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Abstract: This paper exploits for the first time the use of machine learning (ML) based techniques to
identify complex structured light patterns under free space optics (FSO) jamming attacks for secure
FSO-based applications. Five M-ary modulation schemes, construed using Laguerre and Hermite
Gaussian (LG and HG) mode families, were used in this investigation. These include 8-ary LG, 8-ary
superposition-LG, 16-ary HG, 16-ary LG and superposition-LG, and 32-ary LG and superposition-LG
and HG formats. The work was conducted using experimental demonstrations for two different
jammer positions. The convolutional neural network (CNN)-based ML method was utilized to
differentiate between the stressed mode patterns. The experimental results show a 100% recognition
accuracy for 8-ary LG, 8-ary superposition-LG, and 16-ary HG at 1, −2, and −2 dB signal-to-jammer
ratios (SJR), respectively. For SJR values < 0 dB, the standard LG modes are the most affected by
jamming and are not recommended for data transmission in such an environment. Besides, the
accuracy of determining the jammer direction of arrival was investigated using CNN and a simpler
classifier based on linear discriminant analysis (LDA). The results show that advanced networks
(e.g., CNN) are required to achieve reliable performance of 100% direction determination accuracy, at
−5 dB SJR, as opposed to 97%, at 2 dB SJR, for a simple LDA classifier.

Keywords: free space optics; structured light; jamming; machine learning

1. Introduction

It is anticipated in the year 2050 that more than two-thirds of the world population will
live in urban areas, where advanced technologies should play a significant role to optimize
the life-style in future smart cities. Free space optics (FSO) is one promising technology with
an expected market size investment of $300 million in 2029 [1]. FSO has been extensively
considered by various communication sectors including wireless communication networks,
optical interconnect in data centers, underwater communications, and next generation
Internet of things systems [2–5]. This is owing to the unique features of FSO technology
such as ease and low installation cost, high-throughput, long reach distance, and low
link latency.

In this regard, different light beam structures were used in data multiplexing and
M-ary pattern coding applications [6,7]. These include the traditional Gaussian beam and
complex light structures such as Laguerre, Hermit, and Bessel Gaussian (LG, HG, and BG)
mode families. Nonetheless, the wireless optical link is subject to propagation challenges
that limit the FSO efficiency. These include intrinsic atmospheric conditions and extrinsic
human-made risks (i.e., jamming and interception threats). In the former, the effect of
atmospheric turbulence, rain, fog, and dust has been comprehensively investigated theo-
retically and by experimental demonstrations [8]. Additionally, traditional digital signal
processing (DSP), adaptive optics (AO), and machine learning (ML) methods were used
alternatively to mitigate atmospheric effects. For instance, the work in [9,10] studied the
mitigation of crosstalk-based turbulence using DSP for multiplexed LG modes propagating
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in an emulated weak-turbulance channel. A 15-tap 4 × 4 multi-input multi-output (MIMO)
equalizer is used for four multiplexed LG channels each carrying 20 Gbps quadrature phase
shift keying (QPSK) signal. In addition, the authors in [11] exploited AO components to
alleviate atmospheric turbulence on the data multiplexed LG mode family, where pre- and
post-compensation of weak and moderated turbulence is achieved using an AO feedback
closed loop.

Besides, ML-based methods have been used, broadly, as a classifier to identify struc-
tured light signals, in M-ary pattern coding systems, and as a regressor to predict various
atmospheric conditions. In this regard, artificial neural network (ANN) has been utilized
to identify 16-ary superposition LG modes transmitted over a strong turbulence channel,
of 3 km link, in Vienna city [7]. Moreover, convolutional neural network (CNN) has been
used as a classifier and regressor in [12] to identify 16-ary superposition LG modes and
jointly predict the turbulence level, respectively. In [13], the k-nearest neighbour (kNN),
support vector machine (SVM), and CNN have been compared to identify 8-, 16-, and 32-ary
structured light beams generated using LG and HG mode families, in a dusty environment.
Moreover, the CNN-based regressor was used to predict the visibility range of the com-
munication channel. In [14], a chaotic interleaving processing step has been applied to
16-ary orbital angular momentum (OAM) states to mitigate FSO turbulence after coding the
original transmitted bits using low-density parity-check codes and Turbo codes. The CNN-
based classifier was used to identify various OAM-states with an achieved accuracy of
99% after optimizing CNN hyperparameters. In addition to the free space conditions, the
underwater environment effects, such as water bubbles, temperature inhomogeneity, and
water turbid, have been studied using CNN algorithm on single and superposition LG
modes that form 16-ary OAM states [3]. It is worth noting that the immunity of ML-based
approaches to environment (atmospheric or underwater) conditions has stimulated the
recent interest in ML-based methods as an alternative option to traditional DSP and/or
AO-based receivers [7].

On the other side, the investigation of extrinsic threats such as FSO beam tapping
and jamming are still in its fancy. For instance, in [15] the alleviation of FSO tapping
has been studied using free space spatial diversity and encoder/decoder techniques.
Moreover, the effect of jamming on standard Gaussian beam is analytically investigated
in [16,17]. In [16], the jamming effect on the bit error rate (BER) performance of FSO
system is studied using numerical simulation. In addition, in [17] the FSO channel outage
probability is evaluated under jamming effect, where jamming mitigation is investigated
by proposing a multi-input-single-output (MISO) FSO system. Moreover, a closed-form
expression of the average BER has been obtained in [18] for a 2 × 1 MISO optical space
shift keying system under jamming effect and in a turbulent FSO channel. So far, these
methods are based on numerical analysis to mitigate and/or study FSO system under
jamming; however, ML-based techniques are not yet reported in literature for extrinsic free
space challenges. Table 1 shows the recent progress of ML-based identification for M-ary
pattern coding under various channel conditions, where intrinsic channel conditions are
considered more.

It is worth noting that, to the best of authors knowledge, no work has been yet reported
in literature that investigates the jamming effect on complex structured light beam mode
families using ML-based techniques. Therefore, in this paper we experimentally investigate
the effect of jamming signal on LG, superposition-LG, and HG mode families. As shown in
Figure 1, structured light patterns can be used to transfer information bits between two
buildings; however, a simple standard Gaussian jammer can be used to corrupt the pattern
at the receiver side. In particular, the following is considered in this work:

1. An FSO pattern coding system is experimentally built to generate 8-ary LG, 8-ary
superposition-LG (we call it Mux-LG), 16-ary LG and Mux-LG, 16-ary HG, and 32-ary
formed by all considered modes.
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2. The identification accuracy of different mode families is assessed, in a direct detection
FSO system, using CNN-based classifier and under signal-to-jammer ratio (SJR)
ranging from −5 to 3 dB.

3. The direction-of-arrival (DoA) of the jamming signal is determined using CNN- and
linear discriminant analysis (LDA)-based classifiers.

Table 1. ML-based identification of M-ary light pattern coding systems under different transmis-
sion challenges.

Ref. Mode Mode Challenge ML Link Sim./Exp.Family Order Type Method Distance

[7] LG 16-ary AT ANN 3 km Exp.

[12] LG 16-ary AT CNN 1 km Sim.

[13] LG and 8-, 16-, AD KNN, SVM, 1 m Exp.HG and 32-ary and CNN

[14] LG 16-ary, AT CNN 1 km Sim.

[3] LG 16-ary TW, BW, CNN 1.5 m Exp.and TIW

This LG and 8-, 16-, Jamming CNN and 1 m Exp.work HG and 32-ary LDA
Sim.: Simulation, Exp.: Experimental, AT: Atmospheric turbulence, AD: Atmospheric dust, TW: Turbid water,
BW: Bubbly water, TIW: Temperature inhomogeneity water, LG: Laguerre–Gaussian, HG: Hermite–Gaussian,
ANN: Artificial neural network, CNN: Convolutional neural network, kNN: k-nearest neighbour, SVM: Support
vector machine, and LDA: Linear discriminant analysis.

Gaussian 
Jammer

Structured 
Light Data

Transmitter

Receiver

Figure 1. Structured light communication patterns between buildings with extrinsic Gaussian
profile jammer.

The rest of paper is organized as follows. Section 2 presents the structured repre-
sentation of LG and HG mode families. The experimental setup and data set collection
are discussed in Section 3. CNN- and LDA-based classifiers are introduced in Section 4.
The experimental results and their analysis are reported in in Section 5. Section 6 discusses
the limitations and the practicability of the proposed system. Finally, Section 7 provides
concluding remarks.
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2. Mode Basis Background

It has been shown that the distribution of laser light amplitude, in free space, can be rep-
resented, in rectangular coordinates, by the product of Hermitte polynomials Hn(·)Hm(·),
where n and m are the polynomials order, or in cylindrical coordinates by Laguerre poly-
nomial L`

p(·), where ` and p are the azimuthal and radial indices, respectively [19]. In this
work, the HG and LG orthogonal modes are used as code words for data transmission in
an M-ary pattern coding system, where M is the modulation order of LG or HG coding
system. In Figure 2a, the laboratory-generated LG and HG modes are shown, which are
used to build an M-ary coding communication system with M = 8, 16, and 32. In particular,
Hermite–Gaussian and Laguerre–Gaussian functions provide an exact representation of
the higher-order solutions of the free space paraxial wave equation in rectangular and
cylindrical coordinates, respectively [20]. The HG modes uHG

mn can be written in rectangu-
lar coordinates as uHG

mn (x, y, z) = un(x, z)× um(y, z) [20], where un(x, z) or um(y, z) is the
solution in x or y transverse dimension, and is given by

un(x, z) =
(

2
π

)1/4(exp[i(2n + 1)ψ(z)]
2nn!ωo

)1/2

× exp
(
−ikz− i

kx2

2R(z)
− x2

ω2(z)

)
Hn

(√
2x

ω

)
,

(1)

where Hn(·) is Hermite polynomial of order n, ωo is the beam waist, k = 2π/λ is
the wave number and λ is the operating wavelength, ω(z) = ωo

√
1 + (z/zR)2 is the

spot size with zR = πωo/λ is Rayleigh size, ψ(z) = arctan(z/zR) is Gouy phase, and
R(z) = z(1 + (zR/z)2) denotes the radius of curvature.

Similarly, the LG modes uLG
lp characterized by the azimuthal and radial indices can be

expressed in cylindrical coordinates as [20]

uLG
p` (r, φ, z) =

A
ω(z)

√
2p!

π(`+ p)!

( √
2r

ω(z)

)`

L`
p

(
2r2

ω2(z)

)
× exp

(
− ikr2

2R(z)

)
exp

(
−r2

ω2(z)

)
exp(−i`φ)

× exp(i(2p + `+ 1)ψ(z)),

(2)

where A is a normalized constant, L`
p(·) is the generalized Laguerre polynomial, and the

parameters R(z), ω(z), and ψ(z) are the same as in Equation (1).
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Figure 2. (a) Laboratory-generated transverse intensity profiles of LG, superposition-LG and HG modes, (b) Experimental
setup of M-ary structure pattern transmission with Gaussian jammer. LD: Laser diode; Coll.: Collimator; HWP: Half-wave
plate; M: Mirror; SLM: Spatial light modulator; BM: Beam magnifier; PC: Computer; BS: Beam splitter; PD: Photodiode;
CCD: Charge-coupled device. Inset is a photograph of the laboratory setup.

3. Experimental Setup and Dataset

In this work, the jammer effect on two laser mode families is investigated in direct
detection FSO system. Figure 2b shows the demonstrated experimental setup used in
this investigation. The information carrier link is built using a Teraxion continuous wave
(CW) laser source operating at 1550 nm (LD1). The laser output power is boosted up to
∼20 dBm using an Erbium doped fiber amplifier (EDFA) before collimated in free space
using Thorlabs F230FC-1550. A free space set of a half wave plate (HWP) and a polarizer
(P) is used to maximize the intensity and align the polarization of the collimated light,
respectively. An Hamamatsu (X13138-08) programmed liquid crystal on silicon-spatial light
modulator (LCOS-SLM) is utilized to modulate the phase of the horizontally polarized
incident Gaussian beam. According to the M-ary order, a computer (PC1) is used to
program the LCOS-SLM with different hologram sets to convert the incident Gaussian
mode into LG, Mux-LG, and/or HG modes.

On the other side, the jamming link is a standard Gaussian beam generated using
another CW laser source (LD2) working in C-band with an output power varying from
8 to 15 dBm to change the signal-to-jamming ratios (SJRs). A 15x Thorlabs GBE-15C beam
magnifier (BM) is used to adjust the beam diameter of the jamming signal. Both mode
pattern and jamming signals are transmitted over a free space link of 1-meter inside the lab.
The free space direct detection receiver is constructed using a Thorlabs LB1471-C convex
lens of 50 mm focal length and a charge-coupled device (CCD) detector (Ophir-Spiricon
LBP2-IR2) that captures and stores the intensity profiles of the different jammed modes in
PC2. Moreover, a beam splitter is used initially to measure the the power of the received
pattern and jamming signals and to adjust the SJR values. Figure 3 compares the received
beam width diameters statistically measured by D4σ method (i.e., four times beam profile
standard deviation in x or y directions) [21], for left-hand jammer, LG, Mux-LG, and
HG mode profiles. The measured beam diameter of the jamming signal is 3 mm, see
Figure 3a, whereas the measured beam widths of the LG/Mux-LG modes varying from
∼2.3 mm (LG01/0±1) to 4.2 mm (LG08/0±8), as shown in Figure 3b,c. For HG modes, the
beam diameters change from ∼1 mm (HG00) to 4.5 mm (HG33) in x and y directions.
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(a)

D4σ = 3 mm 

(b)

D4σ = 2.3 mm 

LG01

D4σ = 4.2 mm 

LG08

(c)

LG0±1

D4σ = 2.6 mm

D4σ = 4.2 mm

LG0±8

(d)

HG00

D4σ = 1 mm

HG33

D4σx = 4.5 mm

D4σy = 4.6 mm

Figure 3. Measured beam width diameters using D4σ method for (a) Jammer, (b) LG modes,
(c) Mux-LG modes, and (d) HG-modes.

In order to mimic the random wandering-around of a jammer, a 3-axis translation
stage is used to randomly change the incident position of the jammer. Besides, in this
investigation, both the left- and right-hand jammer direction-of-arrivals (DoAs) are con-
sidered. A dataset of the jammed patterns was created by recording the received intensity
profiles using the CCD detector. The CCD recorded the received profiles with a frame rate
of 1 frame/sec (which is sufficient to capture the slow jammer wandering), for a duration
of 200 s (∼3.3 min). In addition, the profiles was recorded at different SJRs varying from
−5 to 3 dB with a step size of 1 dB. It is worth noting that the choice of the lower (−5 dB)
and upper (3 dB) SJR values is owing to the devices power limitations and the performance
consistency, respectively. This creates a data set of 14,400, 28,800, and 57,600 frames for
8-ary LG/Mux-LG, 16-ary HG/LG+Mux-LG, and 32-ary LG+Mux-LG+HG modes, respec-
tively. Figure 4 shows examples of the various intensity profiles of the randomly jammed
mode pattern at SJRs of −5, 0, and 3 dB, of a left-hand DoA jammer. It can be seen that
the jammer attack frequently appears at the right-hand side of the sensor’s active area.
Moreover, when the jammer’s incident angle exceeds the lens’s angle of view, the jammer
distribution shows a non-circular/distorted shapes as in LG05, HG02, and HG21 at 0 dB SJR.
The recorded images have been used for the training and testing of CNN-based classifier,
such that 70% were used in the training phase whereas the remaining 30% are for testing
the classifier. It worths noting that to predict the jammer’s DoA, another dataset was built
that considers the 8-ary LG modes only. This generates a dataset of 28,800 frames for the
left- and right-hand jammer’s DoA. In the next sections, the obtained accuracies for both
M-ary modulation classification and DoA determination are discussed.

(a)

(b)

(c)

LG01 LG02 LG03 LG04 LG05 LG06 LG07 LG08 LG0±1 LG0±2 LG0±3 LG0±4 LG0±5 LG0±6 LG0±7 LG0±8

LG01 LG02 LG03 LG04 LG05 LG06 LG07 LG08 LG0±1 LG0±2 LG0±3 LG0±4 LG0±5 LG0±6 LG0±7 LG0±8

HG00 HG01 HG02 HG03 HG10 HG11 HG12 HG13 HG20 HG21 HG22 HG23 HG30 HG31 HG32 HG33

HG00 HG01 HG02 HG03 HG10 HG11 HG12 HG13 HG20 HG21 HG22 HG23 HG30 HG31 HG32 HG33

HG00 HG01 HG02 HG03 HG10 HG11 HG12 HG13 HG20 HG21 HG22 HG23 HG30 HG31 HG32 HG33

LG01 LG02 LG03 LG04 LG05 LG06 LG07 LG08 LG0±1 LG0±2 LG0±3 LG0±4 LG0±5 LG0±6 LG0±7 LG0±8

Figure 4. Measured beam profiles of left-hand DoA jammer at SJRs of (a)−5 dB, (b) 0 dB, and (c) 3 dB.
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4. Modes Identification and DoA Determination Classifiers

The free space direct-detection method depends on observing the image of the intensity
profiles. Therefore, the CNN-based classifier is exploited to identify the images of different
mode patterns, as it can directly process the two-dimensional input signal types. The CNN,
shown in Figure 5a, is used to automatically extract features from the raw image data
which leads to better discrimination between modes and, consequently, better performance
in the testing phase. The CNN network is constructed using three main processing layers.
These are the convolutional, pooling, and fully direct connected layers. In our work,
the CCD colored recorded images were greyscaled and resized to 28 × 28 pixels to reduce
the processing complexity. The resultant images were processed using the convolutional
and pooling layers. The convolutional layer is considered as the core building block of CNN-
based classifier. The input mode image is subdivided into different windows, which are
convolved with kernel filters to produce the feature maps. The result of the convolution
layer is passed through a nonlinear activation function. In this work, the activation function
is the Rectified Linear Unit (ReLU). The convolutional layer is then followed by a pooling
layer to reduce the size of the feature map. Two blocks of alternating convolutional and
pooling layers were considered, where the convolutional layers use 16 and 32 kernels
with 3 × 3 pixels, respectively. The output feature maps pass through the pooling layers
with a max-pooling of 2 × 2 pixels. This produces 32 feature maps with 7 × 7 pixels
after the second pooling layer. Then, these feature maps are flattened to 1-D vector with
1568 length and applied to a fully connected layer which contains 256 weights, sufficient
to solve the problem without requiring much resources. Finally, the CNN output layer is
8, or 16, or 32 elements vector (e.g., 8 for 8-ary LG modes and 16 for 16-ary HG modes).
The softmax activation function is implemented at the output layer. The position of output
vector element of highest value determines the type of received mode pattern. Note that
the entries of output vector are of values ≤ 1, where each entry represents the probability
of corresponding mode type. The sum of all output vector probabilities equals to one.

x1

x2

sB sw2

v1

Class 1

v2

Class 2

(b)

sw1

Input
28×28

Output 

3×3 2×2 3×3 2×2

14×14 7×7
Convolution & pooling 

block # 1
Convolution & 

pooling block # 2 Fully
 connected 

& N
N

(a)

SBSW1

SW2

sB

sw2

sw1

μ1 

μ2 

ith

Figure 5. (a) CNN-based classifier architecture. (b) LDA-based classifer principles.
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The network training is relying on the back propagation algorithm which updates the
network’s weights based on gradient of the loss. The loss function (L) is the cross-entropy,
given by [22]

L = −
N

∑
j=1

K

∑
i=1

tij ln(yij) (3)

where K is the number of classes, N is the number of samples, and y and t are the predicted
and target class (mode) probabilities, respectively. In the training phase, instead of using
the entire dataset as input to the CNN, which requires high memory space, the dataset
is divided into different batches. Every batch contains 64 images. Further, to reduce the
training time, batch normalization (i.e., subtracting the mean of each batch and dividing by
the batch standard deviation) is considered. Batch normalization considerably decreases the
training time when normalizing the input of each processing layer in the network, not only
the network input layer. Moreover, an important hyperparameter for tuning Deep Neural
Networks (DNNs) is the use of optimizer. In this study, the adaptive moment optimizer
(Adam) is considered with learning rate equals 5 × 10−3. Adam is easy to implement,
computationally efficient, and requires less memory resources [23]. Because overfitting is a
common challenge in training DNN models, L2 regularization of 10−4 is used to prevent
it. On the other side, to determine the jammer DoA, the CNN-based and LDA classifiers
are considered and their performances are compared. The later is considered owing to
its simplicity. The idea of the LDA technique is to project the original dataset of size
(N × D) onto a new space of size (N × d), where D >> d, as shown in Figure 5b. In our
development, N represents the number of mode images in the training dataset and D is
the number of features (image pixels). Therefore, the LDA can be performed using the
following steps [24]:

(1) Compute the between-class covariance matrix SB of the training dataset.
(2) Compute the within-class covariance matrix SW of the training dataset.
(3) Find the transformation matrix Φ = S−1

W SB that maximizes SB and minimize SW .

The eigenvectors and the corresponding eigenvalues of the transformation matrix Φ
provide the information about LDA space. The directions of LDA space is represented by
the eigenvectors, while the associated eigenvalues denote the magnitude of the eigenvectors.
Therefore, every eigenvector indicates one axis of the LDA space; however, the eigenvalue
represents the robustness of this eigenvector. The robustness of the eigenvector reflects
its potential to distinguish between the various classes, i.e., increase SB and decreases SW .
Thus, it achieves the goal of LDA. The LDA space is constructed using the eigenvectors that
have the largest eigenvalues. It is worth noting that for K number of classes, the number of
non-zero eigenvalues will be ≤ K− 1 [22]. Finally, the training dataset is projected on LDA
space. The classifier then designed to have a decision threshold (ith) that separates the two
adjacent classes. The decision threshold can be calculated as [22]

ith =
µ1 − µ2

2
(4)

where µ1 and µ2 represent the training dataset means of the two adjacent classes in LDA
space. Once the threshold value is calculated, it can easily be used to classify a new
data by first projecting it on LDA space, and then comparing its value with the value
of ith. Figure 5b illustrates an example of classification using LDA. It can be observed
that there is a significant overlap between the classes in case of the eigenvector v2 (i.e.,
with lowest eigenvalue) which leads to error in classification. However, the eigenvector v1
(i.e., with largest eigenvalue) shows a considerable improve in separation between classes.

5. Experimental Results and Discussion
5.1. M-ary Mode Identification

Investigation is conducted to examine the identification accuracy, using CNN-based
classifier, for each individual mode for 8-ary LG, 8-ary Mux-LG, and 16-ary HG formats.
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Figure 6 shows the classification accuracy in percent evaluated at SJR ranging form −5 to
3 dB. For LG modulation set, all modes reach 100% accuracy at SJR equals 0 dB, except LG01
which requires 1 dB more to reach 100% accuracy. However, for 8-ary Mux-LG and
16-ary HG modulation schemes, all modes can reach a recognition accuracy of 100% at
SJR of −2 dB. This shows an improvement of 3 dB over the 8-ary LG format. At low
SJR (i.e., −5 dB), the mode accuracy reduces to ∼85%, 96%, and 95% for LG03, LG0±6,
and HG12. This can be interpreted from the confusion matrix shown in Figure 7 at −5 dB
SJR, where the diagonal values represent the correct classification accuracy ratios for each
mode. However, the rest of the matrix values represent the misclassification with the
other modes. For instance, the LG02 provides 87.9% correct accuracy and confuses with
LG01, LG03, LG04, and LG05 with 4.1%, 6.23%, 1.63%, and 0.13%, respectively. It can be
observed that the misclassification ratio is large with neighboring modes and decreases
as it moves away which is expected owing to the similarity of LG adjacent modes. It can
be seen that mode LG03 is confused with neighbouring modes LG02 and LG04. Moreover,
in Figure 7b,c, the confusion for 8-ary Mux-LG and 16-ary HG formats is shown at −5 dB
SJR. For Mux-LG modulation, the mode LG0±6 is confused with G0±7 and G0±8. Moreover,
for HG modulation, mode HG12 is confused with HG13 and HG22.

−5 −4 −3 −2 −1 0 1 2 3
80

85

90

95

100

HG30

HG31

HG32

HG33

HG00

HG01

HG02

HG03

HG10

HG11

HG12

HG13

HG20

HG21

HG22

HG23

SJR [dB]
A

cc
u

ra
cy

 [
%

]
−5 −4 −3 −2 −1 0 1 2 3

80

85

90

95

100

LG0±1

LG0±2

LG0±3

LG0±4

LG0±5

LG0±6

LG0±7

LG0±8

SJR [dB]

A
cc

u
ra

cy
 [

%
]

−5 −4 −3 −2 −1 0 1 2 3
80

85

90

95

100

LG01

LG02

LG03

LG04

LG05

LG06

LG07

LG08

SJR [dB]

A
cc

u
ra

cy
 [

%
]

(a) (b) (c)

Figure 6. Individual mode accuracy for (a) 8-ary LG, (b) 8-ary Mux-LG, and (c) 16-ary HG
modulation schemes.
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Figure 7. Confusion matrices for (a) 8-ary LG, (b) 8-ary Mux-LG, and (c) 16-ary at SJR of −5 dB.

Figure 8 shows the average accuracy of 16-ary LG+Mux-LG and 32-ary LG+Mux-
LG+HG modulation schemes. It can be noted that the average classification, for both
modulation schemes, achieves ∼92% at −5 dB SJR. Moreover, these modulation schemes
need at least 1 dB SJR to reach 100% classification accuracy. This can be explained by the
high effect of the jammer on the standard LG modulation schemes. Hence, combining the
standard LG modes with Mux-LG and HG patterns, to increase data transmission rate,
reduces the system performance under jamming threat.
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Figure 8. Average accuracy for 16-ary LG+Mux-LG and 32-ary LG+Mux-LG+HG modulation schemes.

5.2. Jammer DoA Determination

Here, the classification methods are used to identify jammer threat direction of arrival
(DoA). In this experiment, both right-hand and left-hand jammer positions with respect
to the transmitter have been considered for 8-ary LG formats only (i.e., worst results
reported in the previous sub-section). The dataset comprises 28,800 images created from
the two jammer directions with a capturing duration of 200 s for each mode, and for SJR
ranging from −5 to 3 dB with 1 dB step (i.e., total dataset size: 200 images × 2 directions
× 8 modes × 9 SJR values). Two classifiers have been trained and tested using 70% and
30%, respectively, of the obtained dataset. The first classifier uses the CNN network;
however, the output layer contains two nodes, which denote direction of jammer either
right or left. In the second technique, a simple classifier based on LDA is used. Using this
technique, each image with size (28 × 28) is flattened into one vector, resulting in an input
dimensionality of N = 784. The LDA has the ability to reduce the dataset into only 1D.
Then a threshold value ith is obtained to classify between left or right DoA.

Figure 9 shows the classification performance in terms of the recognition accuracy
for LDA- and CNN-based classifiers. The CNN-based method is able to identify the left
and right jammer DoA with 100% accuracy for all SJRs. This could be attributed to the
clear and frequent incidents of the left-hand jammer on the right-side of the received
mode (see Figure 4) and the vice versa is expected for the right-hand jamming. However,
exploiting LDA-based algorithm (i.e., low-complexity classifier) reduces the DoA identifi-
cation to a maximum of 97% at SJR of 2 dB. Inset in Figure 9b shows the distribution of
data on LDA space. It is observed that much useful information of data was preserved in
1D space, with the existence of a clear separation between the two DoA jammers, except a
small region of interference. While LDA classification accuracy is less than the CNN classi-
fier, nevertheless it gives acceptable results, especially at SJR ≥ 0 dB, where the accuracy
reaches more than 95%.
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Figure 9. Jammer DoA identification using (a) CNN-based and (b) LDA-based algorithms.

6. Discussion

The rapid evolve of FSO market size motivates the development of new methods
and technologies that provide robust, reliable, fast, and secure FSO systems. This work
focused on the security issue of a well-researched FSO technology that uses structured
light as bit pattern codes. The demonstrated system is based on two main parts, the first is
the jammer signal which is a simple off-the-shelf laser source. The second part is the data
communication link which comprises an SLM (at the transmitter-side) and a CCD camera
(at the receiver-side).

The practical implementation of the data communication link is limited by the cost
and the switching speed (i.e., data transmission rate) of the structured light beam generator.
Complex SLM can be replaced by 3D-printing microscale spiral phase plates that can
generate pure structured light beams and are easily integrated with laser sources [25].
This increases the proliferation of the structured light beam generator in future FSO nodes.
On the other side, the direct-detection method using a CCD camera and a robust ML
algorithm reduce the hardware complexity at the receiver nodes, as they eliminate any
modal decomposition process [7]. However, the limiting factors of the CCD camera are its
sensitivity and frame capture rate. The former controls the free space distance; the latter
limits the communication data rate.

7. Conclusions

In this paper, we investigated the performance of complex light structured patterns
under human-made jamming threats. Two widely used laser mode families have been
utilized to generate five modulation schemes. These are the 8-ary LG, 8-ary Mux-LG, 16-ary
HG, 16-ary LG and Mux-LG, and 32-ary LG and Mux-LG and HG. Direct detection-based
free space receivers with ML-based algorithm have been used to identify the attacked
modes. This study showed that standard LG modes are highly affected by jamming and
is not recommended for data transmission at low SJR (i.e., less than 0 dB). This can be
attributed to the structural similarity of the standard Gaussian jammer and the LG profiles
as opposed to Mux-LG and HG structures. Moreover, the CNN-based algorithm can
identify the jammer DoA with 100% accuracy under sever jamming conditions. The work
in this paper can be extended to study and investigate human-made eavesdropping of
structured light signal in the coexistence of atmospheric distortions.
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