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Abstract: To deeply analyze the influence of diaphragm materials on the temperature and pressure
sensitivity of Fabry–Perot interferometer-based dual-parameter fiber sensors, the multiple transfer
method was used to fabricate the dual Fabry–Perot cavities, respectively, consisting of the following
combinations: epoxy resin AB/polydimethylsiloxane (PDMS), Ecoflex0030 silicone rubber /PDMS,
and PDMS/Ecoflex0030 silicone rubber. Experimental results show that the temperature sensitivities
are, respectively, 528, 540, and 1033 pm/◦C in the range of 40–100 ◦C. Within the applied pres-
sure range of 100–400 kPa, the pressure sensitivities are, respectively, 16.0, 34.6, and 30.2 pm/kPa.
The proposed sensors have advantages of proper sensitivity, simple fabrication, cost-effectiveness,
controllable cavity length, and suitability for practical sensing applications.

Keywords: Fabry–Perot cavity; temperature/pressure sensing; composite structure; multiple trans-
fer method

1. Introduction

Optical fiber sensors have been widely used in many domains owing to the advan-
tages of low cost, high sensitivity, fast response time, and good stability. Simultaneously,
different sensor structures with diverse sensitivities to various parameters can be used to
realize dual- or even multi-parameter sensing, such as temperature, pressure, refractive
index, etc. [1,2].

Several studies have characterized the investigations of single or dual-parameter
monitoring based on fiber tip bubble [3], Mach–Zehnder interferometer [4], fiber Bragg
gratings [5], Sagnac interferometer [6], etc. Due to the advantages of small size, good
measurement performance, and survivability in complicated electromagnetic environ-
ment [7–19], Fabry–Perot Interferometer (FPI)-based dual-parameter fiber sensors have
been extensively studied for the measurement of temperature and pressure. However,
FPI-based fiber sensors impose the limitation of the durability and operation stability of
the thin diaphragm that is used to form the FP cavity. Consequently, series of dual FP
cavities sensors based on various diaphragms to improve the sensing performance are
utilized to monitor the temperature and pressure [7–12], which share the characteristic of
ultra-high sensitivity. While endlessly pursuing high sensitivity will bring several problems
which should be paid more attention, only this kind of fiber sensor can be applied for
ultra-precise monitoring applications. Moreover, it will result in a great challenge for the
design of the interrogator’s bandwidth. Another dual FPI-based fiber sensor consisting
of two tiny segments of hollow-core fiber located at the end of lead-in single mode fiber,
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with a misalignment fusion splicing between the two hollow-core fibers with different core
diameter, is reported in [13]. The proposed sensor can be used in simultaneous measure-
ment of pressure and temperature, but its sensitivity should be significantly enhanced.
Some chemical etching method-assisted FPI fabrication processes are reported in [14–16],
which can provide good sensing performances. Unfortunately, the corrosive effects of the
chemical etching and the precise etching time are difficult to control. The authors of [17,18]
demonstrated easy-to-fabricate dual-FPIs. However, the sensitivity and repeatability of the
fabrication for the FP cavity should be improved. By filling a hollow capillary with two sec-
tions of PDMS, which are fused to the single-mode fiber, the authors of [19] investigated a
novel dual FP cavities-based fiber sensor to detect the temperature and pressure. However,
the fabrication of this kind of structure is costly due to the fact an especially made capillary
cone is required to inject the PDMS into the hollow capillary.

Although many studies reported dual-parameter monitoring based on FPI structures,
it is still worth continuously investigating and demonstrating the design of sensor struc-
tures, the selection of sensor materials, and the optimization of fabrication processes. Hence,
in this paper, a novel FP cavity with composite structure for fiber sensing based on the
multiple transfer method is proposed to measure the temperature and pressure, which
possesses the advantages of proper sensitivity, simple fabrication, cost-effectiveness, and
controllable cavity length.

2. Sensing Principle and Fabrication Process
2.1. Sensing Principle

The composite structure with dual FP cavities studied in this paper is depicted
in Figure 1. The sensor consists of a single mode fiber tail and two diaphragms with
different materials.
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Figure 1. The composite structure based on dual FP cavities.

The formed structure is composed of three reflective surfaces. The interfaces of
SMF/Material 1, Material 1/Material 2, Material 2/air, respectively, are reflective surfaces
1, 2 and 3. When light reaches the end face of the optical fiber, the incident light will be
reflected by the reflective surface within a certain wavelength range. However, part of
the light will still pass through Reflective Surface 1 and be reflected by Reflective Surfaces
2 and 3 within a certain range. The interference spectrum results from the phase delay
caused by optical path difference and the different reflectivity of each reflection surface of
the composite structure, as

I = I1 + I2 + 2
√

I1 I2 cos
(

4πnL
λ

+ ϕ0

)
(1)

Formula (1) is the dual-beam interference model of the single FP cavity. I1 and I2
represent the reflected light intensity of the two-beam interference, λ is the wavelength
of the incident light, n is the refractive index of the FP cavity, L is the length between two
reflected surfaces, and ϕ0 is the initial phase of the inference.

In this paper, an improved three-beam interference model based on the sensor struc-
ture is presented and analyzed. According to the principle of multi-beam interference, the
corresponding three-beam interference intensity [20] can be described as

I = I1 + I2 + I3 − 2
√

I1 I2 cos
(

4π

λ
n1L1 + ϕ1

)
+ 2
√

I2 I3 cos
(

4π

λ
n2L2 + ϕ2

)
− 2
√

I1 I2 cos
(

4π

λ
(n1L1 + n2L2) + ϕ3

)
(2)
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where I1, I2, and I3, respectively, are the reflected light intensity at the three reflecting
surfaces; ϕ1, ϕ2, and ϕ3 are the initial phases of the reflected light; and n1 and n2 are the
refractive index of Material 1 and Material 2, respectively.

L = λ1·
λ2

2(λ2 − λ1)
(3)

where λ1, λ2 are the wavelengths corresponding to the adjacent peaks or valleys in the
temperature and pressure test interference spectrum, and L is the length of FP cavity.

The optical path difference (OPD) of the reflected light l can be expressed as

l = 2nL (4)

The wavelength spacing between adjacent peaks or valleys of the sensor interference
spectrum is the free spectral range (FSR), the FSR is expressed as

FSR =
λ1λ2

2nL
=

λ0
2

2nL
(5)

where the λ1 and λ2 are two adjacent peaks or valleys of the interference spectrum, λ0 is
the mean wavelength of λ1 and λ2, and L corresponds to the cavity length in formula (3).
The FSR is mainly affected by the thermal expansion coefficient (which is related to the
change of L) and the thermo–optic coefficient (which is related to the change of n). It can
be clearly seen that the FSR of the interference spectrum decreases as the n and L increase.

For the temperature/pressure measurement of the FPI-based fiber sensor, the response
of the sensor can be attributed to thermal expansion effects, thermo–optic effects, elastic
deformation effects and refractive index factors. During temperature measurement, the
refractive index and cavity length of the FP cavity change as the temperature increases, since
these are related to the thermo–optical coefficient and the thermal expansion coefficient,
respectively. This results in the variations of OPD. The OPD variation is defined as [21]

∆l = 2∆nL + 2n∆L = 2nL(δ + α)∆T
∆n = δ∆Tn
∆L = α∆TL

(6)

where ∆l, ∆T, ∆n and ∆L are the variations of OPD, temperature, refractive index and FP
cavity length, respectively; δ and α are the thermo–optic coefficient and thermal expansion
coefficient, respectively, that are closely related to the properties of diaphragms. The
formula (6) indicates that the temperature-induced OPD variations can be expressed as the
change of FPI cavity length and refractive index.

For the pressure measurement, the change of FPI cavity length depends on the
diaphragm’s elastic deformation effects, and Formula (7) shows the pressure sensing
principle [22]:

∆L =
3

16
·
(
1 − µ2)r4

Eh3 ∆P (7)

where ∆P, h, r, µ and E, respectively, are the change of pressure of the test environment,
the thickness, the effective radius, Poisson’s Ratio, Young’s modulus of the diaphragms.

The theoretical interference spectrum is depicted in Figure 2, which is simulated by
Matlab platform. It is obtained by comprehensively considering the relevant parameters of
the diaphragms, such as thermo–optical coefficient, thermal expansion coefficient, Young’s
modulus and Poisson’s ratio in the proposed formulas.
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The sensitivity (S) of the prepared sensor is defined as the ratio of the wavelength
shift over the corresponding temperature or pressure change. Similarly, we define the ratio
of the minimum resolution Ω (Ω = 20 pm) of the spectrometer (OSA) over the sensor
sensitivity S as the minimum measurement accuracy (MMA)—and the MMA is given
by [23]

MMA =
Ω
S

(8)

As Table 1 shows the optic and physical properties of the diaphragms, this paper fully
demonstrates the different properties of materials that make up different FP cavities. The
thermo–optical coefficient and thermal expansion coefficient are closely related to the tem-
perature effect, which, respectively, affect the refractive index and the cavity length of the
diaphragms. Young’s modulus is the modulus of elasticity along the longitudinal direction,
which also indicates the rigidity of the material. The lower Young’s modulus induces the
greater elastic deformation. Additionally, the tensile strength is similar to Young’s modulus.
Poisson’s ratio effectively reflects the elastic constant of material transverse deformation.
The pressure sensing characteristics of the sensors mainly rely on the Young’s modulus
and Poisson’s ratio of the diaphragms.

Table 1. The optic and physical properties of the diaphragms [24–29].

PDMS Ecoflex0030 Silicone Rubber Epoxy Resin AB

Thermo–optic coefficient (◦C−1) −5.0 × 10−4 −3.1 × 10−4 −1.0 × 10−4

Thermal expansion coefficient (m/m◦C) 300 × 10−6 5.9–7.9 × 10−4 1.948 × 10−6

Refractive index (RIU) 1.418 1.41–1.53 1.45–1.52
Young’s modulus (MPa) 5 2 21,250

Poisson’s ratio 0.46 0.369 0.25
Tensile strength (psi) 1.015 × 103 200 1.044 × 104

2.2. Fabrication Process

Figure 3 illustrates the fabrication process that is divided into the five steps: (I) The
standard single mode fiber (SMF1) is well cut by a fiber cleaver; (II) PDMS, Ecoflex0030
and epoxy resin AB are prepared and stored at ratios of 10:1, 1:1, and 1:1, respectively. The
Material 1 is transferred to SMF2 by the multiple transfers method to form the appropriate
diaphragm thickness; (III) The SMF1, SMF2 coated with Material 1 are fixed on the fiber
holder. The motor is tuned, which holds SMF2, to coaxially shift the tail of SMF2 to access
to the tail of SMF1, before moving it away immediately; (IV) The SMF1 is left standing
or heated to make the Material 1 solidified to form the diaphragms. The Material 2 is
transferred onto Material 1 by repeating steps (II) and (III); (V) The diaphragms are cured
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on SMF1 and a well-fabricated composite structure with dual FP cavities is completed. In
addition, the diaphragm thickness can be controlled by increasing or reducing the transfer
times. The multiple transfer method can also be used to increase the diaphragm thickness
in batches. Consequently, we achieve a controllable cavity length of about 10–30 µm. It can
be heated properly to increase the solidification of the diaphragms, which is also helpful to
control the cavity length.
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Figure 3. The preparation process of the composite structure based on dual FP cavities.

Figure 4a,c demonstrate the interference spectra of a single-cavity structure and a
dual-cavity structure (S1) based on the three-beam interference principle. Figure 4a,c can
only display the interference spectrum within the range of 1525–1610 nm due to the limited
bandwidth of ASE light source. The free spectrum ranges of the sensors are 53 and 27 nm,
respectively, owing to the difference of cavity length and refractive index. Simultaneously,
different FP cavities have different contributions to the reflected intensity. This can be
demonstrated by the fast Fourier transform (FFT) of the total reflected spectrum of the
sensor. As shown in Figure 4d, there are two particularly distinct frequency peaks, labeled
Peak 1 (0.03525 nm−1) and Peak 2 (0.05875 nm−1).
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spectrum of S1.

3. Experimental Results and Analysis

To ensure the reliability and accuracy of the sensors, this paper carried out a compara-
tive analysis, mainly discussing three types of composite structure, followed by S1-Epoxy
resin AB/PDMS; S2-Ecoflex0030 silicone rubber/PDMS, S3-PDMS/Ecoflex0030 silicone
rubber. The experimental results showed that the other three composite structures have
poor responses to the temperature/pressure. Therefore, they are not discussed in this paper.
Table 2 displays the diaphragm thickness of the above three composite (S1, S2 and S3) for
temperature/pressure sensing.

Table 2. Diaphragm thickness of each composite structure with different materials.

Composite Structure Material Thickness

S1
Material 1: AB 32 µm

Material 2: PDMS 11 µm

S2
Material 1: Ecoflex0030 31 µm

Material 2: PDMS 10 µm

S3
Material 1: PDMS 28 µm

Material 2: Ecoflex0030 12 µm
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3.1. Temperature Sensitivity Analysis

The three samples were tested by the system shown in Figure 5. The temperature
increased from 40 to 150 ◦C with increments of 10 ◦C. Meanwhile, the spectrometer persis-
tently monitored the change of interference spectrum. The experimental results demon-
strate that the measurement range of S1 was about 40–120 ◦C, while S2 and S3 have a
better temperature response around 40–130 ◦C, which is related to the unique properties of
materials at high temperature. The stable experimental results over the range of 40–100 ◦C
were selected for analysis.
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Figure 5. Temperature detection system.

As shown in Figure 6a, this clearly illustrates that the interference peaks exhibit a
significant wavelength shift as temperature increases; Figure 6b displays the linear fitting
analysis of temperature response. The experimental results show that the wavelength
shift is about 30.25 nm and the consistency of the red shift is excellent. The temperature
sensitivity of the sensor is about 528 pm/◦C. As revealed in Figure 7a, the temperature
response of S2 has multiple interference peaks and a significant red shift from 1525 to
1610 nm. According to the fitting results shown in Figure 7b, the temperature sensitivity of
S2 is marginally improved compared to S1. The wavelength shifts reach up to 32.96 nm,
which clearly demonstrates relatively great fitness with a linear curve, and the calculated
temperature sensitivity is approximately 540 pm/◦C. Figure 8a shows the interference
spectrum of S3. The fitting result in Figure 8b demonstrates that the peak shift of the S3 is
about 61.46 nm, and the temperature sensitivity reaches up to 1033pm/◦C. Almost exactly
twice the amount S3 was investigated for having high sensitivity. S3 has the broadest
temperature response range and the highest temperature sensitivity in fabricated samples.
This is due to the fact that temperature sensitivity mainly relies on the thermal expansion
coefficient and thermo–optic coefficient of the diaphragms. Additionally, the spectra of the
latter two are slightly similar to a single FP cavity. This is caused by the little differences of
refractive indexes of the two diaphragms.
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3.2. Pressure Sensitivity Analysis

The schematic diagram of the pressure detection system is illustrated in Figure 9. The
pressure test range is set from 100 to 400 kPa with increments of 10 kPa. The fabricated
samples are placed in the air chamber and sealed with strong adhesive.
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Figure 9. Pressure detection system.

Figure 10a displays that the interference spectrum of S1 has multiple prominent
interference peaks over the detected wavelength range. The wavelength peaks increase as
gas pressure increases. As described in Figure 10b, the peak shift is 4.78 nm and the fitting
correlation coefficient R2 is about 0.998. The calculated pressure sensitivity is 16.0 pm/kPa.
The low sensitivity found in S1 is due to the poor elastic effects. Figure 11a also shows the
red shift of the spectra as pressure increases and the spectra present a consistent trend. In
Figure 11b, the linear fitting result shows that the wavelength shift is about 10.48 nm, and
the pressure sensitivity reaches up to 34.6 pm/kPa. More than twice the amount of S2 was
fabricated having a high sensitivity to S1. Figure 12a depicts that the S3 has a marginally
lower pressure sensitivity compared to its high temperature sensitivity. According to
Figure 12b, after linear fitting analysis, the wavelength shift and gas pressure sensitivity



Photonics 2021, 8, 138 10 of 14

are calculated to be 9.09 nm and 30.2 pm/kPa. The gas pressure sensitivity of the S2 was
the best one among the fabricated samples. The sample S2, which was provided with a
wide measurement range, exhibits good response under high pressure.

As Table 3 shows, the performances of the proposed sensor and existing reports were
concluded. The results demonstrate that the composite structures with dual FP cavities
proposed in this paper possess moderate temperature and pressure sensitivity. However,
we found that it is temporarily impossible to realize the simultaneous detection of the
dual parameters due to the existing detection scheme and limited bandwidth of the used
ASE light source. An ASE light source with a wider spectral range is needed to display
more obvious three-beam interference peaks or valleys, and thus we can demodulate the
high-frequency and low-frequency components to detect dual parameters simultaneously.
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Table 3. Comparison for the performances of the proposed sensor and existing reports.

Sensor Structure Temperature
Sensitivity

Pressure
Sensitivity Simultaneous Ref.

FBG cascade FPI 223.4 pm/◦C 24.99 pm/kPa Yes 2019 [5]
Hybrid Miniature FPI with Dual Optical Cavities 2.9 nm/◦C 12.2nm/kPa Yes 2014 [8]

SMF-SMF-HCF-CF 19.8nm/◦C 98pm/kPa Yes 2018 [9]
Dual-cavity FPI with Cascade Hollow-core Fibers 17 nm/◦C 1.336 nm/kPa No 2018 [11]

Hollow-Core Fiber-Based All-Fiber FPI 9.22 pm/◦C 1.05 pm/kPa Yes 2019 [13]
FBG incorporated FPI 0.871 pm/◦C 4.071 pm/MPa Yes 2016 [15]

FPI based on Pendant Polymer Droplet 249 pm/◦C 1.130 pm/kPa Yes 2015 [17]
FPI embedded with Microspheres 7.1 pm/◦C 2.126 pm/kPa Yes 2016 [18]

SMF-HCF-SMF 0.584 nm/◦C 3.884 pm/kPa No 2019 [30]
Diaphragm-Free Fiber-Optic FPI 14.8 pm/◦C 4.28 pm/kPa No 2018 [31]

FPI based on In-fiber Micro-cavity and Fiber-tip 0.0108 nm/◦C 4.158 pm/kPa Yes 2018 [32]
A Dual-Core Photonic Crystal Fiber Sensor 20.7 pm/◦C −3.47 pm/MPa No 2011 [33]

Composite Structure with Dual FP Cavities
S1 : 528 pm/◦C
S2 : 540 pm/◦C
S3 : 1033 pm/◦C

S1: 16.0 pm/kPa
S2 : 34.6 pm/kPa
S3 : 30.2 pm/kPa

No Our work

In addition, as Figures 13 and 14 show, this paper also set up another experiment
to verify the repeatability and stability of the sensor. Figure 14 shows the repeatability
and stability of the sensors by linearly fitting the peak shift in the heating and cooling
experiment. Figure 14 displays that the peak shift error over the temperature range of
60–100 ◦C is caused by the residual temperature under the cooling process. The fitting
curves show similar slopes and a high degree of coincidence. It was proven that the dual
FP cavities structure has excellent recovery capability for the thermal expansion effect and
thermo–optical effect.
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4. Conclusions

In this paper, a novel composite structure composed of dual FP cavities for fiber
sensing based on the multiple transfer method was proposed to measure the temperature
and pressure, which possesses the advantages of proper sensitivity, simple fabrication, cost-
effectiveness, and controllable cavity length. It was proven that the measured temperature
or pressure sensitivity was closely related to the properties and combination modes of
the diaphragms. According to the experimental results, by optimizing the combinations
and parameters of dual-diaphragms, this study found that the temperature or pressure
sensitivity can be adjusted over a certain range within the test temperature range of
40–100 ◦C and a pressure range of 100–400 kPa. This shows that the composite structure
designed with dual FP cavities in this study has a proper sensitivity and can meet various
sensitivity-demanding application scenarios.
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