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Abstract: For a high-power slab solid-state laser, obtaining high output power and high output
beam quality are the most important indicators. Adaptive optics systems can significantly improve
beam qualities by compensating for the phase distortions of the laser beams. In this paper, we
developed an improved algorithm called Adaptive Gradient Estimation Stochastic Parallel Gradient
Descent (AGESPGD) algorithm for beam cleanup of a solid-state laser. A second-order gradient
of the search point was introduced to modify the gradient estimation, and it was introduced with
the adaptive gain coefficient method into the classical Stochastic Parallel Gradient Descent (SPGD)
algorithm. The improved algorithm accelerates the search for convergence and prevents it from
falling into a local extremum. Simulation and experimental results show that this method reduces
the number of iterations by 40%, and the algorithm stability is also improved compared with the
original SPGD method.

Keywords: stochastic parallel gradient descent algorithm; beam cleanup; slab laser

1. Introduction

High-power solid-state lasers have been widely used in many fields such as machinery,
medical, and defense [1–6]. With the development of lasers, applications such asspace-
based laser space debris cleanup have put forward new requirements for laser systems.
These scenarios require the laser system to have a high average output power and high
output beam quality and require the system to be simple, compact, and miniaturized.
However, the thermal effect of the laser introduces wavefront distortion, which leads
to degradation of beam quality [7–9]. With the rapid development of gain materials,
pump sources, laser extraction structures, and adaptive optics (AO) technology, the output
power and beam quality of solid-state lasers have been significantly improved [10–16].
The adaptive optics technology measures the wavefront distortion through the wavefront
sensor and uses the control system to control the deformable mirror to correct the wavefront
distortion, which can effectively improve the laser beam quality [15,17]. Compared with
classical AO, the wavefront sensor-less AO (WFSless AO) system does not need a wavefront
sensor to measure the wavefront distortion; the control signal of the correction element
is obtained by optimization algorithm, so it has a simpler structure and it is easier for the
system to achieve lightweight requirements [18–21].

Commonly used optimization algorithms include the hill climbing algorithm [20],
genetic algorithm [22], simulated annealing algorithm [23,24], stochastic parallel gradient
descent (SPGD) algorithm [25–32], etc. Among these, the SPGD algorithm is more efficient
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and more applicable than other algorithms in AO systems and has been widely used
for laser beam cleanup [27,33]. However, the convergence speed of the classical SPGD
algorithm is slower, and it would have a probability of converging to a local extremum [34].
In recent years, a variety of improved algorithms aimed at increasing the speed of the
algorithm were proposed and widely used to optimize the connection weights of deep
neural networks, such as the AdaGrad algorithm [28], RMSProp algorithm [30], and
Adam algorithm [31]. In 2020, Hu et al. proposed an adaptive stochastic parallel gradient
descent method based on the Adam algorithm to achieve efficient fiber coupling [32].
Although these methods have achieved excellent results, most of them were aimed at
specific problems in application and cannot be directly used to achieve beam cleanup. In
addition, these algorithms introduce momentum and multiple hyperparameters, which
increase the difficulty of calculation and parameter selection.

In our work, we developed an adaptive gradient estimation stochastic parallel gradient
descent (AGESPGD) algorithm in the WFSless AO system for beam cleanup of solid-state
lasers. In the iterative process of the algorithm, both the gradient and the second-order
gradient are considered. The gradient value controls the direction of the iteration, and the
second-order gradient is introduced to adaptively modify the gradient estimate factor to
increase the convergence and prevent falling into local extremes. This article is organized as
follows: Firstly, we analyze and derive the principle and iterative formula of the AGESPGD
method. Second, this method is verified by a large number of simulations. Finally, the
performance of the algorithm is tested in a real experimental system. Both simulation and
experimental results prove that our proposed method has a significant improvement in
convergence speed and robustness to search step-size.

2. Principle of the AGESPGD Algorithm
2.1. Model of Laser Beam Cleanup System

Wavefront sensor-less adaptive optics technology is a simple but effective method
for beam cleanup in solid-state laser systems. The schematic of the WFSless AO system is
shown in Figure 1. It consists of a deformable mirror (DM), a set of solid-state laser systems,
a CCD camera, and a set of optical focusing lenses. The distorted beam is converged
on the CCD camera through the focusing lens, and the camera can collect the degraded
far-field spot.
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Figure 1. Schematic of wavefront sensor-less adaptive optics (WFSless AO).

The basic principle of WFSless AO is using an optimization algorithm to search for the
best voltage matrix U = (u1, u2, u3, · · · , un) (n is the number of DM actuator) to minimize
the residual wavefront surface E(x, y) = Φ(x, y)−Ψ(x, y). Φ (x,y) represents the wavefront
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aberration of the beam. Ψ (x,y) represents the surface shape of the DM driven by voltage
matrix U. The expression of Ψ(x, y) is

Ψ(x, y) =
n

∑
i=1

ui fi(x, y). (1)

where i is the number of actuators, and fi (x,y) is the surface function generated by applying
a unit voltage to the i-th actuator. The beam quality of the degraded far-field image can
be used as a merit function J(U) to evaluate the magnitude of the wavefront residual
E(x, y). The merit function usually selects a certain evaluation index of beam quality, such
as sharpness function, Strehl ratio (SR), power in the bucket (PIB), etc. This method does
not require a complex wavefront sensor system to measure wavefront distortion. Therefore,
the laser beam cleanup could be achieved by searching for the best voltage matrix of DM
to optimize the merit function, as shown in Equation (2).

max
U

J(U) (2)

2.2. AGESPGD

For the classic SPGD method, the convergence speed and direction are only deter-
mined by the gradient value of the search point. When the gradient of the merit function
is variable, the algorithm performance is seriously degraded by this method. Specifically,
the algorithm would repeatedly oscillate near the optimal point or even fall into the local
optimal because the search speed accelerates as the gradient gradually increases. When
the gradient gradually decreases, the algorithm convergence speed becomes extremely
slow because the search speed also decreases. Therefore, we introduce a value of second-
order gradient of current point to predict the change of the gradient, which makes the
convergence process more effective.

The classical SPGD algorithm originated from the gradient descent method in artificial
neural networks [25,35,36]. The principle is to apply a combination of interference voltages
∆U = (δu1, δu2, δu3, · · · , δun) to multiple actuators to obtain changes in the value of the
merit function [33]:

δJ = J+ − J
= J(u1 + δu1, u2 + δu2, · · · , un + δun)− J(u1, u2, · · · , un),

(3)

where J+ and J− represent the value of the merit function after and without disturbance,
respectively. Taylor expansion of Equation (3) can be obtained:

δJ =
n

∑
i=1

∂J
∂ui

δui + O([δui]). (4)

By simply transforming and ignoring higher-order terms, we can obtain

δJδui =
∂J
∂ui

(δui)
2 +

n

∑
j 6=i

∂J
∂uj

δujδui + · · · . (5)

The disturbance voltage applied to each actuator is independently and randomly

distributed, so we can get
n
∑
i 6=j

∂J
∂ui

δuiδuj = 0 and an estimate of the gradient can be approxi-

mately written as
J′ i ≈ δJδui ≈ ∆Jiδui/(δui)

2. (6)

According to mathematical proof, when the random characteristics of random distur-
bances are equal in amplitude |δui| = du, the random characteristics of each disturbance
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degenerate to Bernoulli distribution and would not affect the convergence. According to
the previous derivation, the iterative formula can be rewritten as

ut+1
i = ut

i − γJ′ i = ut
i − γ

(
J+ − J

)
δui. (7)

In practical applications, the bilateral disturbance strategy is usually used to improve
the accuracy of gradient estimation [30], that is, to apply positive disturbance and negative
disturbance to the actuator and measure the corresponding index function value. J′ i in
Equation (7) can be written as

J′ i =
(

J+ − J−
)
δui. (8)

where J+ and J− represent the value of the merit function after applying positive and
negative disturbances, respectively. The relationship between J+, J−, and J is described in
Figure 2. Two virtual points (P1 and P2) are added between them, which represent the half-
step length of the positive and negative disturbances, respectively, and their corresponding
mathematical expressions for gradient estimation are

Ji1
′ = (J − J−)δui/2,

J′ i2 = (J+ − J)δui/2.
(9)

Photonics 2021, 8, x FOR PEER REVIEW 4 of 14 
 

 

( )2 .i i i i iJ J u J u uδ δ δ δ′ ≈ ≈ Δ  (6) 

According to mathematical proof, when the random characteristics of random dis-
turbances are equal in amplitude iu duδ = , the random characteristics of each disturb-
ance degenerate to Bernoulli distribution and would not affect the convergence. Ac-
cording to the previous derivation, the iterative formula can be rewritten as 

( )1 .t t t
i i i i iu u J u J J u+ +′= − = − −γ γ δ  (7) 

In practical applications, the bilateral disturbance strategy is usually used to im-
prove the accuracy of gradient estimation [30], that is, to apply positive disturbance and 
negative disturbance to the actuator and measure the corresponding index function val-
ue. iJ ′  in Equation (7) can be written as 

( ) .i iJ J J uδ+ −′ = −  (8)

where J +  and J −  represent the value of the merit function after applying positive and 
negative disturbances, respectively. The relationship between J + , J − , and J  is de-
scribed in Figure 2. Two virtual points ( 1P  and 2P ) are added between them, which 
represent the half-step length of the positive and negative disturbances, respectively, and 
their corresponding mathematical expressions for gradient estimation are 

( )
( )

1

2

2,

2.

i i

i i

J J J u

J J J u

δ

δ

−

+

′ = −

′ = −
 (9)

 
Figure 2. Schematic of the relationship between indexes. 

From these two virtual points, we can calculate the second-order gradient at the 
point { }iu  as 

Figure 2. Schematic of the relationship between indexes.

From these two virtual points, we can calculate the second-order gradient at the point
{ui} as

J ′′ i ≈
(

J′ i1 − J′ i2
)

δui

= [(J+ − J)δui/2− (J − J−)δui/2]/δui
= C(J+ + J− − 2J).

(10)

According to the previous analysis, the second-order gradient is introduced to control
gradient estimation (J′ i). Therefore, by introducing a parameter η = C

J′′ (C is constant) that
is negatively related to the second-order gradient J ′′ into Equation (7), we get the iterative
formula of the AGESPGD as follows:

ut+1
i = ut

i − γJ′ i/J ′′ i. (11)

Algorithm 1 shows the process of the AGESPGD algorithm. The termination condition
is generally selected to reach a certain value or reach a certain number of iterations.
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Algorithm 1. The procedure of the Adaptive Gradient Estimation Stochastic Parallel Gradient
Descent (AGESPGD) method

Require: the stochastic merit function J (u1, u2, u3, . . . , un), the amplitude of disturbance δu, the
gain rate γ, the certain value of J0, and the maximal number of iterations T.
Ensure: The optimal parameters γ and du

Initialize the indexes J = 0, J′ = 0, J” = 0.
Initialize the voltages u1, u2, u3, . . . , un.
while t ≤ T or J ≥ Jc do

Randomly generate the values of ∆Ut =
(
δut

1, δut
2, δut

3, · · · , δut
n
)
.

Calculate the value of index J+ J− J.
J′ i =

(
J+ − J−

)
δui..

J ′′ i = J+ + J− − 2J..
ut+1

i = ut
i − γJ′ i/J ′′ i.

t = t + 1.
end while

In order to verify our proposed AGESPGD method, we constructed a unary function
f (x). This function has multiple local minima; its curve is shown in Figure 3, and its
expression is given by Equation (12). From the simulation results, the classical SPGD only
converge to the local minimum, while the AGESPGD method can converge to the optimal
solution and only requires 88 iterations. From this simple simulation, we can see that our
proposed AGESPGD algorithm converges faster and avoids the local extremum problem.

f (x) = (x− 3)2+3 sin(2πx)+5. (12)
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3. Simulation

We performed numerical simulations to verify the application of our proposed AGE-
SPGD method in a laser beam cleanup system. The scheme of the beam cleanup system
is shown in Figure 1. The wavefront aberration Φ(x, y) of the input beam is generated by
the Zernike polynomial [37]. Φ(x, y) can be described as a linear combination of various
orders of the Zernike polynomial:

Φ(x, y) =
j

∑
i=1

aiZi(x, y). (13)
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Zi(x, y) is the i order Zernike polynomial expression, and ai is the corresponding
coefficient of polynomials. The aberration represented by Z0 is the overall phase shift,
which will not cause degradation of the beam quality. The aberration Z1 and Z2 respectively
represent the tilt in two directions, which can be corrected by beam pointing control.
Therefore, in the simulation, wavefront aberration was simulated using 3~5 order Zernike
polynomial. All coefficients were randomly generated. The relationship between the
far-field intensity distribution of the beam and the wavefront aberration can be expressed
as [25]

I
(

x′, y′
)
=

∣∣∣∣∣x A0(x, y) exp{j[Φ(x, y)−Ψ(x, y)]}• exp
jk[(x′−x)2+(y′−y)2 ]

2 f dxdy

∣∣∣∣∣
2

. (14)

where (x′,y′) is the rectangular coordinate in the input plane of the camera, (x,y) is the pupil
plane coordinate, k=2π/λ is wave number, λ is the wavelength of the input wavefront, f
is the focal length of the optical focusing lens, and j is the imaginary unit. A0 (x,y) is the
amplitude of the input wavefront, which is generally set to be unity. In the simulation,
power in the bucket (PIB) was used as the optimization merit function [38,39], and its
expression is represented by Equation (15), where S0 is the area of the bucket.

J =

s
S0

I(x′, y′)dxdy
s

S I(x′, y′)dxdy
. (15)

The parameters of the simulation system were set as follows: beam aperture D = 80 mm,
wavelength λ = 1064 nm, optical lens f = 5 m, camera pixel size pix = 7.4 µm. A total
of 150 sets of random aberrations were generated; one part was used to obtain the best
parameters of the algorithm, and the other part was used to compare the performance
of the two methods. The iteration curve is shown in Figure 4, and the parameters of
the two methods were set as (SPGD: δu = 0.01 y = 10 and AGESPGD: δu = 0.1 γ = 0.05).
The classical SPGD requires an average of 215 iterations to complete convergence. Our
developed AGESPGD method only needed an average of 124 iterations to complete the
convergence in 100 simulation experiments, and its average convergence was about 40%
faster than the classical SPGD.
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Subsequently, we also analyzed the peak–valley (PV) value and root-mean-square
(RMS) value of the residual wavefront after correction, and the beam quality (times-
diffraction-limit factor, β) of the far-field spot. Figure 5 shows the comparison result



Photonics 2021, 8, 165 7 of 12

of a certain random aberration. For the classical SPGD method, the average result of
100 random aberrations was that the PV and RMS were improved from 2.3 and 0.127 to 0.27
and 0.0025, respectively (unit is wavelength λ = 1064 nm), and the beam quality improved
from 3.84 times the diffraction limit to 1.37 times the diffraction limit. For the AESPGD
method, the PV and RMS were improved from 2.3 and 0.122 to 0.27 and 0.0028, respectively
(unit is wavelength λ = 1064 nm), and the beam quality was improved from 3.84 times the
diffraction limit to 1.35 times the diffraction limit.
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To further analyze the performance of the two methods, we used different values
of δu to evaluate the two methods. The iteration curve is shown in Figure 6. The values
of δu were set to 0.025, 0.01, and 0.005. The AGESGD method can converge stably for
different values of δu. However, the classical SPGD method would show the phenomenon
of slow convergence or oscillating back and forth. Overall, the AGESPGD method exhibited
better performance in terms of convergence and robustness to δu than the classic SPGD in
these simulations.
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4. Experiment

In this section, the AGESPGD method was additionally studied in a real beam cleanup
system. The experimental configuration is shown in Figure 7. The number of actuators
of the deformable mirror (DM) was 59, and the laser used was an all-solid-state single-
longitudinal-mode infrared laser with a wavelength of 1064 nm and an aperture of 80 mm.
The beam passed through DM1, TM, and DM2 in sequence. DM1 was used to generate
analog aberrations, and TM was used to control light stability to prevent speckle jitter.
DM2 was used for aberration correction. Then, the beam entered a far-field imaging system
that included a set of focusing lenses with an equivalent focal length of 5 m and a CCD
camera (camera parameters: BAUMER, TXG03, CCD, 656 × 494 pixels, 7.4 µm pixel pitch).
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Figure 7. Experimental system for laser beam cleanup.

We set the same initial point for the two methods and set the best parameter combi-
nation, respectively. DM1 generated a series of aberrations that were calculated from the
wavefront aberrations collected by a real slab solid-state laser. Figure 8 shows 10 sets of
iteration curves with different aberrations. It can be seen from the experimental results
that the classical SPGD method required about 200 iterations to achieve a stable value. The
AGESPGD algorithm only needed about 120 times, and the convergence was increased by
nearly 40%. Figure 9 shows the far-field spots corrected by the two respective methods. Af-
ter correction, the beam quality was improved from 3.71 times diffraction limit to 1.63 imes
by the classical SPGD method and from 3.71 times to 1.61 times by the AGESPGD method.
Experiments showed that the convergence of the AGESPGD method was greatly improved
compared with the classical SPGD method.
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Figure 10 shows the iterative curves of the two methods under different search steps
δu. When δu was within the interval of [0.001, 0.05], the AGESPGD method could converge
stably, while the classical SPGD method could not. Experimental results showed that the
AGESPGD method not only had a much faster convergence rate than classical SPGD, but
also had a better robustness to δu.
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5. Conclusions

In this article, an adaptive gradient estimation stochastic parallel gradient descent
(AGESPGD) method is developed for solid-state laser beam cleanup. The gradient estimate
is modified by the second-order gradient of the search point. This modification is combined
with adaptive gain estimation to improve the classical SPGD. The improved algorithm is
able to accelerate the convergence speed and prevent it from falling to local extremum.
The simulation and experiment results show that our developed method converges much
faster than the classical SPGD method, and the robustness of the algorithm in searching
step-size is also improved. Compared with the classical SPGD, the iteration number of the
AGESPGD is reduced by 40%, and this method can converge stably when the search step is
in the range of [0.001, 0.05]. At the same time, this method can improve the beam quality
from 3.71 to 1.61 times the diffraction limits.
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