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Abstract: We experimentally demonstrate that high-resolution terahertz focusing can be realized in
planar metalenses, which consist of arrays of different V-shaped antenna units on a silicon substrate.
Numerical results show that a larger numerical aperture of metalenses can provide smaller full
width at half maximum of field distribution, leading to higher spatial resolution. The measurement
of fabricated metalenses samples was performed by a terahertz near-field imaging system, and
experimental results agree well with the numerical prediction. Especially for 1.1 THz incident
light, when the numerical aperture increases from 0.79 to 0.95, the full width at half maximum
correspondingly decreases from 343 µm to 206 µm, offering an improvement of spatial resolution.

Keywords: metasurface; terahertz; metalenses; focusing

1. Introduction

Metasurface has attracted much attention due to its performance and ultrathin thick-
ness, compared to the conventional bulk optical component. By spatially adjusting the
geometrical parameters of metasurface [1,2], such as size, shape, and orientation of the
building blocks, one can arbitrarily control polarization [3], phase [4], and amplitude of
incident light [5]. Owing to the design flexibility and versatility, various metasurface-based
optical devices including flat lenses, beam deflectors, wave plates, vortex generators, and
holograms have been implemented.

Among all the applications of metasurfaces, one intriguing development is metalens
for concentrating light. In practice, the ultrathin [6] and ultraflat metalenses [7] are desirable
for device miniaturization and system integration, promising applications in imaging [8],
lithography [9], spectroscopy [10], laser fabrication [11], etc. Additionally, benefiting from
the exotic properties of metasurfaces, metalens can provide unusual functions that are very
challenging or impossible to achieve in a conventional lens. Examples include dual polarity
plasmonic metalens, broadband/multispectral metalens, metalens array, multifocal lens,
and polarization-dependent metalens. Particularly, in our previous numerical study [12],
broadband focusing [13] metalens in the range of 4.2 to 4.5 THz is demonstrated. It consists
of eight concentrically arranged copper units offering discrete phase [14,15] from 0 to 2π for
cross-polarized scatter and can be used for multichannel THz wave communication [16,17].
Nevertheless, although much effort has been paid in designing metalenses, improvement
is still necessary for many aspects such as polarization conversion efficiency, focal spot size,
operation bandwidth, and especially spatial resolution [18]. Practically, due to the great
importance of the quality of imaging, many studies on spatial resolution are especially
investigated in numerical calculations and experiments [19]. However, the analysis of the
physical principle still needs more explorations.

In this paper, we experimentally demonstrate the high resolution of planar metalenses
that can be realized. Specifically, the proposed metalenses comprise arrays of different
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V-shaped antenna [20–22] units on a silicon substrate, in which super unit cells containing
eight different resonant units are designed to form concentric rings. The spatial resolution
in the metalens system is analyzed by the angular spectrum model. The measured results of
the THz near-field imaging system show that THz wave focusing is achieved by controlling
the position distribution of the resonant units [23,24]. Furthermore, when the numerical
apertures increase from 0.79 to 0.95, the full width at half maximum (FWHM) correspond-
ingly decreases from 343 µm to 206 µm in the experiment, offering an improvement in
spatial resolution [25–27]. The experimental results well agree with the analysis by angular
spectrum model and facilitate the practical application of metalenses in THz imaging,
communication, photonic integrated circuits, etc.

2. Design and Theory

Figure 1a,b presents the schematic of the proposed metalens structure, from the
perspective and front views, respectively, which comprises an array of different resonant
antenna units distributing on the silicon substrate. The super unit cell contains eight different
shapes and sizes of anisotropic antenna resonance units, illustrated in Figure 1c, in the order
of 1–3–5–7–2–4–6–8. Based on the super unit cells, concentric rings on the silicon substrate
are constructed to form metalens and realize broadband focusing on the x–y plane.
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Figure 1. Schematic of the metalens sample with (a) perspective and (b) front views. The super unit
cell of the metalens consists of eight antenna units (c) in the order of 1–3–5–7–2–4–6–8. Parameters of
units 1–4 are L1 = 58 µm, L2 = 57.9 µm, L3 = 47.8 µm, L4 = 42.8 µm and α1 = 0◦, α2 = 60◦, α3 = 90◦,
α4 = 120◦, respectively. Units 5–8 were separately obtained by rotating units 1–4 by an angle of
90◦ clockwise.

As is well known, the metasurface anisotropic resonant unit in Figure 1b can offer cross-
polarized scattering and steer THz wave in directions characterized by the generalized
Snell’s theorem. To realize focus, the eight resonant units in super unit cells of concentric
rings should be arranged in a special pattern. The required phase shift ψ(r) at a distance of
r from the center of the metalens should be as follows:

ψ(r) =
2π

λ

(√
f 2 + r2 − f

)
(1)

where f is the focal length of the designed metalens, and λ is the wavelength of the incident
THz wave in free space. Practically, the spatial resolution in the metalens system can be
analyzed by the angular spectrum model [28]. Since a wave is an incident on a transverse
(x,y) plane traveling along the z direction with U(x,y,0) representing the complex field
across the z = 0 plane where the lens is located, the angular spectrum A(f X, f Y, 0) of U(x,y,0)
can be given by

A( fX , fY, 0) =
∞∫

−∞

∞∫
−∞

U(x, y, 0) exp[−j2π( fXx + fYy)]dxdy (2)
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where fX and fY are spatial frequencies. According to angular spectrum model, the angular
spectrum A(fX,fY,z) at distance z can be written by A(f X,f Y,0) multiplying transfer function
H(f X,fY), i.e., A( fX , fY, z) = A( fX , fY, 0) · H( fX , fY). The complex field U(fX,fY,z) at z can
be written as an inverse Fourier transform of A(f X,f Y,z),

U(x, y, z) =
∞∫

−∞

∞∫
−∞

U( fX , fY, 0) · H( fX , fY) exp[j2π( fXx + fYy)]d fXd fY (3)

Nonetheless, considering that the lens structure with a finite size limits the extent of
the filed distribution, U(x,y,0) should be rewritten as

Ũ(x , y, 0) =U(x , y, 0) · circ(x , y) (4)

with

circ(x , y) =
{

1,
√

x2 + y2 ≤ r
0, otherwise

Thus, A(x, y, 0) in Equation (2) will be

Ã( fX , fY, 0) =
∞∫

−∞

∞∫
−∞

U(x, y, 0) · circ(x, y) exp[−j2π( fXx + fYy)]dxdy (5)

Then, the angular spectrum at distance z becomes Ã( fX , fY, z) = Ã( fX , fY, 0) · H( fX , fY).
Subsequently, the complex field at z should be given by

Ũ(x, y, z) =
∞∫

−∞

∞∫
−∞

Ã( fX , fY, 0) · H( fX , fY) exp[j2π( fXx + fYy)]d fXd fY (6)

It is clear that the circ(x,y) function in Equation (5) has an effect on the angular spectrum
Ã( fX , fY, z), and finally, on the field distribution of Ũ(x, y, z) in Equation (6). Generally,
the smaller the radius of the metalenses at z = 0 is, i.e., the smaller the r of circ function in
Equation (4), the broader the FWHM of field distribution Ũ(x, y, z).

3. Simulation Results and Discussion

Specifically, the substrate of the metalens in Figure 1 is set as silicon with a dielectric
constant of 11.7 and thickness of 200 µm. The material of resonance units is copper with a
thickness of 0.2 µm. The linearly polarized THz wave (electric field along the x axis) is a
normal incident along the z direction. We first performed numerical simulations through
CST Studio Suite to realize metalens focusing by optimizing the geometric parameters of
the structure. We took 1.1 THz (corresponding to wavelength 273 µm) as an example, for
which the periodicity length is px = py = 58 µm. The parameters characterizing the units
from 1 to 4 are L1 = 58 µm, L2 = 57.9 µm, L3 = 47.8 µm, L4 = 42.8 µm and α1 = 0◦, α2 = 60◦,
α3 = 90◦, α4 = 120◦. Here, Li and αi (I = 1,2,3,4) are the arm lengths and angles of the units
shown in Figure 1c, respectively. Units from 5 to 8 were separately obtained by rotating
units 1–4 by an angle of 90◦ clockwise. The width of each unit arm is w = 10 µm. Figure 2a
displays simulation results of transmittance and phase values of the eight resonant units
in each super unit cell [29,30] at 1.1 THz. We can find that the eight units have similar
transmittance (the red line) and geometric phases cover from 0 to 2π (the black line) by π/4
step, ensuring that the transmitted wavefront approximates a plane wave. In Figure 2b,
the solid curve demonstrates the relation of required phases and r in Equation (1), and the
red points indicate the actual phase that can be provided by distributed resonance units in
metalens of Figure 1.

Furthermore, the distribution of electric field intensity for cross-polarized THz wave
(electric field is along the y axis) on metalens can be obtained through CST. To analyze
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the spatial resolution of the metalens conventionally, we first define numerical aperture
(NA) as NA = n*sin(θ), in which n is the refractive index of air, and θ is dominated by
radius r and focal length f of metalens shown in Figure 1. Practically, for metalenses with
certain designed superunit cells, the f will keep unchanged and different r offers different
NA. Meanwhile, different r leads to different circ(x,y) functions in Equation (4), and as a
result, a different spatial resolution of angular spectrum model. In other words, larger r
provides larger NA and smaller FWHM of field distribution, i.e., higher spatial resolution.
Specifically, the distribution for metalens with r = 1135 µm is shown in Figure 3a, while
the front view is shown in Figure 3e. From Figure 3a, we can infer that the focal length
for 1.1 THz is approximately 1000 µm, and NA = 0.79 can be obtained. At the focal plane
(z = 1000 µm), the electric field distribution |Ey| along the x axis is illustrated in Figure 3i
by a black solid curve, which shows that FWHM = 205 µm. When r = 1877 µm, 2515 µm,
and 3131 µm, corresponding to NA = 0.89, 0.93, and 0.95, the electric field distributions
with views of x–z and x–y planes are shown in Figure 3b–d,f–h, respectively. In addition,
at the focal plane (z = 1000 µm), the electric field distributions along the x axis are severally
illustrated in Figure 3i by solid, dotted, triangle, and square curves with NA = 0.95, 0.93,
0.89, and 0.79, respectively. Correspondingly, the FWHMs depending on r are shown in
Figure 3j. It is shown that larger r leads to smaller FWHM in Figure 3j and higher spatial
resolution in Figure 3a–d, that is, in practical application, the performance of metalenses
for THz imaging, communication, photonic integrated circuits is affected by the set of
r. Additionally, the focusing efficiency can be defined as energy ratio of center focusing
spot to the incidence, which is 5.1%, 5.2%, 3.73%, 2.7% for NA = 0.78, 0.85, 0.92, and 0.95,
respectively [31].
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Figure 2. (a) Numerical results of transmittance and phase values of the eight resonant units in
each super unit cell at 1.1 THz. The black curve shows the phase of cross-polarized scatter, and the
red curve shows transmittance. (b) The solid curve shows the required phase, which is calculated
from Equation (1) at 1.1 THz, and the red dot shows the phase that can be actually provided by
resonance units.
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Figure 3. (a–h) Numerical results of the metalens with NA = 0.79, 0.89, 0.93 and 0.95, corresponding
to r = 1135 µm, 1877 µm, 2515 µm, and 3131 µm, respectively. Electric field distributions with views
on x–z and x–y planes are severally shown in (a–d) and (e–h). (i) The electric field distributions along
the x axis at the focal plane. (j) The relationship between FWHMs and r.

4. Experimental Results

The V-shaped units of metalenses were fabricated on the silicon substrate by UV
lithography. First, a layer of 10 nm thick chromium was deposited on the silicon substrate
with an electron beam evaporator, followed by the depositing of 200 nm thick copper on it.
Then, positive photoresist SUN-115P was coated onto the silicon substrate by a spin coater
at a spin speed of 2000 rpm for 30 s, followed by hot plate baking at 100 ◦C for 1 min. Next,
the V-shaped antennas were defined on photoresist surface by UV lithography, followed
by hot plate baking at 100 ◦C for 90 s. After photoresist development in SUN-238D for
8 s, copper was etched excess from the sample by reactive ion etching. The last step to
pattern the designed structure was a liftoff process in the acetone to remove photoresist
from the surface of the structure. Figure 4a shows the microscopic image of the fabricated
sample. We performed the measurement by THz near-field imaging system (TeraCube
Scientific M2), as illustrated in Figure 4b. The fs-laser source we used is 780 nm with
100 fs pulse width and 80 MHz repetition rate. The THz signal scans the sample surface
using a microprobe and is recorded at each pixel to obtain a THz image. The measured
electric field distributions for metalenses with r = 1135 µm, 1877 µm, 2515 µm, and 3131 µm,
corresponding to NA = 0.79, 0.89, 0.93, and 0.95, are shown in Figure 4c–f, respectively.
During the measurement process, the microprobe of the system kept a 1000 µm distance
from metalens samples. Through Figure 4c–f, the electric field distributions along the x
axis are severally obtained and illustrated in Figure 4g. Correspondingly, the relations
between FWHMs and r are demonstrated in Figure 4h, which shows that FWHM decreases
from 343 µm to 206 µm as NA increases from 0.79 to 0.95. Clearly, the experimental results
in Figure 4c–h agree well with the simulation results in Figure 3e–j and the analysis of
the angular spectral model, demonstrating that larger r, i.e., larger NA, leads to smaller
FWHM and higher spatial resolution. Here, we note that in Figure 4c–f, the background
signals are mainly affected by the copolarized transmission. Additionally, the focusing
efficiency of 3.7%, 4.19%, 3.17%, and 2.4% for NA = 0.78, 0.85, 0.92, and 0.95 are achieved,
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respectively. Compared to the 3% focusing efficiency in [32], similar efforts are obtained in
our structure. Nonetheless, metasurfaces consists of Si Mie resonators can provide almost
lossless transmission [33], implying the possibility of our next investigation.
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5. Conclusions

In conclusion, metalenses comprising arrays of different V-shaped antenna units
distributing on a silicon substrate are proposed theoretically and fabricated experimentally.
We first performed numerical simulations, and the results show that a larger numerical
aperture of metalenses can provide a smaller FWHM of field distribution, leading to higher
spatial resolution. Then, we experimentally fabricated the metalenses samples by UV
lithography and measured their field distributions by THz near-field imaging system. The
experimental results agree very well with numerical prediction. Our proposed design can
facilitate the practical application of metalenses in THz imaging, communication, photonic
integrated circuits, etc.
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