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Abstract: Recently the transport-of-intensity equation as a phase imaging method turned out as an
effective microscopy method that does not require the use of high-resolution optical systems and a
priori information about the object. In this paper we propose a mathematical model that adapts the
transport-of-intensity equation for the purpose of wavefront sensing of the given light wave. The
analysis of the influence of the longitudinal displacement z and the step between intensity distribu-
tions measurements on the error in determining the wavefront radius of curvature of a spherical
wave is carried out. The proposed method is compared with the traditional Shack–Hartmann method
and the method based on computer-generated Fourier holograms. Numerical simulation showed
that the proposed method allows measurement of the wavefront radius of curvature with radius of
40 mm and with accuracy of ~200 µm.

Keywords: wavefront; optical wavefield; phase distortions; wavefront sensor; computer modelling;
transport-of-intensity equation

1. Introduction

To date, the majority of devices and systems for determining the surface relief, three-
dimensional imaging, measuring and correcting aberrations, medical imaging and digital
microscopy are based on methods for analyzing light fields by measuring intensity [1–5]. It
is necessary to obtain all information about the light complex amplitude to characterize
the light field, which is usually limited by the possibility of detecting only the intensity
(amplitude) of the light beam. One of the most common ways to detect a phase argument
of the complex amplitude is to convert the phase distribution to an amplitude distribution.
The first to demonstrate such a possibility was L. Foucault, back in 1857, in his method
known as the “Foucault knife-edge test” [6].

Wavefront sensors use the principles of geometric optics to transform the phase
distribution into the intensity distribution [7–9]. Today the most commonly used wavefront
sensor is a Shack–Hartmann sensor, which combines microlens array with a pixel detector.
When the detector is placed in the focal plane of the microlens array, the position of the point
focused by each microlens can be matched to a certain region of the wavefront. This method
allows one to create a compact and simple scheme; therefore, Shack–Hartmann sensors are
used in many fields of science [10–14]. However, processing the information recorded by the
camera requires mathematical calculations to reconstruct the phase, which severely limits
the performance and makes them applicable for certain tasks like atmospheric turbulence
measurements only in pair with the state-of-art computers. It is also important that the
parameters of the microlens array limit the spatial resolution, dynamic range and sensitivity
of the sensor. Despite the fact that modern science has proposed several solutions to the
abovementioned problems [15], technological processes still impose significant restrictions
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on the size and radius of curvature (RoC) of the manufactured microlenses, which in turn
limits the spatial resolution of commercial Shack–Hartmann sensors [16].

The use of holographic wavefront sensors is relevant in tasks requiring high per-
formance [17–19]. In such sensors, the transformation of the phase distribution into the
intensity distribution is carried out by filtering the light beams with holograms. Usually
holographic wavefront sensors are used in the adaptive optical systems that require operat-
ing speed of more than a few kHz. Holographic sensors provide information about the
wavefront in the form of a few tens of numbers—the amplitudes of aberration modes (for
example, Zernike modes) or modes of adaptive mirrors. Thus, the signal from them can
directly control the shape of the adaptive mirrors without additional processing.

In works [20,21], a method for measuring the wavefront aberrations of laser radia-
tion based on computer-generated Fourier holograms was developed and experimentally
verified. In this method, the process of measuring the wavefront is carried out via local
optimization of the correlation function. In the future, devices implementing the described
method can compete with interferometers and Shack–Hartmann sensors in problems where
accurate measurements are required in a wide range of phase fluctuations, as well as at
apertures larger than 10 mm.

All of the abovementioned methods use mathematical optimization algorithms to
approximate the wavefront model. The optimization arguments are the weight coefficients
of orthogonal basis functions for expanding wavefront in series, such as the Zernike,
Chebyshev polynomials, Karhunen–Loève functions, etc. With an increase in requirements
for accuracy, the number of orthogonal functions used to represent the wavefront also
increases, which greatly reduces the processing speed. Increasing the data processing speed
by finding an effective method for solving the optimization problem, using high-speed
light modulators [22], as well as implementing algorithms for the synthesis of holographic
filters using multi-threaded calculations remain as open problems in this area.

There are also non-interferometric methods based on some assumptions about the
object wave and use mathematical algorithms to estimate information about the wavefront.
Examples of such methods include Fourier-ptychography, wavefront curvature sensing [23,24]
and pyramid wavefront sensors [25]. Removing the reference beam allowed to develop
more simple and robust devices. Moreover, state of art computers have expanded the
capabilities of such systems, increasing the field of view and achieving ultra-high resolution.
At the same time, modern ptychographic microscopy experiments [26] show that to obtain
an image of an object in a field of view of 50 × 50 µm2 with a resolution of 34 nm at a
wavelength of 10 nm, it takes 43 min of work of a personal computer.

In this regard, it is of interest to develop a non-interference method based on detecting
the beam intensity in several planes, and numerically solving the transport-of-intensity
equation to reconstruct the values of the complex field amplitude in the required plane
in real time. One of the advantages of such a method is a removal of auxiliary optical
components, usually used in other method for acquiring data/intensity distributions, so
that the intensity distributions acquired directly on a camera. Like that one can avoid
optical aberrations, which could be introduced by the auxiliary components. This article is
focused on the wavefront sensing of the objectless light wave, namely, on measuring of the
wavefront curvature of the spherical wave.

2. Reconstruction of the Phase of a Coherent Field via Transport-of-Intensity Equation

Modern methods of phase reconstruction, which are the development of ideas formu-
lated in works 40 years ago, allow finding of a complex field on the surface of an object
from the measured intensity distributions on the detector. In this case, the diffraction
integral used in practice describes the field at the detector through the field distribution
on the object surface. As a rule, the calculation of the diffraction integral is reduced to the
calculation of direct and inverse Fourier transforms.
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Let us show the role of the Fourier transform using the example of the transport-of-
intensity equation, which describes the propagation of coherent radiation from an object to
a detector, and is an exact solution of the wave equation.

It is known that a monochromatic coherent electromagnetic wave propagating in free
space, in the absence of other sources, satisfies the Helmholtz equation(

∇2 + k2
)

U(r⊥, z) = 0, (1)

where ∇ = {∂/∂x; ∂/∂y; ∂/∂z} is the Nabla operator for the three-dimensional space,
r⊥ = (x, y) vector radius in plane (x, y), orthogonal to the direction z, k is the wavenumber,
U(r⊥, z) is the complex amplitude of the field of the light wave, which is expressed as

U(r⊥, z) =
√

I(r⊥, z) exp{jφ(r⊥, z)}, (2)

where I(r⊥, z) is the intensity of the wave, and φ(r⊥, z) is its phase.
Using the complex field amplitude (2), we can obtain Equation (1) in the

paraxial approximation

∇2
⊥U(r⊥, z) + j2k

∂U(r⊥, z)
∂z

= 0, (3)

where ∇⊥ = {∂/∂x; ∂/∂y} is the Nabla operator for the two-dimensional space.
Separating the real part of Equation (3), we obtain

∇⊥ · [I(r⊥, z)∇⊥φ(r⊥, z)] = −k
∂I(r⊥, z)

∂z
. (4)

Equation (4) is called the transport-of- intensity equation (TIE). It connects the intensity
I and its longitudinal derivative ∂I/∂z with the phase φ of the light wave. Note that the
TIE was originally derived from the wave equation [27], and later derived from Poynting’s
theorem [28] and other fundamental relations [29].

Teague [27] proposed one of the approaches to solving the resulting equation. Its
essence lies in the application of the Helmholtz expansion theorem [30], which allows
representing the vector field I(r⊥, z)∇⊥φ(r⊥, z) in the form

I(r⊥, z)∇⊥φ(r⊥, z) = ∇ψ(r⊥, z) + [∇× A(r⊥, z)], (5)

where ψ(r⊥, z) is the scalar potential, A(r⊥, z) is the vector potential. Neglecting the second
term [∇× A(r⊥, z)], expression (4) can be simplified into two standard Poisson equations.

∇2
⊥ψ(r⊥, z) = −k

∂I(r⊥, z)
∂z

. (6)

∇⊥ ·
[

I(r⊥, z)−1∇⊥φ(r⊥, z)
]
= ∇2

⊥φ(r⊥, z), (7)

We can present Equation (6) with respect to the phase φ(r⊥, z) [28,31] as

φ(r⊥, z) = −k∇−2
⊥

{
∇⊥ ·

[
1

I(r⊥, z)
∇⊥∇−2

⊥
∂I(r⊥, z)

∂z

]}
. (8)

One of the most popular methods for solving Equation (7) is the method based on the
expression of differential operators in terms of the Fourier transform [31]. This solution is
simple and effective. Let us consider the main idea of the method in more detail. Using the
properties of the Fourier transform, one can express the sum of the partial derivatives of
the m-th and n-th powers [32].

∂m f (x, y)
∂xm +

∂n f (x, y)
∂xn = F−1

{[
(jkx)

m +
(

jky
)n
]
· F{ f (x, y)}

}
, (9)
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where F иF−1 are operators of direct and inverse Fourier transforms, respectively; kx,y =
2πνx,y are the frequency coefficients, νx,y are the frequency grids.

Then the differential operators in Equation (8) can be written as

∇⊥{ f (x, y)} = F−1{[jkx + jky
]
· F{ f (x, y)}

}
, (10)

∇−2
⊥ { f (x, y)} = F−1

{[
1

(jkx)
2 +

(
jky
)2

]
· F{ f (x, y)}

}
, (11)

It should be noted that, for the application of relations (10) and (11), in view of the periodic
nature of the Fourier transform, it is necessary to fulfill the periodic boundary conditions,
under which the value of the function at the boundaries must be cyclically repeated [33].

3. Proposed Method

This section describes the mathematical model for determining the RoC of a spherical
wave with a Gaussian intensity (Figure 1). We used the spherical wave as an object, which
can be characterized by the RoC, while the gaussian intensity distribution is the most
common distribution when it comes to coherent beams, such as laser beams. The novelty
of the proposed approach is in the combination of two methods: TIE to reconstruct the
phase of the complex field amplitude from a set of intensities and a geometric method (to
be explained below) to calculate the RoC from a known complex field amplitude.
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Figure 1. Propagation of a spherical wave in space.

Figure 2 presents a detailed representation of the modeling process, which consists of
the following steps:

1. Obtaining a set of complex amplitudes U(r⊥, zi), . . . , U(r⊥, zi+1) by propagating the
original field through space using the angular spectrum method [34], or acquiring a
set of intensities I(r⊥, zi) from measurements in a physical experiment (dashed block);

2. Calculation of the theoretical RoC of the wavefront Rt(z) using the geometric method;
3. Calculation of phase components φuw,TIE(I, ∂I/∂zi) using only intensities I(r⊥, zi) by

solving the TIE (i.e., Equation (8));
4. Calculation of RoC of the wavefront RTIE(z) using the initial intensities (step 1) and

phases obtained in step 3 by the geometric method;
5. Comparative analysis of Rt(z) and RTIE(z).
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Next, the algorithm is explained more thoroughly. Note that to solve TIE (Equation (8)),
it is necessary to know the longitudinal derivative with respect to the intensity ∂I/∂z, which
can be approximated by the finite difference method (Equation (12)), if at least two intensity
distributions and the distance ∂z between them are known (Figure 1).

∂I(z)
∂z

=
I(zi+1)− I(zi)

∂z
. (12)

Therefore, the first step of the proposed algorithm (Figure 2) is to obtain a set of
complex amplitudes U(r⊥, zi), . . . , U(r⊥, zi+1) by propagating the initial field U(r⊥, z = 0)
through space using angular spectrum method [34]. The propagation of the initial field
is done only for simulation purposes: To attain intensities used later for TIE and for
comparison in the end. For a physical experiment, acquiring a set of intensities in different
planes will suffice.

At the second step, the theoretical radius of curvature Rt is calculated using the
geometric method. Let’s consider it in more detail. It is known [35] that the radius of the
circle R is related to the sag s and the chord l by the following relation

R =
s
2
+

l2

8s
. (13)

The chord l in our case is the width of the Gaussian function in level Imax(x)/e2

(Figure 3a). The search for the sag s assumes that the complex field amplitude is zero where
I < Imax/e2. Therefore, it is necessary to form an aperture with a diameter equal to the
chord length l and superimpose it on the wrapped phase φw (Figure 3b). The sag s is found
as the phase maximum after its unwrapping operation [36]. Thus, using Equation (13), one
can determine the RoC of the wavefront.
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Figure 3. (a) Determination of the chord length l from the intensity of the modeled wave by level
Imax/e2 for the synthesis of the aperture. (b) Overlay an aperture on a wrapped phase to obtain an
unwrapped phase.

Note that the calculation of the theoretical RoC Rt was done only for simulation
purposes: To compare with the proposed method and to figure out its limitations and
applicability. In a physical experiment there will be no calculation of the theoretical RoC. In
this case other methods will be used to evaluate the performance of the proposed method
(e.g., interferometry, Shack–Hartmann sensors and others).

Finally, in the third step of the algorithm, we find the derivative using Equation (12),
solve TIE (Equation (8)) and get the already unwrapped phase φuw,TIE (one of the advan-
tages of TIE). Next, we calculate the chord l and the value of the sag sTIE and we calculate
RTIE using Equation (13).

At the last step, a comparison of Rt and RTIE is carried out, the results of which will be
discussed in the next section.

4. The Limits of Applicability of Methods for Measuring the Curvature of the Wavefront

The proposed method is compared with the traditional method based on the Shack–
Hartmann sensor and the holographic method using numerical simulation. The simulation
was carried out in the Python programming language (http://www.python.org, accessed
on 5 May 2021), which in recent years has become a powerful tool for fundamental and
applied research in astronomy [37] and other related fields [38]. However, such comparison
could be implemented in any other programming language (C++, MATLAB, etc.). For com-
parison, we took parameters of commercially available devices, such as Shack–Hartmann
wavefront sensor and spatial light modulator with Full HD resolution.

4.1. Shack–Hartmann Sensor

Wavefront sensors are devices that measure the deviation of an optical wavefront from
a plane or sphere. Let us calculate the minimum and maximum RoC that such a sensor can
detect using the scheme shown in Figure 4.

The minimum radius Rmin can be calculated from the condition of the maximum angle
θmax, by which one of the elements of the microlens array can deflect the incident beam,
provided that the spot focused by the microlens does not fall on the area which is matched
with another microlens. This angle is determined by the Equation (14):

θmax =
d

2 f
, (14)

where d is the microlens diameter, f is its equivalent focal length. For example, for a
Thorlabs WFS 300-14AR sensor with d = 300 µm and f = 14.2 mm, the θmax value is defined
as 10.56 mrad.

http://www.python.org
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The maximum radius Rmax can be calculated from the condition of the minimum
detectable angle θmin, it is determined by the Equation (15)

θmin =
∆ymin

f
, (15)

where ∆ymin is the minimum displacement of the light spot in the plane of the CCD that
can be detected [39]. For CCD, it can be calculated as ∆ymin = a/20, where a = 4.65 µm is
the pixel size of the WFS 300-14AR sensor. Then we get that θmin = 16.37 µrad.

Based on the maximum and minimum angles, it is easy to calculate the minimum and
maximum RoC that the sensor can register. The maximum radius Rmax can be calculated
as follows

Rmax =
rdet
θmin

, (16)

where rdet is the radius of the aperture in which the wavefront curvature is measured. The
maximum radius of the aperture that can be inscribed in the WFS 300-14AR sensor aperture
is 4.76 mm, then Rmax = 360 m.

The minimum radius Rmin is calculated from the condition θ ≤ θmax, where θ is the
angle by which the wavefront is deflected by the microlens located at the edge of the
array. For the considered WFS 300-14AR sensor Rmin = 340.6 mm. At the same time,
proceeding from the accuracy of wavefront measurements (λ/50 for the selected WFS), we
can determine the accuracy of the RoC measurement. The change of the sag s (Equation (13))
of the local wavefront caused by increasing/decreasing of defocus value by λ/50 will result
in changing of the RoC by 517 µm, while working around Rmin.

Shack–Hartmann wavefront sensors output characteristic is linear on its entire dy-
namic range and its dynamic range is determined mostly by the microlens array used in
the development. However, it was shown that the dynamic range can be expanded using
different techniques. Namely the defocus aberration—-which can be directly translated
to RoC of wavefront—-was measured with a maximum of 11% error over a range eight
times larger than the microlens-bound definition [40]. However, such an error in estimation
of the defocus value will translate to even bigger error in determining of the wavefront
RoC (∆R = 5 mm for the RoC R = 50 mm for the parameters of the wavefront sensor
given above).

4.2. Holographic Method Based on a Spatial Light Modulator

There is a compact device for measuring the wavefront based on highly efficient
computer-generated holograms (CGH) in addition to traditional wavefront sensors [41,42].
The dimensions and resolution of the modulator used to output the CGH in such devices
would determine the maximum spatial frequency of the CGH. Based on this, it is possible
to determine the dynamic range of the measured values of the RoC for the method based
on the spatial light modulator. According to [43], the resolution of the object recorded on
the hologram should be four times less than the resolution of the final hologram. However,
the expression is valid for the hologram recording in a physical medium. In the case when
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the object is a CGH, it is enough to display it without distortion on the modulator. This
can be achieved if at least 4 pixels of the hologram fall on one period of the interference
pattern (structure) [44].

The CGH itself consists of two elements: the blazed diffraction grating and the phase
function imposed on it. When measuring the RoC, the Zernike polynomial corresponding
for defocus (Z2

2), acts as a phase structure. In the limiting case, when work is carried out in
zero order, the blazed diffraction grating can be neglected. The minimum RoC that can be
registered without distortion can be calculated using the phase structure. With a modulator
resolution of 1920 × 1080 pixels Rmin = 170 mm. With a further decrease in the radius on
the final CGH, there are areas with a period of T ≤ 3 pixels. The use of such CGHs will
lead to an increase in the measurement error of RoC.

In general, the holographic method output characteristic is linear for a certain interval,
which is determined by the values of the aberration modes, used during hologram synthe-
sis [45,46]. Increasing the dynamic range by using the higher value of the aberration modes
will decrease the accuracy of the method. The accuracy for wavefront aberration modes
measurement vary from λ/10 [47] to λ/50 [18,21], which for the given parameters of the
modulator (aperture 6912 mm for the pixel size of 6.4 µm) translates to RoC measurement
accuracy ∆R = 201 µm and ∆R = 41 µm, respectively.

4.3. Method Based on the Transport-of-Intensity Equation

This section presents the results of three numerical simulations carried out using the
mathematical model described in Section 3. In all numerical simulations, the following
parameters were used: radiation wavelength λ = 650 nm; field size w× h = 1500× 1500 pixels;
sampling step 5.04 µm. The intensity and phase in the z = 0 plane were specified by the
following relations

I(x, y, 0) = exp

{
− x2 + y2

2l2
0

}
, (17)

φ(x, y, 0) =
√

x2 + y2 + R2
0, (18)

where l0 = 750 pixels, R0 value depends on the simulation.
In the first numerical simulation, the linearity of the proposed method was investi-

gated for RoC R0 = 100 mm, the range of distances z = 0, ∂z, 2∂z, . . . , R0, where ∂z = 1 mm.
The obtained dependence (Figure 5) shows that the nonlinearity increases in direct pro-
portion to the distance from the point z = R0, that is, the error in determining RoC is
proportional to the value of the chord l (the width of the Gaussian function).
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During the second numerical simulation, the influence of the step value ∂z was
investigated for the following parameters: R0 = 100 mm; z = 80, 80 + ∂z, 80 + 2∂z, . . . , R0;
∂z = 0.1, 1, 5, 10 mm. Earlier [48] it was shown that the value of the step ∂z should be large
enough to cover the influence of noise and, at the same time, small enough so as not to
violate the linearity of the derivative approximation (Equation (12)). In our simulation,
there is no noise, so the step value is limited only from above, which is observed in the
obtained dependence (Figure 6). More thorough study on the accuracy in the displacement
of the between planes where intensity distributions were acquired was carried out in [49].
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Note that it is difficult to find the exact value of the chord l near R0 due to the effect of
sampling. So, at z = 97 mm the chord l = 5 px, and the values in these 5 pixels differ from
each other by 4·102 (for Imax(z = 0) = 1.0). That is, to improve the accuracy in the region
z ∼= R0, interpolation is necessary, which will allow obtaining a more accurate value of the
chord l.

In the last numerical simulation, Rmin was determined for the comparison with the
methods presented above. The distance (R0–z) was fixed: (R0–z) = 15.5 mm—that is,
15.5 mm in front of R0; step ∂z = 1 mm; R0 = 20 . . . 100 mm. The resulting dependence
(Figure 7) demonstrates the possibility of using this mathematical model at Rmin ∼= 40 mm.
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5. Results and Discussion

The main data from Section 4 was assembled in the Table 1. All of the errors were
calculated based on the same radiation wavelength λ = 650 nm. It can be seen, that while
the proposed method does not achieve the highest accuracy of wavefront aberrations
measurement, it still allows one to measure wavefront RoC with curvature of less than
60mm with adequate accuracy in comparison to other methods. So, we can say that the
proposed method can expand the lowest range of wavefront RoC measurement, where
other methods start showing high errors. In addition, all of this can be achieved with
just a camera and software without the need of using focusing optics, which itself can
introduce aberrations into the beam. Although it is worth noting that, for all the methods,
the accuracy increases with an increase of RoC. That happens because the same change
of the sag s translates to smaller relative change in wavefront RoC. Figure 8 shows the
graphical comparison of the dynamic range limits of the three methods.

Table 1. Comparison of wavefront radius of curvature measurement accuracy by different methods.

Shack–Hartmann
Wavefront Sensor

Holographic
Wavefront Sensor Proposed Method

Pixel Size, µm 4.65 6.4 5.04

Aperture Size 4.76 6.91 7.56

Rmin, mm 50 170 40

Defocus Measurement Accuracy 10λ λ/50 λ/1.5

∆R, µm 5100 63 200
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Figure 8. A visual comparison in the accuracy of determining the minimum RoC Rmin.

Certainly, there are devices with higher resolution (up to 4 and 8 K), that will allow
to decrease the Rmin, while increasing the accuracy. Likewise, the same changes could be
done to the proposed method. Thus, even using more common commercially available
devices one can achieve better results while implementing the proposed method. In this
work we showed the principle of the proposed method for the case of the wavefront RoC
measurement with symmetric wavefront profile (defocus aberration mode). However, for
the TIE it does not matter if the wavefront profile is symmetric or asymmetric as long as
the wavefront function satisfies the boundary conditions. Naturally the asymmetry will
impact the RoC calculation process, but the algorithm can be adapted by introducing the
polynomials into the calculation process [50].

6. Conclusions

In this study we proposed a method for wavefront sensing of the light radiation
based on the transport-of-intensity equation. The proposed method was studied using
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numerical simulation and compared to the common devices, such as Shack–Hartmann
wavefront sensors and Holographic wavefront sensors. The comparison was done with
the radius of curvature of the wavefront of spherical wave. The resulting error in mea-
suring the wavefront radius of curvature R0 = 40 mm at λ = 650 nm was 0.20 mm. The
proposed method enables to expand the dynamic range of the radius of curvature of the
wavefront measurement.

The novelty of the proposed method lies in the fact that the transport-of-intensity
equation was for the first time used to directly measure the wavefront of the light wave
(i.e., wavefront sensing), unlike its previous uses in microscopy imaging. The estimates
obtained in the article could be used in the development of optoelectronic systems designed
to register, process and display information about optical radiation.
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