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Abstract: Recently, the super-oscillation phenomenon has attracted attention because of its ability to
super-resolve unlabelled objects in the far-field. Previous synthesis of super-oscillatory point-spread
functions used the Chebyshev patterns where all sidelobes are equal. In this work, an approach
is introduced to generate super-oscillatory Taylor-like point-spread functions that have tapered
sidelobes. The proposed method is based on the Schelkunoff’s super-directive antenna theory. This
approach enables the super-resolution, the first sidelobe level and the tapering rate of the sidelobes
to be controlled. Finally, we present the design of several imaging experiments using a spatial
light modulator as an advanced programmable grating to form the Taylor-like super-oscillatory
point-spread functions and demonstrate their superiority over the Chebyshev ones in resolving the
objects of two apertures and of a mask with the letter E.

Keywords: gratings; spatial light modulator; super-oscillations; point-spread function; Shelkunoff’s
super-directive antenna theory

1. Introduction

Super-oscillation is a phenomenon in which a signal is locally oscillating faster than
its highest Fourier component [1]. Super-oscillations have found various applications in
super-resolution imaging [2–4]. The design methods for generating super-oscillatory fields
mainly include binary phase masks [5,6], metamaterial super-oscillatory superlenses [7]
and antenna arrays based on Schelkunoff’s superdirective antenna theory [8]. However,
the drawback of super-oscillatory point-spread functions is the intense sidebands sur-
rounding the region of interest (ROI). It has been proved [9,10] that the intensity of the
sidebands increases exponentially with the number of super-oscillations (corresponding to
enlarging the ROI or reducing the main beamwidth) and polynomially with the frequency
of super-oscillations, which is the number of full super-oscillations in one time or length
unit (corresponding to decreasing the sidelobe level inside the ROI). When the energy
contained in the sidebands becomes enormous, it is hard for detectors, such as a CMOS
camera, to capture the images because the rest of the energy inside the ROI would be lower
than the dynamic range threshold of the image sensor. One way to resolve this issue in a
single-capture imaging apparatus [11] is to achieve a balance between the sidelobe level
and the main beamwidth to keep the sideband intensity at an acceptable level. Previous
synthesis of super-oscillatory point-spread functions used the Chebyshev polynomial
pattern where all sidelobe levels are equal [8,11–13]. In this contribution, we explore the
possibility and potential advantages of synthesizing super-oscillatory patterns that have
tapered sidelobes. Such a sidelobe structure could mitigate the interference from sidelobes.
Sidelobe suppression (including super-oscillatory sidelobes) is important for improving
the resolution [13], decreasing spurious images in Optical Coherence Tomography [14],
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removing ambiguity in 3D imaging [15], enabling the deployment of high quality laser
lithography [16] and so forth.

The Chebyshev super-oscillatory antenna pattern in [8] is inspired by the system-
atic approach derived from Chebyshev polynomials to construct super-directive patterns
having uniform sidelobes [17–19] and the pioneering approach to the synthesis of super-
directive patterns proposed by Schelkunoff [20]. This approach utilized the polynomial
method and places more zeros in the visible region on the complex unit circle. By constrain-
ing the distance between a pair of zeros around the main beam and decreasing the spacing
between the antenna elements, the directivity could be increased beyond that of a uniformly
excited array. Although it is quite effective to achieve a narrow main beamwidth using
Schelkunoff’s polynomial method, the way to control the sidelobes was not thoroughly
illustrated with methods other than the use of Chebyshev and Legendre polynomials [21].
By resorting to the Taylor’s antenna pattern function [22] and Schelkunoff’s polynomial
method, it is possible to sythesize the super-directive pattern with a tapered sidelobe
structure. This Taylor-like super-directive pattern can then be used to extrapolate to the 2D
super-oscillatory point-spread function with tapered sidelobes.

This work contributes to describing how to generate super-oscillatory patterns with
tapered sidelobes based on the popular Taylor’s antenna patterns [22] and apply them for
optical super-resolution imaging. In Section 1, we describe a type of transformation based
on which a finite number of zeros (larger than 1) of n and one-parameter Taylor-pattern
functions could be adjusted to be placed on the complex unit circle without deforming
the sidelobe structure. In Section 2, a linear transformation is applied to make the visible
region have a customized size to obtain super-directivity. In Section 3, we place extra zeros
into the invisible region to reduce the restored energy in the near-field for super-directive
antennas, which correspondingly can decrease the sideband intensity for super-oscillatory
point-spread functions. In Section 4, by utilizing the fact that super-directivity in the
angular domain and super-oscillation in the spatial domain are dual phenomena to each
other, we extrapolate from the Taylor-like super-directive pattern to the 2D Taylor-like
super-oscillatory point-spread function. Subsequently we then present several experiments
with 632.8 nm laser light and a LCOS (liquid crystal on silicon) spatial light modulator
(SLM) working as a programmable grating (both on phase and amplitude) to demonstrate
the imaging superiority of the Taylor-like super-oscillatory point-spread function over the
Chebyshev one in resolving the objects of two apertures and of a mask with the letter E.

2. Theoretical Foundation

The array factor of an array composed of N elements is given by

F(u) =
N

∑
n=1

cnej2π(n−1)u (1)

where u = d
λ (cosθ− cosθ0), d is the element spacing of the antenna array and cn are current

weights and the maximum radiation happens at θ0. Without loss of generality, we choose
θ0 = π/2 for broadside radiation. Let z = ej2πu, then we have

F(u) =
N

∑
n=1

cnzn−1 = cN

N−1

∏
n=1

(z− zn) (2)

where zn are zeros on the complex unit circle. The zeros of the Chebyshev pattern are
calculated in [17]. However, the problem of achieving Taylor super-directive patterns is
that infinite zeros have to reside on the complex unit circle to produce such a pattern with
tapered sidelobes. Moreover, the zeros of the Taylor-pattern function are not naturally
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limited within (−1,1), which means that a suitable transformation is needed. The n Taylor-
pattern function is given by [22],

F1(θ) =
sinπp

πp

n−1

∏
n=1

1− p2/p2
n

1− p2/n2 (3)

where p = l
λ cosθ (l is the array size), pn are the zeros, and n− 1 is the number of zeros

inside the central region(uniform-sidelobe region). The zeros inside the central region are
the zeros of the Dolph-Chebyshev array distribution multiplied by a dilation factor σ, given
by [22],

pn = ±σ

√
A2 + (n− 1

2
)2 1 ≤ n < n (4)

pn = ±n n ≤ n (5)

where coshπA is the intensity ratio of the main lobe to the first sidelobe. The dilation factor
is given by [23]

σ =
n√

A2 + (n− 1
2 )

2
(6)

Theoretically, inside the central region, the sidelobes should be uniform and outside
the central region, the sidelobes should be taperd asymptotically to sin(πp)

πp with a pedestal.
In reality however, the sidelobes inside the central region would be slighly tapered because
the dilation factor σ is slightly larger than 1. Therefore, the Taylor pattern could be
recognized as a pattern with a narrow beamwidth and tapered sidelobes.

The one-parameter Taylor-pattern function is given by [24]

F2(θ) =


l sinh[π

√
B2−p2]

π
√

B2−p2
p2 < B2

l sin[π
√

p2−B2]

π
√

p2−B2
p2 > B2

(7)

where B is a constant to determine the first sidelobe level calculated through solving
R0 = 4.603 sinh(πB)

πB where R0 is the intensity ratio of the main lobe to the first sidelobe.
The zeros could be given by

pn =
√

B2 + n2; (8)

Tseng [25] has made an effort to map the zeros of the Taylor-pattern function to
a set belonging to (0,1) by setting γn = cos( pnπ

N ). In this approach, an effective way
to achieve a Taylor pattern for a line source with a deep null is implemented by using

F(ζ1) = ∏
N−1

2
n=1

ζ2
1−γ2

n
1−γ2

n
, where ζ1 = cosπu and N is an odd number. We found that by

making γ
′
n = cos( 2pnπ

N ), the transformed zeros γ
′
n could be used in ∏

N−1
2

n=1
ζ2−γ

′
n

1−γ
′
n

, where

ζ2 = cos2πu, to produce a pattern the same as F(ζ1). In this way, the Schelkunoff’s
polynomial method could be applied by resorting to γ

′
n. The first transformation process

of zeros is given below

βn = ej( 2pnπ
N ) (9)

F(u) =

N−1
2

∏
n=1

(z− βn)(z− β∗n) (10)

where βn are transformed zeros on the complex unit circle from the zeros of the Taylor-
pattern functions and β∗n is the conjugate of βn. It is shown in Figure 1 that by using
Schelkunoff’s polynomial method, the n and the one-parameter Taylor-like polynomials
are obtained. The difference between Chebyshev polynomials and Taylor-like polynomials
is uniform sidelobes versus tapered sidelobes. A phenomenon in Figure 1a that merits
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some attention is that the first sidelobe level of the n Taylor-like polynomial (red line) is
very close to 0 dB if coshπA = 0 dB. As is shown in Figure 1b, however, even though
B = 0, the first sidelobe level is −13.2 dB far lower than 0 dB. This means that the control
of the first sidelobe level for the one-parameter Taylor-like polynomial is not as flexible as
for the n Taylor-like polynomial. The comparison of the n and one-parameter Taylor-like
polynomials is shown in Figure 2 where it is clearly illustrated that the tapering rate of
the sidelobes for the one-parameter Taylor-like polynomial is faster than that for the n
Taylor-like polynomial.
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Figure 1. Polynomials P(q) = ∏N−1
n=1 (q− Re[zn]) where Re denotes the real part. (a) Comparison of

Chebyshev (blue line) and n Taylor-like polynomials where the red dashed line denotes a 0dB preset
first sidelobe level and green dotted line denotes a −20 dB preset first sidelobe level. (b) Comparison
of Chebyshev (blue line) and one-parameter Taylor-like polynomials where the red dashed line
denotes when B = 0 and the green dotted line denotes a −20 dB preset first sidelobe level.
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Figure 2. Comparison of the n (blue line) and the one-parameter (green dotted line) Taylor-like polyno-
mials. The illustration of the pattern ratio (dB) defined by |P(q)|2(dB)− |P(1)|2(dB) = |P(q)|2(dB).

3. Theoretical Approach to Taylor-Like Super-Directive Patterns
3.1. n Taylor-Like Super-Directive Patterns

The approach here is using a finite number of zeros of the Taylor-pattern function to
produce the super-directive patterns with another transformation utilized to squeeze the
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visible region from the entire unit circle into a smaller size. The n Taylor-like patterns are
produced as shown in Figure 3a. This Taylor-like pattern has a slightly different sidelobe
structure compared to the Taylor-pattern function. The reason is that this Taylor-like
pattern is achieved by using a finite number of zeros in the Schelkunoff’s polynomial
but the Taylor-pattern function has an infinite number of zeros. It is shown in Figure 3b
that the Taylor-like pattern is approaching a Chebyshev pattern when n is increasing to
(N − 1)/2, where N is the number of elements. This characteristic, which stems from
the ideal Taylor-pattern function, is also inherent in the Taylor-like pattern. As is shown
in Figure 3c, the main beamwidth becomes narrower when the number of elements is
increasing. The ability to control the first sidelobe level is shown in Figure 3d. Furthermore,
the linear transformation for contracting the visible region, leading to super-directivity,
is given by

αn = cos(
2pnπ

N
) (11)

vn =
1− cos(R)

c + 1
[αn +

1 + c · cos(R)
1− cos(R)

] (12)

wn = vn + i
√

1− v2
n (13)

F(u) =

N−1
2

∏
n=1

(z− wn)(z− w∗n) (14)

where R is half the range of the visible region and c is a constant, obtained by solving the
Taylor-like polynomial given a pattern ratio, similar to the parameter for adjusting the
sidelobe level of Chebyshev patterns [24,26]. It should be noted that c = 1 corresponds
to the pattern ratio of 0dB whereas the pattern ratio is defined in Figure 2. The linear
transformation (12) should, to some extent, be familiar to obtaining super-directivity by
adjusting the visible region since it has been used decades ago [19,26,27]. On the other
hand, the transformation (11) transforms a finite number of zeros of the Taylor-pattern
function onto the complex unit circle, which is the basis for the second transformation (12)
to constrain the visible region.

The patterns of the Taylor super-directive, Chebyshev super-directive and uniform
arrays are compared in Table 1. The first sidelobe level of the super-directive patterns is
designed to be the same as that of the corresponding uniform array, while the directivity is
greater than that of the uniform array. As studied in [19,28], the maximum weighting ratio,
defined by max{|cn|}/min{|cn|}, is much greater than that of the uniform array, which
is one of the well-known disadvantages of super-directive arrays. We will address this
problem in Section 4.

The representative Taylor-like super-directive and Chebyshev super-directive patterns,
and the reference uniform pattern are shown in Figure 4a. It is observed that the major lobe
of the Taylor-like pattern is slightly wider than that of the Chebyshev pattern and both
major lobes are obviously narrower than that of the reference pattern from the uniform
array. In radar applications, tapered minor lobes could reduce the interference from them
into the receiving antenna. It is clearly shown in Figure 4b that the visible region is
contracted to (−0.57π, 0.57π) down from the entire unit circle. Since the pattern ratio and
coshπA are both able to control the first sidelobe level, we need to explore the mechanism,
which is unique for Taylor-like super-directive patterns, by combining the pattern ratio
and coshπA to adjust the first sidelobe level. It is shown in Figure 5 and Table 2 that the
combination of the pattern ratio and coshπA could give us more freedom to control the first
sidelobe level. For instance, we are able to achieve the -30dB first sidelobe level without a
limit on n, which is inherently a drawback in the Taylor-pattern function (e.g., the condition
n = 3 is not suitable for first sidelobe levels lower than −25 dB [22]).
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Figure 3. (a) Comparison of Taylor-like patterns produced by the Schelkunoff’s polynomial
method (blue line) and the Taylor-pattern function (green dotted line) where N = 21, n = 3
and cosπA = 20 dB. (b) Taylor-like patterns where n is 7 (red dashed line), 9 (green dotted line) and
10 (blue line) respectively, cosπA = 20 dB and N = 21. (c) Taylor-like patterns where N is 13 (green
dotted line) and 29 (blue line) respectively with the same λ/2 element spacing, cosπA = 20 dB and
n = 3. (d) Taylor-like patterns where the first sidelobe level is −10 dB (green dotted line), −20 dB
(blue line) and −30 dB (red dashed line) respectively, N = 21 and n = 3.
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Figure 4. (a) Simulated 21-element Taylor-like super-directive pattern where n = 3 (blue line),
Chebyshev super-directive pattern (green dotted line) and the reference uniform pattern (red dashed
line) with the same element spacing, d = 0.29λ. (b) The zeros distribution of the Taylor-like super-
directive pattern on the complex unit circle.



Photonics 2021, 8, 64 7 of 24

Table 1. Parameters of a n Taylor-like super-directive pattern.

N = 21, n = 3 and d = 0.29λ

Parameters
Types Taylor Chebyshev Uniform

First sidelobe level (dB) −13.27 −13.27 −13.27

Directivity (dBi) 11.84 11.29 10.86

Half power beamwidth
(DEG) 6.52 6.14 8.44

Maximum weighting ratio 1.86 × 103 2.12 × 103 1
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0
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 (
d
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)

-10dB
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Figure 5. Comparison of Taylor-like super-directive patterns with different combinations of coshπA
and pattern ratios, where the blue line denotes a −10 dB first sidelobe level when the pattern ratio is
4 dB and coshπA = 6 dB, the red dashed line denotes a −20 dB first sidelobe level when the pattern
ratio is 12 dB and coshπA = 8 dB, the green dotted line denotes a −30 dB first sidelobe level when
the pattern ratio is 15 dB and coshπA = 15 dB.

Table 2. Comparison of n Taylor-like super-directive patterns with different combinations of coshπA and pattern ratios.

d = 0.21λ, n = 3 and N = 29

Pattern Ratio
(dB) and coshπA

Parameters
c Directivity (dBi) Directivity Ratio Maximum Weighting Ratio

4 dB and 6 dB 1.01 12.89 1.59 1.57× 106

12 dB and 8 dB 1.02 12.68 1.52 1.53× 106

15 dB and 15 dB 1.03 12.09 1.32 1.50× 106

3.2. One-Parameter Taylor-Like Super-Directive Patterns

A one-parameter Taylor-like polynomial could offer a faster tapering rate of the
sidelobes than the commensurate n Taylor-like polynomial. Hence, it is a worthy effort
to pursue the one-parameter approach to produce super-directive patterns with tapered
sidelobes. As is shown in Figure 6a, either for the 21-element or for the 29-element one-
parameter Taylor-like pattern, the sidelobes are tapering faster than their counterparts for
the n Taylor-like patterns with the preset R0 equal to 20 dB. The 29-element n Taylor-like
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pattern almost has the same tapering rate as the 21-element one-parameter Taylor-like
pattern. The adjustability of the first sidelobe level for the one-parameter Taylor-like
patterns is illustrated in Figure 6b where the blue line denotes the pattern with the highest
first sidelobe level which is −13.2 dB, the same as that in sinu/u.
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Figure 6. (a) Comparison of one-parameter Taylor-like patterns (green dotted line for N = 21 and
red dashed line for N = 29) and n Taylor-like patterns (blue line for N = 21 and purple dot-dash
line for N = 29) produced by Schelkunoff’s polynomial method with the same λ/2 element spacing.
(b) One-parameter 21-element Taylor-like patterns where the first sidelobe level is −13.2 dB (blue
line), −30 dB (red dashed line) and −50 dB (green dotted line) respectively.

The one-parameter Taylor-like super-directive pattern is compared with the n type
in Figure 7a where the former one is tapering faster than the latter, which is consistent
with what was mentioned in Figure 6a. The corresponding zeros distribution is shown in
Figure 7b. The parameters for both the one-parameter and the n Taylor-like patterns are
given in Table 3 in which we draw the conclusion that although the tapering rate of the
one-parameter Taylor-like pattern is faster than that of the n type, the main beamwidth for
the n type is actually narrower. This is the reason why the directivity of the n Taylor-like
super-directive pattern is slightly higher than the one-parameter type.
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Figure 7. (a) Simulated 29-element one-parameter (blue line) and n (green dotted line) Taylor-like
super-directive patterns. (b) The zeros distribution of the one-parameter Taylor-like super-directive
pattern on the complex unit circle.
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Table 3. Comparison of the two types of Taylor-like super-directive patterns.

N = 29 and d = 0.21λ

Parameters
Types One-Parameter n

First sidelobe level (dB) −20 −20

Directivity (dBi) 12.69 12.84

Half power beamwidth
(DEG) 5.92 5.54

Maximum weighting ratio 1.54 × 106 1.56 × 106

4. Reduction of The Maximum Excitation Weighting Ratio

One of the most severe issues of putting super-directive arrays into practice is the
required huge maximum excitation weighting ratios. We found that by adding zeros in
the invisible region on the complex unit circle we could decrease the maximum excitation
weighting ratio considerably. As is well-known, there is a great amount of reactive energy
in the near-field because the electromagnetic waves are not propagating in the longitudinal
direction. Hence, the wavenumber kz is imaginary whereas the transverse wavenumber
kt is larger than 2π/λ. This means that the z (which is ej2πu) in the array factor of the
polynomial migrates into the invisible region. If there exists no zeros in the invisible region,
the reactive energy would increase polynomially with the the wavenumber kt increasing.
However, by adding zeros in the invisible region, this polynomially increasing reactive
energy will become oscillating, which means that the total reactive energy would be
reduced. Then there is no need for the maximum ratio of element weights to be extremely
large. As shown in Figure 8a,b, there are extra zeros outside the visible region. The exact
maximum weighting ratio decreases from almost 5.8× 104 to 464, as shown in Table 4 with
the trade-off being the reduction of the element spacing. The corresponding patterns are
shown in Figure 8c where different tapering rates could be observed.
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Figure 8. The simulated 33-element Taylor-like super-directive patterns with reduced maximum
weighting ratio. (a) Zeros distribution of n Taylor-like super-directive pattern. (b) Zeros distribution
of one-parameter Taylor-like super-directive pattern. (c) Patterns of n (blue line) and one-parameter
(green dotted line) Taylor-like super-directive arrays.
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Table 4. Comparison of the two types of Taylor-like super-directive patterns with reduced maximum weighting ratio.

N = 33 with 8 Extra Zeros Outside the Visible Region or N = 25 without Extra Zeros

Parameters
Types One-Parameter (N = 33) n (N = 33) One-Parameter (N = 25) n (N = 25)

d 0.18λ 0.18λ 0.24λ 0.24λ

Array size 5.82λ 5.82λ 5.76λ 5.76λ

First sidelobe level (dB) −20 −20 −20 −20

Directivity (dBi) 12.27 12.02 12.34 12.16

Directivity ratio 1.38 1.30 1.40 1.34

Maximum weighting ratio 478.15 464.00 6.05× 104 5.80× 104

5. Imaging Theory and Experimental Results

In this section, we first summarize the duality between super-directivity in the angular
domain and super-oscillation in the spatial domain [8]. Based on this duality, we obtain
the 1-D super-oscillatory point-spread function. Then, we extrapolate from 1-D super-
oscillatory point-spread functions to 2-D super-oscillatory point-spread functions [11].
Since the super-oscillatory phase mask is displayed on an SLM as a grating, we hereby
derive the point-spread functions for every diffraction order on the image plane. The first
order is chosen to implement the super-oscillatory experiments instead of the zeroth order
because of the limitation of the diffraction efficiency of the SLM [29]. Finally, through
experiments, we demonstrate the superiority of the Taylor-like super-oscillatory point-
spread functions over the Chebyshev ones in resolving the objects of two apertures and of
a mask with the letter E.

To explain this duality, one of the details is that the polynomial of both super-directivity
and super-oscillation can both be given by

G =
N

∑
n=1

cnzn−1 (15)

where z = ejkdcosθ for super-directivity and z = ej∆kx for super-oscillation. For super-
directivity, this polynomial achieves the transformation from the spatial domain (nd) to
the angular domain (θ). For super-oscillation, this polynomial achieves the transformation
from the k domain (n∆k) to the spatial domain (x). Since there is no bound for x, there exists
no ’invisible’ region for super-oscillation, which means that the counterpart to the reactive
energy in the near-field of super-directive antennas is observable in super-oscillations.
The detail of transforming from z = ejkdcosθ to z = ej∆kx in an optical scenario regarding the
numerical aperture (NA) of the imaging lens is given by

z = ejkdcosθ = ej 2k·NA
M

Mdcosθ
2NA = ej∆kx (16)

where M is the number of frequency samples on the Fourier plane, which is (N + 1)/2,
and d can be calculated by R · λ/2π where R is half the pre-determined visible region
in (12). The diagram to illustrate this transformation is shown in Figure 9.
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(a)

(b)

Figure 9. (a) Antenna array in the spatial domain and super-directivity in the angular domain. (b) SO mask in the frequency
domain and super-oscillation in the spatial domain (SO denotes super-oscillatory and PSF denotes point-spred function).

Since we have already obtained the zeros on the complex unit circle for the Taylor-like
super-directive patterns, we can easily get the Taylor-like super-oscillatory point-spread
function by

f (x) = cN

N−1

∏
n=1

(z− zn) (17)

where zn are the zeros on the complex unit circle and z = ej∆kx. The technique for reducing
the maximum excitation weighting ratio in Section 4 has also been utilized here to suppress
the intensity of the sidebands [30,31], which is available in that the sidebands in the super-
oscillatory point-spread functions and reactive fields in the super-directivity antennas are
dual counterparts to each other. A diagram for an example of the 1-D super-oscillatory
point-spread function is shown in Figure 10.

The way to extrapolate the 1-D super-oscillatory point-spread function to its 2-D
counterpart is chosen to be

f (r) =
M

∑
m=1

amkρm J0(kρm r) (18)

where an is a coefficient, J0 is the Bessel function of the first kind of order zero, kρm is
the radial component in the (kρ, kθ) domain, and f (r) is the 2-D point-spread function
by replacing the variable x in (17) with r in polar coordinates. We basically use a set of
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orthogonal Bessel functions to fit the designed super-oscillatory point-spread function.
The specific method used for fitting is the zero matching method given by [11]

f (xn) =
M

∑
m=1

amkρm J0(kρm xn) = 0 (19)

where xn = arg[zn]/∆k for n = (N − 1)/2 + 1 to N − 1, ranked in an ascending order,
zn are the zeros on the complex plane, and arg[zn] are the phases of zn. The matrix form
of (19) is J̃ Ã = [0] where J̃ is a (N − 1)/2×M matrix whose elements are kρm J0(kρm xn), Ã
is the coefficient matrix, and the [0] is the zero matrix. Then the solved coefficients in Ã are
assigned to pixels on the SLM according to the Hankel transform given by

F(kρ) = 2π
∫ ∞

0
f (r)J0(kρr)rdr (20)

where F(kρ) is the optical transfer function. This expression holds because the SLM in the
experiment modulates the optical transfer function on the Fourier plane. After substituting
(18) for the f (r) in (20), we obtain

F(kρ) = 2π
M

∑
m=1

amkρm

∫ ∞

0
J0(kρm r)J0(kρr)rdr

= 2π
M

∑
m=1

amδ(kρ − kρm)

(21)

sidebands sidebands

sidelobessidelobes

beamwidth

ROI=2R/ k

Figure 10. An example of the super-oscillatory point-spread function.

It is apparent that F(kρ) contains M rings, each of which has a specific coefficient.
In our experiment, the simulated F(kρ) to be mapped onto the SLM is shown in Figure 11.
The width ∆r of each ring is determined by

∆r =
DSLM

2M− 1
(22)

where DSLM is 6.9mm, the diameter of the SO mask and M = 17, the total number of
coefficients. The phase-only SLM that we used has 1920× 1080 pixels with a pitch of
6.4 µm and an active area of 12.5× 7.1 mm2. Based on the fact that the pixel pitch is ten
times larger than the red-laser wavelength and the modulation is only applied to a specific
polarization, the SLM functions the same as a programmable grating that can modulate
both the phase and amplitude of the optical field. To make our phase-only SLM capable of
amplitude modulation, the technique of super-pixelling is utilized [32]. The intuitive way
to explain this is that two unit complex vectors on the whole complex plane (equivalent to
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the 2π phase modulation of this SLM) can be combined with varying phase difference to
obtain any complex coefficients, mathematically given by,

ejθ1 + ejθ2 = am (23)

where θ1 and θ2 are the modulated phases on the SLM by the host computer, and am is
the normalized coefficient in (21). The entire experiment is conducted in an optical 4F
system (as shown in Figure 12) with this reflective SLM standing on the Fourier plane [11].
The imaging process in this system is expressed by

fimg = IFT[F(kρ)FT[ fobj]] (24)

where fimg is the image function, fobj is the object function, F(kρ) is the optical transfer func-
tion in (21) to be mapped onto the SLM, FT[•] denotes the Fourier transform implemented
by the objective lens and IFT[•] denotes the inverse Fourier transform implemented by the
imaging lens.

Figure 11. Super-oscillatory mask (grating) with coefficient rings.

Figure 12. The optical 4F system (NA = 0.00864, f = 40 cm, λ = 632.8 nm).

The derivation of the whole point-spread function h(x, y) including all the diffraction
orders on the image plane is given in Appendix A. Since the h(x, y) is complex, let us focus
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on the zeroth diffraction order and the first diffraction order. The components of the zeroth
diffraction order can be given by

f1(x, y) =
w3

2

M

∑
m=1

(R1m + R2m ejφ)J0(kρm

√
x2 + y2) (25)

f2(x, y) = w
K

∑
n1=−K

n1 6=0

{
j

4n2
1π2

(1− cos(2πn1w))
M

∑
m=1

(R1m + R2m ejφ)J0(kρm

√
x2 + y2)

}
(26)

where f1 is extracted from h1 and f2 is extracted from h2 (see Appendix A). The first
diffraction order along the x-axis can be given by

g1(x, y) =
−jw2

±2π
(e±jwπ − 1)

M

∑
m=1

(R1m − R2m ejφ)J0(kρm

√
(x± λ f

p
)2 + y2) (27)

g2(x, y) =w
K

∑
n1=−K

n1 6=0

{
−1

4n1(−2n1 ± 1)π2 (e
−jn12πw − 1)(e−j(−2n1±1)wπ − 1)·

M

∑
m=1

(R1m − R2m ejφ)J0(kρm

√
(x± λ f

p
)2 + y2)

} (28)

where g1 is extracted from h1 and g2 is extracted from h2 (see Appendix A). Therefore,
the coefficients am for the zeroth and first diffraction orders can be given by{

a0m = R1m + R2m ejφ where fSO = C0 ∑M
m=1(R1m + R2m ejφ)J0(kρm

√
x2 + y2)

a1m = R1m − R2m ejφ where fSO = C1 ∑M
m=1(R1m − R2m ejφ)J0(kρm

√
(x± λ f

p )2 + y2)
(29)

where fSO is the super-oscillatory point-spread function, C0 and C1 are complex constants.
The distance Dx between two neighboring diffraction orders along the x-axis is λ f /p

which can be obtained in another way through the grating function by

tanθm ≈ θm ≈ sinθm = λ/p (30)

Dx = f · tanθm (31)

where f is the focal length. The distance Dy between two neighboring diffraction orders
along the y-axis is 2λ f /p.

By looking into (29), we can conclude that

a1m = R1m − R2m ejφ = R1m + R2m ej(π+φ) (32)

Thus, an extra π phase shift needs to be taken into consideration when designing
the super-pixel modulations for the first diffraction order. Because of the high dynamic
range of the modulations for achieving super-oscillatory fields, some coefficients after
normalization are close to zero. However, it is hard to achieve such coefficients in the
zeroth diffraction order due to the limitation of the diffraction efficiency of the SLM [29].
Consequently, we choose to observe the super-oscillatory patterns at the first diffraction
order. Therefore the following imaging results are all captured at the first diffraction order.

We design two different Taylor-like super-oscillatory point-spread functions for two
types of experiments. One Taylor-like super-oscillatory point-spread function is prepared
for the point-spread function measurement to showcase the sub-diffraction main beam and
tapered sidelobes (See Figure 13). The other is designed to have the same main beamwidth
as the diffraction-limited one to highlight the resolution improvement only from the
tapered sidelobes (See Figures 14 and 15). As is shown in Figure 13a, the experimental
two dimensional Taylor-like super-oscillatory point-spread function is plotted where the
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circular dark area corresponds to the visible region of a two-dimensional Taylor-like super-
directive array. The bright dot inside the center of the visible region is the main beam and
those dim circles around this dot are all the sidelobes. The bright circles outside of the
central dark area, called sidebands, are the counterpart of the non-observable reactive fields
in antenna super-directivity patterns. In Figure 13b, the experimental one-dimensional
intensity distributions of the Taylor-like super-oscillatory point-spread function and the
diffraction-limited point-spread function (corresponding to the uniform array sinc(NAk0x)
pattern, where NA is the numerical aperture of the imaging lens and k0 is the wave number
in free space) at the y = 0 plane are obtained. This Taylor-like super-oscillatory point-
spread function has tapered sidelobes and a narrower main beamwidth compared to
the diffraction-limited point-spread function. The full widths at half maximum (FWHM)
for the experimental and theoretical Taylor-like super-oscillatory point-spread functions,
and the experimental and theoretical diffraction-limited point-spread functions are around
29.1 µm, 24.4 µm, 40.5 µm and 37.6 µm, respectively. The ratio of the experimental Taylor-
like FWHM to the experimental diffraction-limited FWHM is 0.72. The first sidelobe levels
of the experimental and theoretical Taylor-like super-oscillatory point-spread functions
are −7.15 dB and −7.56 dB. The radius of the ROI for the experimental Taylor-like super-
oscillatory point-spread functions is 185.5 µm that is the same as the theoretical one.

To showcase the resolution improvement owing to the tapered sidelobes, we design
both Chebyshev and Taylor-like point-spread functions with super-oscillatory sidelobes,
by which we image two objects as shown in Figure 16a. The imaging results for the
object of two apertures are given in Figure 14. In Figure 14a, the FWHM, first sidelobe
level and radius of the ROI for the Taylor-like super-oscillatory point-spread function is
37.6 µm, −26.2 dB and 161.5 µm. As shown in Figure 14a, the Taylor-like point-spread
function has a tapered sidelobe structure that results in a lower dip in Figure 14b. This
improved resolution can also be observed by the comparison of the images in Figure 14c,d.
To further demonstrate the super-resolution ability of the Taylor-like super-oscillatory
point-spread function, we manage to image a transmissive mask with the letter E (see
Figure 16b) by Chebyshev and Taylor-like point-spread functions with super-oscillatory
sidelobes. As shown in Figure 15a–c, the image captured with the Taylor-like point-
spread function has the best resolution that is also illustrated in Figure 15d by drawing the
intensity distribution of the three branches of the letter E compared to the corresponding
Chebyshev and diffraction-limited ones. The resolution improvement in imaging the
objects of the two apertures and the mask with the letter E results from reduced sidelobe
interference by the tapered sidelobes since the only difference regarding resolving objects
between the Chebyshev and Taylor-like point-spread functions in Figure 14a is the sidelobe
structure. The reduced sidelobe interference can be explained by the following statement.
The imaging process can be expressed by

I = obj⊗ ps f (33)

where I is the complex field on the image plane, obj is the object to be imaged, ps f is the
coherent point-spread function, and ’⊗’ denotes the convolution. When the convolution is
conducted, the value of one element in the image I is decided by

I(m, n) =
∫

obj(x, y) · ps f (m− x, n− y)dxdy (34)

from which, it is found that I(m, n) = obj(m, n) if ps f is a Dirac δ function that has no
sidelobes. Otherwise, I(m, n) = obj(m, n) + ∆I where the main beam of the ps f is still
assumed to be infinitely narrow, and ∆I denotes the sidelobe inteference that is the sum of
multiplications of the sidelobes and other parts of obj except obj(m, n). In the incoherent
imaging system, lower sidelobes give less interference when imaging the in-phase objects.
The reason is that the incoherent ps f is non-negative [33]. In the coherent system, it
becomes hard to quantitatively analyze ∆I because the multiplications of the sidelobes and
parts of obj might be positive or negative. However, this goal becomes clear in the ideal
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case where ∆I = 0. Reducing the sidelobe level can lower ∆I. Thus, we can reasonably
expect better resolution by the Taylor-like point-spread functions with tapered sidelobes,
compared to the Chebyshev one, because the former one is a better approximation to an
ideal Dirac δ function in terms of the sidelobe levels.
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Figure 13. The experimental results of the Taylor-like super-oscillatory point-spread function cor-
responding to an one-parameter Taylor-like super-directive array. (a) Two-dimensional Taylor-like
super-oscillatory point-spread function. (b) Experimental (blue line) and theoretical (red dashed line)
One-dimensional Taylor-like super-oscillatory point-spread functions. Experimental (green dotted
line) and theoretical (purple dot-dashed line) diffraction-limited point-spread functions (red line)
at the y = 0 plane. The full widths at half maximum (FWHM) for the experimental and theoretical
Taylor-like super-oscillatory point-spread functions, and the experimental and theoretical diffraction-
limited point-spread functions are around 29.1 µm, 24.4 µm, 40.5 µm and 37.6 µm, respectively.
The ratio of the experimental Taylor-like FWHM to the experimental diffraction-limited FWHM
is 0.72.

Furthermore, it is observed that the imaging intensity of the letter E in the ROI is
low. This is mainly caused by the fact that a large portion of the illumination energy is
distributed to the sidebands (see Figure 10 for the definition). Two possible solutions to
resolve this issue are increasing the illumination power and using a high-dynamic-range
imaging technique [34]. When Figure 15b is compared with Figure 15c, there seems to be
more sidelobe interference in the Taylor-like case. Actually, this phenomenon is as a result
of the sidebands. As is shown in Figure 14a, the super-oscillatory Chebyshev point-spread
function has a larger ROI than the Taylor-like one. The radius of the ROI for the Chebyshev
one is 221.3 µm, whereas this is only 161.5 µm for the Taylor-like one. This implies that the
sidebands in the Taylor-like one occupy more energy from the illuminated power. Thus,
less energy would be used to form the image in the ROI. The resultant phenomenon is that
the signal-to-noise ratio in the Taylor-like case is lower than in the Chebyshev case.
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Figure 14. (a) Simulation results of super-oscillatory Chebyshev (red dotted line), super-oscillatory Taylor-like (blue line)
and diffraction-limited (green dashed line) point-spread functions. (Note: the SO Chebyshev has slightly tapered sidelobes
because the accuracy of the coefficients is limited by the bit-depth (8-bit in this SLM), and imperfect linearity of the applied
voltage and modulated phase; ) (b) Intensity distributions along the x-axis in (c) (red dotted line) and (d) (blue line) compared
with the diffraction-limited one (green dashed line). (Note: the equivalent Rayleigh criterion for a coherent optical system,
which is the one used for this paper, is 0.82λ/NA ≈ 60 µm [11]). The experimental results of imaging two apertures (c)
with super-oscillatory Chebyshev point-spread function; (d) with super-oscillatory Taylor-like point-spread function. (Note:
to clarify the effect of the sidelobe structure on the resolution, the super-oscillatory point-spread functions are designed to
have super-oscillatory sidelobes and the same beamwidth as the diffraction-limited one. Thus, the super-resolution would
only result from the sidelobe structure.)
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Figure 15. The experimental results of imaging a mask with the letter E (a) with the diffraction-limited point-spread function;
(b) with a super-oscillatory Chebyshev point-spread function; (c) with a super-oscillatory Taylor-like point-spread function.
(d) Intensity distribution along the red line shown in (c) compared with the corresponding ones in (a,b). Taylor-like (blue
line) has the lowest two dips between three peaks (indicating the three branches of the letter E) compared to the Chebyshev
(red dotted line). The diffraction-limited (green dashed line) cannot resolve the three peaks.

There are several reported works on super-oscillatory imaging and focusing based
on the particle swarm optimization [5,35], the genetic algorithm [36], and the linear pro-
gramming method [37]. These algorithms are all based on specified objective functions
and multiple constraints. Since these algorithms search for the optimal solution in the
search-space, they are iterative methods. In contrast, in our synthesis method, as long
as the number of total zeros, the number of zeros inside the visible region, the size of
the ROI, and the first sidelobe level are specified, the super-oscillatory pattern can be
produced directly without any numerical iterations. The sidelobes in Refs. [35,36] are not
tapered, which indicates that there is no control over the sidelobe structure to reduce the
interference arising from the sidelobes. In this present work, the sidelobes are tapered
in a user specified manner. It is pointed out [36,37] that there is a trade-off between the
FWHM of the main beam (hotspot), the sidelobe level within the ROI, and the size of the
ROI. It is worth noting that prominent sidebands (that surround the sidelobes and the
main beam) are non-existent in the super-oscillatory point-soread functions in Refs. [35,36],
which implies that raising the sidelobe level to reduce the FWHM of the main beam is
basically the approach utilized in these works. Thus, the sidelobe interference would
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finally become unbearable when squeezing the main beam further. On the other hand,
the appearance of sidebands in Refs. [11,37] could help relieve this exasperation because
the sidelobes inside the ROI can be reduced to a low level and an arbitrary sub-diffraction
main beam is still attainable. Furthermore, the size of the ROI surrounded by the sidebands
can be customized by the synthesis method proposed in this paper, which ensures the
availability of the non-scanning mode in our super-oscillatory imaging system compared
to the scanning mode used in Ref. [5]. It only takes several milliseconds for us to capture
the complete image. Thus, the size of the ROI and the sidelobes inside the ROI can be
balanced simultaneously. When imaging extended objects, the ROI would undoubtedly
put a limitation on the size of the objects. The possible solution in our super-oscillatory
imaging system is to enlarge the super-oscillatory field of view whose radius is decided
by 2π/∆k where ∆k is the sampling interval of the Fourier components on the Fourier
plane. This implementation is simply increasing the number of Fourier components to be
modulated, which is limited by the resolution of the SLM. If the size of the object is beyond
the ROI limit allowed by the super-oscillatory imaging system, the possible way out is by
utilizing a pinhole, whose size should be smaller than the ROI limit, in front of the object
and scanning the object.

22 m 22 m
56 m

(a)

14 m

10 m

118 m

105 m

(b)

Figure 16. Two transmissive objects are etched on a nickel substrate, including (a) an object of two
apertures, and (b) an object of the letter E.

6. Conclusions

This work introduces a method to design two types of super-oscillatory Taylor-like
point-spread functions by means of Schelkunoff’s super-directive antenna theory. Simula-
tion results exploring super-directive patterns, zeros distribution and excitation weights
are outlined. The one-parameter Taylor-like super-directive pattern offers a faster tapering
rate than the n type one. The parameters controlling the main beamwidth and sidelobe
level structure are explored. To make the synthesis practical in terms of the large amount
of stored energy in the near-field for super-directive antennas, we place extra zeros into
the invisible region, which can efficiently lower the maximum excitation weighting ratio.
This technique, when applied to synthesizing the super-oscillatory point-spread functions,
can reduce the intensity of the sideband that is an inherent drawback of super-oscillations.
In the experimental section, we first conduct an experiment for obtaining the point-spread
function of Taylor-like super-oscillations , which has tapered sidelobes and narrower main
beamwidth compared to the diffraction-limited point-spread funcion. This is done by
means of advanced programmable gratings formed on an SLM. We then verify the superi-
ority of its tapered sidelobes over the equal sidelobes of Chebyshev patterns by imaging
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two objects using a 4F imaging system. It is shown that tapered sidelobes can reduce the
interference from the sidelobes and therefore improve the resolution. In detail, the imaging
results of a two-aperture object show a lower dip with the Taylor-like super-oscillatory
point-spread function. In the experiment of imaging a mask with the letter E, the result
with the Taylor-like pattern has the best resolution in resolving its three branches compared
to the corresponding Chebyshev and diffraction-limited patterns. It can be envisioned
that this Taylor-like super-oscillatory point-spread functions would help mitigate the un-
wanted effects caused by sidelobes in super-oscillatory imaging, such as artifacts and
imaging ambiguity.
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Appendix A

Every coefficient ring in Figure 11 after involving super-pixels is a regular Ronchi
grating multiplied by a ring with the width of ∆r. The actual phase mask to be displayed
on the SLM in the spatial domain can be given by

Fmask = S ·
M

∑
m=1

2πδ(r− (m− 1)∆r) · Gm (A1)

where δ(r− (m− 1)∆r) denotes the mth ring in Figure 11 with the width ∆r, r = kρ
λ f
2π ( f is

the focal length in Figure 12), Gm is a Ronchi grating function [38], and S is the 2-D grating
function, the periodic structure that the SLM is endowed with. The function Gm can be
expressed by

Gm(x, y) = ∑
n

{
R1m(L1m)rect(

x− np− wp/4
wp/2

) + R2m(L2m)e
jφ(Lm)rect(

x− np− (2 + w)p/4
wp/2

)

}
(A2)

where R1m and R2m are the reflection coefficients of this reflective SLM (normally, R1m and
R2m are the same, close to 1), L1m and L2m are both 8-bit voltages, p is the period of the
Ronchi grating, which equals the size of one super-pixel, rect(•) is the rectangular function,
w is the fill factor of the SLM (which is 93% in our work), and φ(Lm) = φ(L1m)− φ(L2m),
the modulated phase difference between two single pixels in one super-pixel. The function
S can be expressed by

S(x, y) = ∑
n1

rect(
x− n1 p/2− wp/4

wp/2
) ·∑

n2

rect(
y− n2 p/2− wp/4

wp/2
) (A3)

which denotes the pixel distribution of the SLM.
The Fourier transform of (A1) is

H = FT[Fmask] = FT[S]⊗
M

∑
m=1

FT[2πδ(r− rm)]⊗ FT[Gm] (A4)

where ⊗ denotes the convolution and rm = (m− 1/2)∆r. The term of FT[2πδ(r− rm)] is
similar to (21), whose corresponding representation in the Frequency domain is J0(kρrm).
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To obtain the whole point-spread function H in the frequency domain, we first give the
Fourier series of Gm

Gm =
K

∑
n=−K

bmn · e
jn 2π

p x (A5)

where

bmn =

{
w
2 (R1m + R2m ejφ) if n = 0

j
2nπ (e

−jnwπ − 1)(R1m + R2m ejφe−jnπ) if n 6= 0
(A6)

Then, the right term of the convolution can be derived by

FT[Gm] =
w
2
(R1m + R2m ejφ)δ(kx) +

K

∑
n=−K

n 6=0

j
2nπ

(e−jnwπ − 1)(R1m + R2m ejφe−jnπ)δ(kx − n
2π

p
) (A7)

through which,

M

∑
m=1

FT[2πδ(r− rm)]⊗ FT[Gm] =
M

∑
m=1

{w
2
(R1m + R2m ejφ)J0(rm

√
k2

x + k2
y)+

K

∑
n=−K

n 6=0

j
2nπ

(e−jnwπ − 1)(R1m + R2m ejφe−jnπ)J0(rm

√
(kx − n

2π

p
)2 + k2

y)


(A8)

Then, we can write

FT[S] = FT[ ∑
n1=0

rect(
x− n1 p/2− wp/4

wp/2
)]⊗ FT[ ∑

n2=0
rect(

y− n2 p/2− wp/4
wp/2

)]

= FT[Sx]⊗ FT[Sy]

(A9)

where

FT[Sx] = wδ(kx) +
K

∑
n1=−K

n1 6=0

j
2n1π

(e−jn12πw − 1)δ(kx − n1
4π

p
) (A10)

and

FT[Sy] = wδ(ky) +
K

∑
n2=−K

n2 6=0

j
2n2π

(e−jn22πw − 1)δ(ky − n2
4π

p
) (A11)

Thus,
H = H1 + H2 + H3 + H4 (A12)

where

H1(kx, ky) =w2
M

∑
m=1

{w
2
(R1m + R2m ejφ)J0(rm

√
k2

x + k2
y)+

K

∑
n=−K

n 6=0

j
2nπ

(e−jnwπ − 1)(R1m + R2m ejφe−jnπ)J0(rm

√
(kx − n

2π

p
)2 + k2

y)


(A13)

H2(kx, ky) =w
K

∑
n1=−K

n1 6=0

j
2n1π

(e−jn12πw − 1)

{
M

∑
m=1

[
w
2
(R1m + R2m ejφ)J0(rm

√
(kx − n1

4π

p
)2 + k2

y)+

K

∑
n=−K

n 6=0

j
2nπ

(e−jnwπ − 1)(R1m + R2m ejφe−jnπ)J0(rm

√
(kx − n

2π

p
− n1

4π

p
)2 + k2

y)]


(A14)
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H3(kx, ky) =w
K

∑
n2=−K

n2 6=0

j
2n1π

(e−jn12πw − 1)

{
M

∑
m=1

[
w
2
(R1m + R2m ejφ)J0(rm

√
k2

x + (ky − n2
4π

p
)2)+

K

∑
n=−K

n 6=0

j
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(e−jnwπ − 1)(R1m + R2m ejφe−jnπ)J0(rm
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(kx − n
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p
)2 + (ky − n2

4π

p
)2)]


(A15)

H4(kx, ky) =
K

∑
n1=−K

n1 6=0
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∑
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n2 6=0

− 1
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√
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4π

p
)2 + (ky − n2

4π

p
)2)+

K

∑
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n 6=0

j
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(e−jnwπ − 1)(R1m + R2m ejφe−jnπ)J0(rm

√
(kx − n

2π

p
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4π

p
)2 + (ky − n2

4π

p
)2)]



(A16)

The final expression after transformed back into the spatial domain is given by

h = h1 + h2 + h3 + h4 (A17)

where

h1(x, y) =w2
M

∑
m=1

{
w
2
(R1m + R2m ejφ)J0(kρm

√
x2 + y2)+

K

∑
n=−K

n 6=0

j
2nπ

(e−jnwπ − 1)(R1m + R2m ejφe−jnπ)J0(kρm

√
(x− n

λ f
p
)2 + y2)


(A18)
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2λ f
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2λ f
p

)2 + y2)]


(A19)

h3(x, y) =w
K

∑
n2=−K

n2 6=0
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{
M

∑
m=1

[
w
2
(R1m + R2m ejφ)J0(kρm

√
x2 + (y− n2

2λ f
p

)2)+

K

∑
n=−K

n 6=0

j
2nπ

(e−jnwπ − 1)(R1m + R2m ejφe−jnπ)J0(kρm

√
(x− n

λ f
p
)2 + (y− n2

2λ f
p

)2)]


(A20)

h4(x, y) =
K

∑
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