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Abstract: In this paper, we study the second-order statistics of a modified complex Lorentz–Gaussian-
correlated (MCLGC) beam, which is a new type of partially coherent beam capable of producing
an Airy-like intensity pattern in the far field, propagation through marine atmospheric turbulence.
The propagation formula of spectral density is derived by the extended Huygens–Fresnel integral,
which could explicitly indicate the interaction of turbulence on the beams’ spectral density under
propagation. The influences of the structure constant of the turbulence, initial coherence width and
wavelength on the spectral density are investigated in detail through numerical examples. In addition,
analytical expressions for the r.m.s beam width, divergence angle and M2 factor of the MCLGC
beam in the marine turbulence are also derived with the help of the Wigner distribution function.
The results reveal that the beam spreads much faster, and the M2 factor deteriorates severely with the
increase of the structure constant and the decrease of the inner scale size, whereas the outer scale size
has little effect on these two quantities.

Keywords: propagation; marine atmosphere; partially coherent

1. Introduction

The study of light beam propagation through a turbulent atmosphere has received
considerable attention owing to its important applications in free-space optical (FSO) com-
munications, optical imaging and remote sensing [1–4]. It is known that atmospheric
turbulence varies with geographical environment, season, weather and so on. Different
from terrestrial environments, where temperature difference dominates the behaviors of
the air’s refractive index fluctuations, in maritime environments, humidity fluctuation is
another significant factor that affects optical turbulence, which makes beam propagation
more complicated [5]. In some practical situations, FSO-based information transmission
for various purposes on seas/lakes is encountered; for instance, vessel-to-vessel or ship-
to-satellite communications. Therefore, knowledge of the interaction of optical beams
with the marine atmosphere is of particular importance. In 2008, Grayshan and coworkers
developed a new analytical marine atmospheric spectrum as an approximation to Hill’s
Salton Sea numerical spectrum [6]. The spectrum was believed to be general and applicable
for marine atmospheric turbulence in other areas. Later, the scintillation expressions of
spherical waves using the newly developed spectrum were derived and used to infer path
average values of the structure constant [7]. Since then, much work has been devoted to
optical propagation through marine atmospheric turbulence [8–14]. The probability density
function of the intensity of a Gaussian beam was explored experimentally over water links
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in [8]. The spiral spectrum and mode crosstalk of several laser beam modes, including Airy
beams, Bessel–Gauss beams and Laguerre–Gaussian beams in weak or moderate to strong
marine turbulence, were well investigated [9–13]. Meanwhile, the study of optical propaga-
tion also extended to marine turbulence in anisotropic or non-Kolmogorov cases [15–18].

On the other hand, it has long been known that the use of partially coherent beams
as information carriers is one of the effective ways to overcome/reduce the turbulence-
induced negative effects in FSO communications [19,20]. Through modulating the correla-
tion functions (degree of coherence functions) of partially coherent beams, it provides more
freedom to further reduce the scintillation index and beam wander induced by turbulence.
It was revealed in [21] that multi-Gaussian-correlated beams (a special type of partially co-
herent beams) have advantages over Gaussian Schell-model (GSM) beams for the reduction
of turbulence-induced intensity scintillation. The result was later experimentally demon-
strated in [22,23]. Modulation of the polarization or phase of partially coherent beams to
reduce the intensity scintillation index in turbulence was also experimentally demonstrated
in [24–26]. In [27], it was shown that nonuniformly correlated (NUC) beams can not only
reduce the intensity scintillation but also have a high average received intensity at a certain
propagation distance in atmospheric turbulence compared with Schell-model beams.

Just recently, we introduced a new type of random light source, of which the degree
of coherence (DOC) is the fourth-order root of a Lorentz–Gaussian function, having lin-
ear and cubic-phase terms, named the modified complex Lorentz–Gaussian correlated
(MCLGC) beam [28]. Such a source is capable of producing an Airy-like spectral density
pattern in the far field due to its special DOC. In this paper, our aim is to examine the
propagation characteristics of MCLGC beam propagation through marine atmospheric
turbulence. The propagation formula of spectral density in marine turbulence is derived
using the power spectrum introduced in [6], and the behaviors of spectral density under
propagation are investigated in detail through numerical examples. Further, simple analyt-
ical expressions for the r.m.s beam width, divergence angle and M2 factor are also derived
based on the Wigner distribution function. The influences of turbulence parameters on the
r.m.s beam width and M2 factor are presented.

2. Spectral Density of a MCLGC Beam Through Marine Atmospheric Turbulence

The cross-spectral density (CSD) function of a MCLGC beam in the source plane
(z = 0) can be expressed as [28]

W0(r1, r2, ω) = exp

(
−

r2
1 + r2

2
4σ2

0

)
µx(xd)µy(yd), (1)

with its degree of coherence (DOC) µx(xd) or µy(yd) being

µα(αd) =

[
1

1+α2
d/4a3

0δ2
0

exp
(
− 2α2

d
δ2

0

)]1/4

× exp
(

iα3
d

12a3/2
0 δ3

0
+ i ϕ(αd)

2 − iαd
4a3/2

0 δ0

)
, (α = x, y)

(2)

where r1 = (x1, y1) and r2 = (x2, y2) are two arbitrary position vectors in the source plane,
perpendicular to the propagation axis z. ω is the radian frequency. xd = x2 − x1 and yd = y2
− y1 are two difference coordinates. σ0 and δ0 denote the beam width and the coherence
width, respectively. a0 is a positive real constant that controls the number of side lobes
in the far-field spectral density. ϕ(αd) = arctan(αd/2a3/2

0 δ0) is the transverse Gouy phase.
For brevity, the dependence of the beam parameters and the derived quantities on the
frequency ω in the following analysis is omitted. Note that the expression for the DOC in
Equation (2) is slightly different from that in [25]. In the present form, the centroid of the
beam remains on the z-axis during free-space propagation.



Photonics 2021, 8, 82 3 of 13

Within the accuracy of the paraxial approximation, the propagation of a partially
coherent beam through atmospheric turbulence can be treated by the extended Huygens–
Fresnel (eHF) integral, given by [19,20]

Wz(ρ1,ρ2, z) =
(

k
2πz

)2 ∞∫
−∞

∞∫
−∞

d2r1d2r2W0(r1, r2) exp
[
− ik

2z (ρ1 − r1)
2 + ik

2z (ρ2 − r2)
2
]

×〈exp(Ψ∗(r1,ρ1, z) + Ψ(r2,ρ2, z))〉,
(3)

where k = 2π/λ is a wave number, with λ being the wavelength of a light beam. ρ1 and ρ2
are two position vectors in the output plane. Ψ(r,ρ, z) is the complex phase perturbation
(induced by the turbulence) of a spherical wave from the source plane to the output plane.
The asterisk and the angle brackets, respectively, stand for the complex conjugate and
the ensemble average over the turbulence fluctuations. Suppose that the statistics of the
turbulence is isotropic and homogeneous; the second-order statistics of complex phase
fluctuations under the Rytov approximation can be expressed as [1]

exp[H(ρd, rd, z)] = 〈exp(Ψ∗(r1,ρ1, z) + Ψ(r2,ρ2, z))〉
= exp

{
−4π2k2z

∫ 1
0dt
∫ ∞

0 dκκΦn(κ)[1− J0(κ|tρd + (1− t)rd|)]
}

,
(4)

where rd = r2 − r1 and ρd = ρ2 − ρ1. Φn(κ) is the power spectrum of the refractive

index fluctuations of the turbulence. κ =
√

κ2
x + κ2

y, with κx and κy denoting the x and y
components of the spatial frequency, respectively. J0 is the first type of Bessel function of
zero order. In the derivation of Equation (4), the Makov approximation, which assumes
that the covariance function of refractive-index fluctuations is a delta-function along the
propagation direction, is applied. To further simplify Equation (4), we assume that the
points of interest in the beam transverse section are sufficiently close to the propagation
axis or transverse coherence width of the laser beam propagating in turbulence is much
smaller than the inner scale of the turbulence for a certain propagation distance [29]. In this
case, the Bessel function can be chosen as the first two terms of Taylor expansion, i.e.,
J0(x) ≈ 1− x2/4, to a good approximation. On substituting the Taylor expansion into
Equation (4) and integrating over t, it becomes

exp[H(ρd, rd, z)] = exp
[
−π2k2z

3

(
r2

d + rd · ρd + ρ2
d

)∫ ∞

0
κ3Φn(κ)dκ

]
. (5)

From Equation (5), if we define a new function ρ2
01 = 3/π2k2z

∫ ∞
0 κ3Φn(κ)dκ, this

result is similar to that of a quadratic approximation provided that ρ2
0 = (0.545C2

nk2z)−3/5

is replaced of ρ2
01, where ρ0 is the coherence width of a spherical wave propagating in at-

mospheric turbulence under Kolmogorov spectrum condition, i.e., Φn(κ) = 0.033C2
nκ−11/3.

It is known that the eHF integral and quadratic approximation are valid for both weak
and strong turbulence [1,30]. According to [6], the power spectrum of marine atmospheric
turbulence can be written as

Φn(κ) = 0.033C2
n

(
1− 0.061 κ

κH
+ 2.83 κ7/6

κ7/6
H

)
×
(
κ2 + κ2

0
)−11/6 exp

(
− κ2

κ2
H

)
,

(6)

where κH = 3.41/l0, κ0 = 2π/L0; l0 and L0 are the inner scale size and outer scale size of
the turbulence. Cn

2 is the structure constant, which almost remains invariant along the
horizontal direction. On substituting Equation (6) into the integral term in Equation (5)
and integrating over κ, it turns out to be
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T =
∫ ∞

0 κ3Φn(κ)dκ

= 0.0198C2
n

1
κ5/3

H

[(
κ2

0 + 0.833κ2
H
)
eκ2

0/κ2
H Γ
(

1
6 , κ2

0
κ2

H

)
− κ5/3

H

(
κ1/3

0 − 2.889κ1/3
H 1F1

(
11
6 , 1

4 , κ2
0

κ2
H

)
+ 0.0688κ1/3

H 1F1

(
11
6 , 1

3 , κ2
0

κ2
H

)
−1 F1

(
5
2 , 5

3 , κ2
0

κ2
H

)
0.2887κ4/3

0
κH

+1 F1

(
31
12 , 7

4 , κ2
0

κ2
H

)
17.11κ3/2

0
κ7/6

H

)]
,

(7)

where Γ and 1F1 are the incomplete Gamma function and confluent hypergeometric func-
tion, respectively. In general, the inner scale size l0 is far smaller than the outer scale size
L0, i.e., κH >> κ0. Equation (7) can be expressed as the following approximate expres-
sion through remaining the first two terms of Tylor expansion of the incomplete Gamma
function and the hypergeometric function

T ≈
(

0.148κ1/3
H − 0.119κ1/3

0

)
C2

n (8)

Note that Equation (8) is valid if the condition l0 << L0 is satisfied. On substituting
Equations (1) and (5) into Equation (3), and introducing the “sum” and “difference” coordinates

rs = (r1 + r2)/2, rd = r2 − r1
ρs = (ρ1 + ρ2)/2,ρd = ρ2 − ρ1

(9)

we obtain the expression after arrangement

Wz(ρs,ρd, z) = Wzx(ρsx, ρdx, z)Wzy(ρsy, ρdy, z), (10)

with

Wzx(ρsx, ρdx, z) = k
2πz

∞∫
−∞

∞∫
−∞

dxsdxd exp
(
− x2

s
2σ2

0
− x2

d
8σ2

0

)
µx(xd)

× exp
[

ik
z (ρsx − xs)(ρdx − xd)

]
exp

[
−π2Tk2z

3
(

x2
d + xdρdx + ρ2

dx
)]

.
(11)

Wzy(ρsy, ρdy, z) has the same form as Wzx(ρsx, ρdx, z) with “x” in place of “y.” If we only
focus on the evolution properties of spectral density in the marine atmosphere, i.e.,
Sx(ρx, z) = Wzx(ρx, 0, z), it can be written as the following Fourier transform form af-
ter integrating over xs(ys)

Sα(ρx(y), z) =
kσ0√
2πz

FT

[
exp

(
−

α2
d

w2

)
µα(αd)

]{ ρα

λz

}
, (α = x, y) (12)

with

w =

(
1

8σ2
0
+

k2σ2
0

2z2 +
π2Tk2z

3

)−1/2

. (13)

where FT denotes the Fourier transform. Equation (12) provides a convenient way to
evaluate the spectral density of the MCLGC beam propagation in turbulence. It follows
from Equation (12) that the spectral density is a rather simple Fourier transform of the
product of the DOC and the Gaussian function with width w. Let us now analyze the
propagation characteristics of the MCLGC beam in turbulence through numerical examples
based on the derived Equation (12).

In the numerical calculation, the beam parameters and turbulence parameters are chosen
to be σ0 = 10 mm, δ0 = 2 mm, λ = 632.8 nm, a0 = 0.1, l0 = 1 mm and L0 = 1 m, and they
are kept fixed unless other values are specified. Figure 1 illustrates the density plots of
the normalized spectral density of the MCLCG beam propagation in the marine turbulence
with different structure constants Cn

2. For comparison, the spectral density in the free-space
propagation (Cn

2 = 0) is also plotted (see Figure 1a–e). The beam profile gradually turns
from a Gaussian shape in the source plane to an Airy-like pattern as the propagation distance
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increases. When the propagation distance is larger than z = 500 m, the beam profile remains
invariant on further propagation except the beam size enlarges due to diffraction effects. In
the presence of turbulence, the spectral densities in the first 100 m propagation distance for
Cn

2 = 5×10–14 m–2/3 and Cn
2 = 5×10–13 m–2/3 are almost the same compared to that in the

free space. This is because the effects of optical turbulence on the beam propagation do
not occur suddenly, it accumulates gradually with the increase of propagation distance and
appears gradually. For the first 100 m propagation distance, one could estimate the strength
of turbulence via the Rytov variance σ2 = 1.23C2

nk7/6z11/6. The calculated values of σ2 for
Cn

2 = 5×10–14 m–2/3 and Cn
2 = 5×10–13 m–2/3 are 0.0416 and 0.416, respectively. This range

falls into weak turbulence. On the other hand, partially coherent beams with a low coherence
width are less affected by the turbulence-induced degeneration. As a result, in the first 100 m
propagation, the spectral densities between Cn

2 = 5×10–14 m–2/3 and Cn
2 = 5×10–13 m–2/3 are

almost the same with that without turbulence. However, as the propagation distance further
increases, the effects of turbulence appear. In the case of Cn

2 = 5×10–13 m–2/3, the side lobes
become a little fuzzy at 1 km propagation distance or up to 2 km distance. To clearly see the
variance of the spectral density with different structure constants, we plot in Figure 2 the 1D
spectral density Sx(ρx,z) corresponding to those in Figure 1. One can see that the side lobes
diminish with the increase of the strength of turbulence at a certain propagation distance.

Figure 1. Normalized spectral density of modified complex Lorentz–Gaussian-correlated (MCLGC) beam propagation in marine
turbulence at several propagation distances. (a–e) in free space (Cn

2 = 0); (f–j) in turbulence with Cn
2 = 5× 10–14 m–2/3; (k–o) in

turbulence with Cn
2 = 5× 10–13 m–2/3.

The aforementioned propagation features of the MCLGC beam in marine turbulence
can be explained explicitly with the help of the derived formula of Equation (12). It is shown
in Equation (12) that the propagated spectral density is determined by the Fourier transform
of the product of a Gaussian function exp(–αd

2/w2) and the DOC function of the beam. The
width w of the Gaussian function w shown in Equation (13) can be divided into three parts,
i.e., the first, second and third terms in parentheses are the contributions from the initial
beam width, diffraction effect and turbulence effect, respectively. Figure 3a illustrates
the variation of w as a function of the propagation distance with different strengths of
turbulence. In the absence of turbulence (T = 0, see the solid curve in Figure 3a), w increases
monotonously from 0 to a stable value 2

√
2σ0 as the beam leaves from the source plane.

On the other hand, the width of the DOC is mainly dependent on the coherence width
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δ0. Therefore, when the propagation distance is short, the size of the Gaussian function
is much smaller than that of the DOC. In this case, the Gaussian function plays a central
role in the product of the Gaussian function and the DOC function. As a consequence, the
spectral density is nearly of Gaussian shape. As the width w increases with the increase of
propagation distance until it reaches a stable value, the DOC gradually plays the key role
in the product under the condition that the coherence width δ0 is far smaller than 2

√
2σ0.

The spectral density of the beam becomes the Fourier transform of the DOC function, i.e.,
an Airy-like pattern, and then keeps the profile unchanged for further propagation (see
Figure 1a–e).

Figure 2. Normalized 1D spectral densities of MCLGC beams in turbulence with different structure
constants at four different propagation distances. (a–d) the propagation distances are z = 100 m,
500 m, 1.0 km and 2.0 km, respectively.

Figure 3. (a) Evolution of the parameter w with propagation distance for different structure constants.
(b) One-dimensional (1D) distribution of the modulus of the degree of coherence (DOC) with different
coherence widths in the source plane.

In the presence of turbulence, the situation is somewhat different. Following from
Equation (13), the third term is caused by turbulence, where T is closely dependent on
the power spectral density. When the propagation distance is short or the turbulence is
weak, the effect of the turbulence is negligible. This is why the spectral density in the
first 100 m propagation shown in Figure 1 in the free space and turbulence are almost
the same. However, w will decrease for a sufficient large propagation distance due to
the effects of turbulence. Hence, the Airy-like spectral density blurs again in turbulence,
which is quite different from the case in free space. From Equation (12), one can also
explain why a partially coherent beam with small coherence width is less affected by
the turbulence. The reason is that the DOC only depends on the coherence width, and
the distribution of DOC becomes narrow as the coherence width decreases (shown in
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Figure 3b). Hence, for the same value of w (same condition of the turbulence, propagation
distance and initial beam width), the DOC function with a small coherence width is more
likely to retain its original form when it is apodized by the function exp(–αd

2/w2). Figure 4
presents the 1D normalized spectral density with different coherence widths at propagation
distance z = 2 km. As expected, the spectral density with δ0 = 1 mm is less affected by the
turbulence compared to those with δ0 = 4 and 6 mm. Though our result is obtained from
the propagation of the MCLGC beam, it also can be extended to other types of partially
coherent beams.

Figure 4. Normalized 1D spectral density of the MCLGC beam in turbulence with three different
coherence widths at a propagation distance of 2 km. (a–c) The beam coherence widths are δ0 = 1.0 mm,
4.0 mm and 6.0 mm, respectively.

We now pay attention to the effect of the light wavelength on the behavior of spectral
density in marine turbulence. Figure 5 presents the 1D spectral densities of the MCLCG
beam with different wavelengths at several propagation distances. The structure constant
used in the simulation is Cn

2 = 5×10–13m–2/3. As expected, the beam size with a long
wavelength is larger than that with a short wavelength. In addition, the transition of the
spectral density with a long wavelength from the Gaussian profile to an Airy-like pattern
becomes fast on propagation (see Figure 5a). One can also see from Figure 5b–d that the
spectral density with a long wavelength is more likely to keep the Airy-like pattern in
turbulence. As shown in Figure 5d, the side lobes in the spectral density with λ = 632.8 nm
disappear, whereas it is also observable in the case of λ = 1310 or 1550 nm. The reason can
be seen from the third term (turbulence = effected term) in Equation (13), i.e., π2k2Tz/3,
the longer wavelength corresponds to the smaller value of wavenumber k, which weakens
the effect of turbulence.

Figure 5. Normalized 1D spectral densities of the MCLGC beams with different wavelengths in
turbulence at four different propagation distances. (a–d) the propagation distances are z = 100 m,
500 m, 1.0 km and 2.0 km, respectively.
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To assess the influences of optical turbulence on the spectral densities during propaga-
tion in turbulence, a parameter D is used to characterize it, defined as [31]

D =

[∫
S f ree(ρ, z)Stur(ρ, z)d2ρ

]2∫
S2

f ree(ρ, z)d2ρ
∫

S2
tur(ρ, z)d2ρ

, (14)

The subscript “free” and “tur” denote the spectral density at propagation distance z
without and with turbulence. According to the definition, the upper and lower limits of D
are 1 and 0, respectively. The larger the value D is, the less the spectral density is affected
by the turbulence. Figure 6 illustrates the dependence of parameter D on the propagation
distance with different structure constants and different initial coherence widths. It can be
seen from Figure 6a that as the strength of turbulence increases, the D drops fast with the
increase of propagation distance, implying that the spectral density of the MCLGC beam
suffers more serious distortion in strong turbulence. Figure 6b indicates that the MCLGC
beam with small initial coherence width is more likely to resist the effect of turbulence
from the point of view of spectral density.

Figure 6. The variation of parameter D with propagation distance for (a) different structure constants
and (b) different initial coherence widths.

3. R.m.s Beam Width, Divergence Angle and Propagation Factor of MCLGC Beams in
Marine Atmospheric Turbulence

R.m.s beam width, divergence angle and propagation factor (M2 factor) are three
important parameters to characterize the characteristics of a laser beam under propagation.
Especially for the propagation factor, it is currently used in the data sheet of commercial
lasers. The random fluctuations of the refractive index induced by the turbulence will
cause the beam’s random displacement, scintillation of intensity and decrease of coherence
during propagation. As a consequence, the r.m.s beam width and divergence angle increase,
and the propagation factor deteriorates in the presence of turbulence.

In this section, we will first derive the second-order moments of MCLGC beam
propagation in marine turbulence based on the Wigner distribution function and then
investigate the evolution of the r.m.s beam width, divergence angle and propagation factor
through numerical examples.

According to [32,33], the Wigner distribution function of the MCLGC beam at propa-
gation distance z in turbulence can be expressed as

h(ρs,θ; z) =
(

k
2π

)2∫ ∞

−∞

∫ ∞

−∞
Wz(ρs,ρd; z) exp(−ikθ · ρd)d

2ρd, (15)

where Wz(ρs,ρd; z) is the CSD function of the MCLGC beam in turbulence at distance z,
shown in Equations (10)–(11). Θ = (θx, θy) denotes the divergence angle with respect to



Photonics 2021, 8, 82 9 of 13

the mean propagation z-axis. To evaluate Equation (15), we write the CSD function of the
MCLGC beam in the source plane as the following integral form

W(0)(rs, rd) =
1

(2π)2

∫ ∫
W(0)(r′s, rd

)
exp

[
iκd · (r′s − rs)

]
d2κdd2r′s, (16)

where W(0)(r′s, rd) takes the form

W(0)(r′s, rd
)
= exp

(
− r′2s

2σ2
0
−

r2
d

8σ2
0

)
µx(xd)µy(yd) (17)

On substituting Equations (10) and (16) into Equation (15), we obtain the expression

h(ρs,θ; z) = k4

(2π)6z2

∫ ∫ ∫ ∫ ∫
W(0)(r′s, rd, 0) exp[iκd · (r′s − r)] exp(−ikθ · ρd)

× exp
[

ik
z (ρs − rs) · (ρd − rd)

]
exp[H(ρd, rd, z)]d2ρdd2rsd2rdd2κdd2r′s.

(18)

Integrating over rs and rd in Equation (18), it turns out to be

h(ρs,θ; z) =
(

k
2π

)2 1
4π2

ss
W(0)(r′s,ρd + zκd/k, 0) exp[iκd · (r′s − ρs)] exp(−ikθ · ρd)

× exp[H(ρd,ρd + zκd/k, z)]d2ρdd2κdd2r′s.
(19)

On substituting Equation (17) into Equation (19) and integrating over r′s, the Wigner
distribution function finally becomes

h(ρs,θ; z) =
(

k
2π

)2 σ2
0

2π

ss
exp

(
− 1

8σ2
0

(
ρd +

z
kκd
)2
)

µx(ρdx +
z
k κdx)µy(ρdy +

z
k κdy)

× exp
(
−σ2

0κ
2
d/2
)

exp(−iρs · κd − ikθ · ρd) exp[H(ρd,ρd + zκd/k, z)]d2ρdd2κd.
(20)

With the help of the Wigner distribution function, the arbitrary moments of the
MCLGC beam in turbulence can be written as〈

ρn1
sxρ

n2
sy θm1

x θm2
y

〉
=

1
I

∫ ∫
ρn1

sxρ
n2
sy θm1

x θm2
y h(ρs,θ; z)d2ρsd2θ, (21)

with
I =

∫ ∫
h(ρs,θ; z)d2ρsd2θ = 2πσ2

0 , (22)

where I denotes the total energy carried by a light beam. n1, n2, m1 and m2 are the integral
numbers. Here, we focus on the propagation features of the second-order moments, which
means that n1 + n2 + m1 + m2 = 2. On substituting Equation (20) into Equation (21),
and after straightforward integrating, we obtain analytical expressions for the ten second-
order moments of the MCLGC beam in turbulence〈

ρ2
sx

〉
=
〈
ρ2

sy

〉
= σ2

0 + Pz2 + 2π2Tz3/3, (23)〈
θ2

x

〉
=
〈

θ2
y

〉
= P + 2π2Tz, (24)

〈ρsxθx〉 =
〈
ρsyθy

〉
= Pz + π2Tz2, (25)〈

ρsxθy
〉
=
〈
ρsyθx

〉
=
〈
ρsxρsy

〉
=
〈
θxθy

〉
= 0, (26)

where P = 1
4k2σ2

0
+

(
1 + 1

8a3
0

)
1

k2δ2
0

denotes the diffraction coefficient.
〈
ρ2

sx
〉1/2 and

〈
ρ2

sy

〉1/2

represent the r.m.s beam width along the x- and y-directions, respectively. The first term in
Equation (23) is the contribution from the initial beam width; the second term and the third
term denote diffraction-induced and turbulence-induced beam spreading, respectively.
One finds that not only the initial beam width and coherence width, but also the parameter
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a0 will affect the diffraction-induced beam spreading. The smaller value the parameter a0

(the more side lobes), the larger the r.m.s beam width.
〈
θ2

x
〉1/2 and

〈
θ2

y

〉1/2
are the r.m.s

divergence angle of the MCLGC beam in turbulence. The cross-moments 〈ρsxθx〉 and〈
ρsyθy

〉
are closely related to the propagation factor and the effective radius curvature

under propagation. It is found that the other two cross-moments
〈
ρsxθy

〉
and

〈
ρsyθx

〉
remain zero invariant on propagation, implying that the total orbital angular moment is
zero and is conserved on propagation.

Figure 7 illustrates the variation of the r.m.s beam width along the x-direction with
the propagation distance for different structure constants, inner scale sizes and outer scale
sizes. As expected, the beam width spreads much faster with the increase of the strength of
turbulence. The inner scale size has also a certain effect on the beam spreading, whereas
the outer scale size has almost no effect on the beam spreading. As the inner scale size
decreases, the beam spreading becomes fast. This can be explained by the fact that the small
inner scale size tends to make the beam spot into small speckles. Each speckle has a small
beam width compared to the whole beam spot, which makes the beam width spread fast.
The main effect of the outer scale on the beam is to randomly deviate the beam propagation
direction with the respective z-axis, known as beam wander. This beam wander is too
small compared to the r.m.s beam width at that propagation distance. As a result, the outer
scale size has little effect on beam spreading.

Figure 7. Evolution of the r.m.s beam width along the x-direction propagation in marine turbulence
with the propagation distance z for different values of (a) structure constants, (b) inner scale sizes
and (c) outer scale sizes. The initial coherence width in the calculation is δ0 = 4 mm.

The beam propagation factor M2, also called the beam quality factor, is a significant
parameter to characterize the beam propagation properties in many practical applica-
tions. On the basis of the second-order moments, the M2 factor can be written in the
following form

M2(z) = 2k
[〈

ρ2
sx

〉〈
θ2

x

〉
− (〈ρsx〉〈θx〉)2

]1/2
. (27)

On substituting Equations (23)–(25) into Equation (27), the M2 of the MCLGC beam in
marine turbulence takes the form

M2(z) =
[(

M2(0)
)2

+ 4π2k2Tz
(

2σ2
0 + 2Pz2/3 + π2Tz3/3

)]1/2
, (28)

with

M2(0) =

√√√√1 +

(
1 +

1
8a3

0

)
4σ2

0
δ2

0
, (29)

where M2(0) is the M2 factor of the MCLGC beam in the source plane. A smaller initial
coherence width and parameter a0 will lead to an increase in the M2 factor. It follows from
Equation (28) that in the absence of turbulence (T = 0), the M2 factor is independent of the
propagation distance, indicating that it remains invariant on free-space propagation. In the
presence of turbulence, the M2 factor increases/deteriorates during propagation due to the
effect of turbulence.
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Figure 8 presents the variation of the normalized M2 factor M2(z)/M2(0) with the
propagation distance for different structure constants, inner scale sizes and outer scale
sizes. The evolution behaviors are similar to those with the r.m.s beam width shown in
Figure 7. Nevertheless, the increases in the M2 factor with propagation distance seem much
more rapid than those of r.m.s beam widths as the strength of turbulence increases or the
inner scale size decreases. This is because the r.m.s beam width and the r.m.s divergence
angle increase simultaneously for the large values of structure constants and small values
of inner scale sizes.

Figure 8. Variation of the normalized propagation factor with the propagation distance for different
(a) structure constants, (b) inner scale sizes and (c) outer scale sizes. The initial coherence width of
the MCLGC beam in the calculation is δ0 = 4 mm.

4. Conclusions

As a summary, we studied the propagation properties of a MCLGC beam in marine
atmospheric turbulence. The derived propagation formula of spectral density reveals
that the resulting spectral density is the Fourier transform of the product of a Gaussian
function that only depends on the turbulence and diffraction effect and the DOC of the
beam. Our numerical results reveal that without turbulence, the spectral density of the
MCLGC beam will gradually change from the initial Gaussian profile to an Airy-like
pattern in the far field, while, in the presence of turbulence, the Airy-like pattern is blurred
due to the effects of turbulence. For turbulence that is strong enough, it is expected that
the spectral density will return to a quasi-Gaussian profile in the far field. From this
propagation formula, one could conveniently see the interaction between the beam and
turbulence during propagation and explain why the beam with low coherence is less
affected by turbulence. Our numerical examples demonstrated that the MCLGC beam
with low coherence is more resistant to turbulence degeneration from the aspect of spectral
density. Further, the Wigner distribution function of the MCLGC beam propagation
in marine turbulence is also derived. On the basis of the Wigner distribution function,
the simple analytical expressions for other second-order statistics such as the r.m.s beam
width, divergence angle and M2 factor are obtained. The results indicate that the r.m.s
beam width and M2 factor increase dramatically as the strength of turbulence increases
or the inner scale size decreases, while the outer sale size has almost no effects on the
two quantities. Our findings will be useful in free-space optical communications and
remote sensing.

In practical situations, marine turbulence generally is more complicated than that of
other environments. A large volume of water will produce a situation where water droplets
and various types of aerosols are abundant. As a result, marine turbulence involves both
optical turbulence and particle absorption/scattering. However, in our studies, we only
consider the effects of optical turbulence on the propagation characteristics of the MCLGC
beam in marine turbulence. In other words, our results are only suitable for the situation
where the optical turbulence dominates the central role in the marine atmosphere.
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