mc, (A17)

αA01 = qA01/mc, (A18)

αA02 = qA02/mc, (A19)

E0 = Er cos θs, (A20)

E1 = Er sin θs, (A21)

αE0 = qE0/ω0mc, (A22)

αE1 = qE1/ω0mc. (A23)
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λ1l = ( p̃10 − αA01)/γ1n, (A24)

λ1c = −αE0 cos θd/γ1n, (A25)

λ1s = αE1 sin θd/γ1n, (A26)

λ2l = ( p̃20 − αA02)/γ1n, (A27)

λ2c = −αE0 sin θd/γ1n, (A28)

λ2s = −αE1 cos θd/γ1n, (A29)

λ3l = sn − ( f1nαA01 + f2nαA02)/γ2
1n +

(α2
E0 + α2

E1 + 2[α2
A01 + α2

A02])/4γ2
1n, (A30)

λ3c = −αE0([ p̃10 − αA01] cos θd + [ p̃20 − αA02] sin θd)/γ2
1n, (A31)

λ3s = αE1([ p̃10 − αA01] sin θd − [ p̃20 − αA02] cos θd)/γ2
1n, (A32)

λ3s2 = −(α2
E0 − α2

E1)/8γ2
1n. (A33)

τ′l = (1 + p̃2
10 + p̃2

20 + α2
A01 + α2

A02 + γ2
1n)/2γ2

1n +

(α2
E0 + α2

E1)/4γ2
1n − ( p̃10αA01 + p̃20αA02)/γ2

1n, (A34)

τ′c = −αE0([ p̃10 − αA01] cos θd + [ p̃20 − αA02] sin θd)/γ2
1n, (A35)

τ′s = αE1([ p̃10 − αA01] sin θd − [ p̃20 − αA02] cos θd)/γ2
1n, (A36)

τ′2s = −(α2
E0 − α2

E1)/8γ2
1n, (A37)

τl = (1− n3)τ
′
l − (n1[ p̃10 − αA01] + n2[ p̃20 − αA02])/γ1n, (A38)

τc = −
αE0

γ2
1n
([(1− n3)( p̃10 − αA01)− n1γ1n] cos θd + [(1− n3)( p̃20 − αA02)− n2γ1n] sin θd), (A39)

τs =
αE1

γ2
1n
([(1− n3)( p̃10 − αA01)− n1γ1n] sin θd − [(1− n3)( p̃20 − αA02)− n2γ1n] cos θd), (A40)

τ2s = −(1− n3)(α
2
E0 − α2

E1)/8γ2
1n. (A41)

β1,av = ( p̃10 − αA01)/2πτ′l γ1n, (A42)

β2,av = ( p̃20 − αA02)/2πτ′l γ1n, (A43)

β3,av = λ3l/τ′l . (A44)

Appendix B. The Function JG,l(x, y;ϕ2s,E−ϕ1s,E) and Some Properties

We set ψ = ω0ξ− ϕ1 + ϕ2s,E. By multiplying both sides of Equation (59) by exp(−imψ)

(m being an integer), integrating over ψ in −π ≤ σ2 ≤ π, and using
∫ +π
−π dψ exp[i(l −

m)ψ] = 2πδlm, δlm being the Kronecker delta, one finds:

JG,l(x, y; ϕ2s,E − ϕ1s,E) =
∫ π

−π

dψ

2π
exp[−ilψ]×

exp[i(x sin(ψ− (ϕ2s,E − ϕ1s,E))− y sin 2ψ]. (A45)

This representation for JG,l(x, y; ϕ2s,E − ϕ1s,E) explicitly shows that, in general, it has a
non-vanishing imaginary part.

Equation (A45) can also be used to obtain an expression for JG,l(x, y; ϕ2s,E − ϕ1s,E) in
terms of ordinary Bessel functions Jl(x) [41]. In fact, we start from Equation (59), expand
both factors in its left-hand side by using Equation (A64), multiply by exp[−ilψ] (l being
an integer), and integrate over ψ in −π ≤ ψ ≤ π. The desired result reads:

JG,l(x, y; ϕ2s,E − ϕ1s,E) =
+∞

∑
m=−∞

(−1)m Jl−2m(x)Jm(y)×

exp i(2m− l)(ϕ2s,E − ϕ1s,E). (A46)

One readily obtains: JG,l(−x, y; ϕ2s,E − ϕ1s,E) = (−1)l JG,l(x, y; ϕ2s,E − ϕ1s,E).
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JG,l(x, y; ϕ2s,E − ϕ1s,E) is a natural generalization, arising in our present study of
TS for an incoming elliptically polarized plane wave, of the generalized Bessel function
Jl(x, y) [39], which, in turn, has appeared upon treating TS for an incoming linearly polar-
ized plane wave. The above properties of JG,l(x, y; ϕ2s,E − ϕ1s,E) generalize those of the
generalized Bessel function Jl(x, y) [39].

Appendix C. Monochromatic Polarized Radiation with ϕ0 6= 0: Linearly and Circularly

Appendix C.1. Linear Polarization

We shall consider a linearly polarized plane wave including a non-vanishing initial
phase ϕ0 (ϕ0 = 0 was chosen in [36]):

Ei = jE0 cos(ω0ξ − ϕ0). (A47)

The vector potential is:

Ai(ξ) = −j
E0

ω0
[sin(ω0ξ − ϕ0) + sin ϕ0]. (A48)

In this gauge choice: Ai(ξ = 0) = 0. We chose n = n0 = (sin θ0, 0, cos θ0). One has
(ϕ1s,L = 2π, ϕ2s,L = π/2):

Λ(ξ)L =
1

ω0
[g0,L + g1,Lω0ξ + g2,L sin(ω0ξ − ϕ0 − 3π/2 + ϕ1s,L)−

g3,L sin 2(ω0ξ − ϕ0 − 3π/2 + ϕ2s,L)], (A49)

g0,L = − sin θ0
ω0x10

c
+

(1− cos θ0)(
ω0x30

c
+

3[eE0]
2 sin 2ϕ0

8γ2
1ω2

0
+

eE0 f2 cos ϕ0

γ2
1ω0

), (A50)

g1,L = 1− f1 sin θ0

γ1
+

(1− cos θ0)(
s
c
+

[eE0]
2[1 + 2 sin2 ϕ0]

4γ2
1ω2

0
+

eE0 f2 sin ϕ0

γ2
1ω0

), (A51)

g2,L = −(1− cos θ0)
eE0 f2ω0 + (eE0)

2 sin ϕ0

γ2
1ω2

0
, (A52)

g3,L =
(1− cos θ0)(eE0)

2

8γ2
1ω2

0
. (A53)

Use will be made of the generalized Bessel functions Jl(x, y). For an account of the
latter, see [36,39] and the references therein. In agreement with [39], the Jl(x, y)’s will be
defined through the generating expression:

exp[i(x sin(θ − ϕ)− y sin 2(θ − ϕ))] =
+∞

∑
l=−∞

Jl(x, y)×

exp[il(θ − ϕ)], (A54)

in particular, Jl(x, y) is real. One finds (ωr = ω/ω0):

bn,L =
(2π)1/2

ω0
exp[iωrg0,L]

+∞

∑
l′=−∞

Jl′+n(ωrg2,L,−ωrg3,L)×

exp[−i(l′ + n)(ϕ0 +
3π

2
)]δ(ωrg1,L − l′). (A55)
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The generalized Doppler-like formula is:

ωL,l′ =
l′ω0

g1,L
(A56)

for the given g1,L (see (A51)) and for all the integers l′ (= 0,±1,±2,±3, ...). If ω varies in a
finite interval, then only a discrete set of values for l′ contributes.

The inclusion of the initial phase ϕ0 makes the coefficients g1,L and g2,L depend on
it, and since they account, respectively, for the scattered frequency and the amplitude of
the scattered spectrum, the latter two quantities acquire a non-trivial dependence on ϕ0 as
well. Such an effect was not accounted for in our previous work [36].

Appendix C.2. Circular Polarization

We shall consider a circularly polarized plane wave including a non-vanishing initial
phase ϕ0 (ϕ0 = 0 was chosen in [36]):

Ei = E0[i cos(ω0ξ − ϕ0) + j sin(ω0ξ − ϕ0)]. (A57)

We chose:

Ai(ξ) =
E0

ω0
[(− sin(ω0ξ − ϕ0)− sin ϕ0)i +

(cos(ω0ξ − ϕ0)− cos ϕ0)j], (A58)

so that Ai(ξ = 0) = 0. The scattering vector is n = n0 = (sin θ0, 0, cos θ0). We obtain, with
g3,C = 0:

Λ(ξ)C =
1

ω0
[g0,C + g1,Cω0ξ + g2,C sin(ω0ξ − ϕ0 − 3(π/2) + ϕ1s,C)], (A59)

g0,C = − sin θ0(
ω0x10

c
+

eE0 cos ϕ0

ω0γ1
) +

(1− cos θ0)(
ω0x30

c
+

eE0[ f1 cos ϕ0 + f2 sin ϕ0]

ω0γ2
1

), (A60)

g1,C = 1− f1 sin θ0

γ1
+

(1− cos θ0)(
s
c
+

[eE0]
2

ω2
0γ2

1
+

eE0[ f1 sin ϕ0 + f2 cos ϕ0]

ω0γ2
1

)−

eE0 sin θ0 sin ϕ0

ω0γ1
, (A61)

g2,C cos ϕ1s,C = sin θ0
eE0

ω0γ1
− (1− cos θ0)(

eE0 f1

ω0γ2
1
+

[eE0]
2 sin ϕ0

ω2
0γ2

1
), (A62)

g2,C sin ϕ1s,C = −(1− cos θ0)
eE0( f2 + [eE0/ω0] cos ϕ0)

ω0γ2
1

. (A63)

We shall employ (θ = ω0ξ) [41]:

exp[ix sin(θ − ϕ)] =
+∞

∑
l=−∞

Jl(x) exp[il(θ − ϕ)] (A64)

Then, one obtains the counterpart of (A55) (ωr = ω/ω0):

bn,C =
(2π)1/2

ω0
exp[iωrg0,C]

+∞

∑
l′=−∞

J−l′−n(ωrg2,C)×

exp[i(n + l′)(ϕ0 + 3(π/2)− ϕ1s,C)δ(ωrg1,C − l′) (A65)
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As for Equation (A55), the generalized Doppler-like formula for circularly polarized inci-
dent radiation reads, for the given g1,C (see (A61)) and for all integers l′ (= 0,±1,±2,±3, ...):

ωC,l′ =
l′ω0

g1,C
(A66)

Appendix D. OAM

The Laguerre–Gauss (LG) functions are defined as:

LGl,p(ρ, z) = [
2p!

π(| l | +p)!
]1/2 w0

w(z)
L|l|p (

2ρ2

w(z)2 )(
21/2ρ

w(z)
)|l| ×

exp[− ρ2

w(z)2 ], (A67)

describing some electromagnetic wave with OAM associated with the prescribed l, p.
w(z) = w0(1 + (z/z0)

2)1/2 and L|l|p (u) are the generalized Laguerre polynomials:

L|l|p (u) =
p

∑
m=0

(−1)m (| l | +p)!
(p−m)!(| l | +m)!m!

um. (A68)

We now turn to the corresponding electric and magnetic fields. We shall make use of
Equations (62)–(63). We obtain:

Ei(y; t) = Exi + Eyj, (A69)

Bi(y; t) = Bxi + Byj + Bzk. (A70)

Then:

Ex = −2ω0 A0LGl,p(ρ, z)(π0 sin ψ + π1 cos ψ), (A71)

Ey = −2ω0 A0LGl,p(ρ, z)(σ0 sin ψ + σ1 cos ψ). (A72)

One finds for the components of Bi(y; t):

Bx = −2k0 A0[
1
k0

∂LGl,p(ρ, z)
∂z

(σ0 cos ψ− σ1 sin ψ)−

LGl,p(ρ, z)[1 +
ρ2 − 2(z0/k0)(2p+ | l | +1)

2(z2 + z2
0)

− ρ2z2

(z2 + z2
0)

2
]×

(σ0 sin ψ + σ1 cos ψ)], (A73)

By = 2k0 A0[
1
k0

∂LGl,p(ρ, z)
∂z

(π0 cos ψ− π1 sin ψ)−

LGl,p(ρ, z)[1 +
ρ2 − 2(z0/k0)(2p+ | l | +1)

2(z2 + z2
0)

− ρ2z2

(z2 + z2
0)

2
]×

(π0 sin ψ + π1 cos ψ)], (A74)
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Bz = 2A0
∂LGl,p(ρ, z)

∂ρ
[cos φ(σ0 cos ψ− σ1 sin ψ)−

− sin φ(π0 cos ψ− π1 sin ψ)] +

2k0 A0LGl,p(ρ, z)
ρz

z2 + z2
0
[− cos φ(σ0 sin ψ + σ1 cos ψ) +

sin φ(π0 sin ψ + π1 cos ψ)] +

2k0 A0LGl,p(ρ, z)
l

ρk0
[cos φ(π0 sin ψ + π1 cos ψ) +

sin φ(σ0 sin ψ + σ1 cos ψ)]. (A75)

References
1. Froula, D.H.; Glenzer, S.H.; Luhmann, N.C., Jr.; Sheffield, J. Plasma Scattering of Electromagnetic Radiation: Theory and Measurement

Techniques; Academic Press, Elsevier: Amsterdam, The Netherlands, 2011.
2. Hutchison, I. Principles of Plasma Diagnostics; Cambridge Univ. Press: Cambridge, UK, 2006.
3. Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Comm. 1985, 55, 447–449. [CrossRef]
4. Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.-C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.;

Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2019, 7, e54. [CrossRef]
5. Rohrlich, F. Classical Charged Particles, 3rd ed.; World Scientific: Singapore, 2007.
6. Allen , L.; Barnett, S.M.; Padgett, M.J. Optical Angular Momentum; IOP Publishing: London, UK, 2003.
7. Torres, J.P.; Torner, L. (Eds.) Twisted Photons: Applications of Light with Orbital Angular Momentum; Wiley-VCH: Weinheim,

Germany, 2011.
8. Karimi, E.; Schulz, S.A.; De Leon, I.; Qassim, H.; Upham, J.; Boyd, R.W. Generating optical orbital angular momentum at visible

wavelengths using a plasmonic metasurface. Light Sci. Appl. 2014, 3, e167. [CrossRef]
9. Noyan, M.A.; Kikkawa, J.M. Time-resolved orbital angular momentum spectroscopy. Appl. Phys. Lett. 2015, 107, 032406.

[CrossRef]
10. Persuy, D.; Ziegler, M.; Crégut, O.; Kheng, K.; Gallart, M.; Honerlage, B.; Gilliot, P. Four-wave mixing in quantum wells using

femtosecond pulses with Laguerre–Gauss modes. Phys. Rev. B 2015, 92, 115312. [CrossRef]
11. Schmiegelow, C.T.; Schulz, J.; Kaufmann, H.; Ruster, T.; Poschinger, U.G.; Schmidt-Kaler, F. Transfer of optical orbital angular

momentum to a bound electron. Nat. Commun. 2016, 7, 12998. [CrossRef]
12. Seghilani, M.S.; Myara, M.; Sellahi, M.; Legratiet, L.; Sagnes, I.; Beaudoin, G.; Lalanne, P.; Garnache, A. Vortex Laser based

on III-V semiconductor metasurface: Direct generation of coherent Laguerre–Gauss modes carrying controlled orbital angular
momentum. Sci. Rep. 2016, 6, 38156. [CrossRef]

13. Shigematsu, K.; Yamane, K.; Morita, R.; Toda, Y. Coherent dynamics of exciton orbital angular momentum transferred by optical
vortex pulses. Phys. Rev. B 2016, 93, 045205. [CrossRef]

14. Picón, A.; Benseny, A.; Mompart, J.; Vázquez de Aldana, J.R.; Plaja, L.; Calvo, G.F.; Roso, L. Transferring orbital and spin angular
momenta of light to atoms. New J. Phys. 2010, 12, 083053. [CrossRef]

15. Longman, A.; Salgado, C.; Zeraouli, G.; Apinariz, J.I.; Pérez-Hernández, J.A.; Eltahlawy, M.K.; Volpe, L.; Fedosejevs, R. Off axis
spiral phase mirrors for generating high-intensity optical vortices. Opt. Lett. 2020, 45, 2187. [CrossRef] [PubMed]

16. Pastor, I.; Alvarez-Estrada, R.F.; Roso, L.; Castejon, F.; Guasp, J. Nonlinear relativistic electron Thomson scattering for laserradia-
tion with orbital angular momentum. J. Phys. Commun. 2020, 4, 065010. [CrossRef]

17. He, F.; Lau, Y.Y.; Umstadter, D.P.; Strickler, T. Phase dependence of Thomson scattering in an ultraintense laser field. Phys. Plasmas
2002, 9, 4325. [CrossRef]

18. Evans, D.E.; Katzenstein, J. Laser light scattering in laboratory plasmas. Rep. Prog. Phys. 1969, 32, 207. [CrossRef]
19. Mattioli, M. Incoherent Light Scattering from High Temperature Plasmas; Report DPh-PFC-SPP (EUR-CEA-FC) 752; EURATOM-CEA:

Fontenay-aux-Roses, France, 1974.
20. Matoba, T.; Itagaki, T.; Yamauchi, T.; Funahashi, A. Analytical Approximations in the Theory of Relativistic Thomson Scattering

for High Temperature Fusion Plasma. Jpn. J. Appl. Phys. 1979, 18, 1127. [CrossRef]
21. Weyssow, B. Motion of a single charged particle in electromagnetic fields with cyclotron resonances. J. Plasma Phys. 1990, 43, 119.

[CrossRef]
22. Naito, O.; Yoshida, H.; Matoba, T. Analytic formula for fully relativistic Thomson scattering spectrum. Phys. Fluids B Plasma Phys.

1993, 5, 4256. [CrossRef]
23. Beausang, K.V.; Prunty, S.L. An analytic formula for the relativistic Thomson scattering spectrum for a Maxwellian velocity

distribution. Plasma Phys. Control. Fusion 2008, 50, 095001. [CrossRef]
24. Walsh, M.J.; Beurskens, M.; Carolan, P.G.; Gilbert, M.; Loughlin, M.; Morris, A.W.; Riccardo, V.; Xue, Y. Design challenges and

analysis of the ITER core LIDAR Thomson scattering system. Rev. Sci. Instrum. 2006, 77, 10E525. [CrossRef]
25. Ross, J.S.; Glenzer, S.H.; Palastro, J.P.; Pollock, B.B.; Price, D.; Divol, L.; Tynan, G.R.; Froula, D.H. Observation of Relativistic

Effects in Collective Thomson Scattering. Phys. Rev. Lett. 2010, 104, 105001. [CrossRef]

http://doi.org/10.1016/0030-4018(85)90151-8
http://dx.doi.org/10.1017/hpl.2019.36
http://dx.doi.org/10.1038/lsa.2014.48
http://dx.doi.org/10.1063/1.4927321
http://dx.doi.org/10.1103/PhysRevB.92.115312
http://dx.doi.org/10.1038/ncomms12998
http://dx.doi.org/10.1038/srep38156
http://dx.doi.org/10.1103/PhysRevB.93.045205
http://dx.doi.org/10.1088/1367-2630/12/8/083053
http://dx.doi.org/10.1364/OL.387363
http://www.ncbi.nlm.nih.gov/pubmed/32287190
http://dx.doi.org/10.1088/2399-6528/ab9afa
http://dx.doi.org/10.1063/1.1507590
http://dx.doi.org/10.1088/0034-4885/32/1/305
http://dx.doi.org/10.1143/JJAP.18.1127
http://dx.doi.org/10.1017/S0022377800014665
http://dx.doi.org/10.1063/1.860593
http://dx.doi.org/10.1088/0741-3335/50/9/095001
http://dx.doi.org/10.1063/1.2336473
http://dx.doi.org/10.1103/PhysRevLett.104.105001


Photonics 2021, 8, 182 29 of 29

26. Palastro, J.P.; Ross, J.S.; Pollock, B.; Divol, L.; Froula, D.H.; Glenzer, S.H. Fully relativistic form factor for Thomson scattering.
Phys. Rev. E 2010, 81, 036411. [CrossRef]

27. Landau, L.D.; Lifchitz, E.M. The Classical Theory of Fields, 4th ed.; Pergamon Press: New York, NY, USA, 1975.
28. Sarachik, E.S.; Schappert, G.T. Classical Theory of the Scattering of Intense Laser Radiation by Free Electrons. Phys. Rev. D 1970,

1, 2738. [CrossRef]
29. Esarey, E.; Ride, S.K.; Sprangle, P. Nonlinear Thomson scattering of intense laser pulses from beams and plasmas. Phys. Rev. E

1993, 48, 3003. [CrossRef]
30. Ride, S.K.; Esarey, E.; Baine, M. Thomson scattering of intense lasers from electron beams at arbitrary interaction angles. Phys.

Rev. E 1995, 52, 5425. [CrossRef] [PubMed]
31. Brau, C.A. Modern Problems in Classical Electrodynamics; Oxford Univ. Press: Oxford, UK, 2004.
32. Avetissian, H. Relativistic Nonlinear Electrodynamics; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2006.
33. Yang, J.H.; Craxton, R.S.; Haines, M.G. Explicit general solutions to relativistic electron dynamics in plane-wave electromagnetic

fields and simulations of ponderomotive acceleration. Plasma Phys. Control. Fusion 2011, 53, 125006. [CrossRef]
34. Panofsky, W.K.H.; Phillips, M. 1955 Classical Electricity and Magnetism; Addison-Wesley: Reading, MA, USA, 1965.
35. Pastor, I.; Guasp, J.; Alvarez-Estrada, R.F.; Castejon, F. Monte Carlo approach to Thomson scattering in relativistic fusion plasmas

with allowance for ultraintense laser radiation. Nucl. Fusion 2011, 51, 04011. [CrossRef]
36. Alvarez-Estrada, R.F.; Pastor, I.; Guasp, J.; Castejon, F. Nonlinear relativistic single-electron Thomson scattering power spectrum

for incoming laser of arbitrary intensity. Phys. Plasmas 2012, 19, 062302. [CrossRef]
37. Jackson, J.D. Classical Electrodynamics, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1974.
38. Duke, P.J. Synchrotron Radiation: Production and Properties; Oxford University Press: Oxford, UK, 2000.
39. Loetstedt, E.; Jentschura, U.D. Recursive algorithm for arrays of generalized Bessel functions: Numerical access to Dirac-Volkov

solutions. Phys. Rev. E 2009, 79, 026707. [CrossRef]
40. Calvo, G.F.; Picón, A.; Bagan, E. Quantum field theory of photons with orbital angular momentum. Phys. Rev. A 2006, 73, 013805.

[CrossRef]
41. Olver, F.W.J. Bessel functions of integer order. In Handbook of Mathematical Functions; Abramowitz, M., Stegun, I.A., Eds.; Dover:

New York, NY, USA, 1965.

http://dx.doi.org/10.1103/PhysRevE.81.036411
http://dx.doi.org/10.1103/PhysRevD.1.2738
http://dx.doi.org/10.1103/PhysRevE.48.3003
http://dx.doi.org/10.1103/PhysRevE.52.5425
http://www.ncbi.nlm.nih.gov/pubmed/9964040
http://dx.doi.org/10.1088/0741-3335/53/12/125006
http://dx.doi.org/10.1088/0029-5515/51/4/043011
http://dx.doi.org/10.1063/1.4725190
http://dx.doi.org/10.1103/PhysRevE.79.026707
http://dx.doi.org/10.1103/PhysRevA.73.013805

	Introduction
	General Formulation
	 Classical Equations of Motion for the Electron
	 Asymptotic Liénard–Wiechert Retarded Radiation Fields
	Spectral Asymptotic Liénard–Wiechert Retarded Radiation Fields: Integral Representations

	Elliptically Polarized Radiation: Parametric Representation of Dynamical Variables
	Representation of an Arbitrary Non-Monochromatic Plane Wave through the Vector Potential Ai()
	The Vector Potential and the Solution of the Electron Dynamics for Monochromatic Elliptically Polarized Radiation
	Magnitudes Derived from the Parametric Representation of Trajectories

	Spectral Representation for Elliptically Polarized Incoming Radiation: The Integrand and Doppler Frequencies
	TS for an Incoming Laser Beam with OAM
	 Incoming Laser Beam with OAM: Vector Potential and Electromagnetic Fields
	Approximating the Electron Dynamics in OAM Beams by the Plane-Wave Solution: Numerical Computations

	Conclusions and Final Comments
	Miscellaneous Symbol Definitions and Formulas
	The Function JG,l(x,y;2s,E-1s,E) and Some Properties
	Monochromatic Polarized Radiation with 0 =0: Linearly and Circularly
	Linear Polarization
	Circular Polarization

	OAM
	References

