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Abstract: Deep neural networks have enabled the reconstruction of optical soliton molecules with
more complex structures using the real-time spectral interferences obtained by photonic time-stretch
dispersive Fourier transformation (TS-DFT) technology. In this paper, we propose to use three
kinds of deep convolution networks (DCNs), including VGG, ResNets, and DenseNets, for revealing
internal dynamics evolution of soliton molecules based on the real-time spectral interferences. When
analyzing soliton molecules with equidistant composite structures, all three models are effective. The
DenseNets with layers of 48 perform the best for extracting the dynamic information of complex
five-soliton molecules from TS-DFT data. The mean Pearson correlation coefficient (MPCC) between
the predicted results and the real results is about 0.9975. Further, the ResNets in which the MPCC
achieves 0.9906 also has the better ability of phase extraction than VGG which the MPCC is about
0.9739. The general applicability is demonstrated for extracting internal information from complex
soliton molecule structures with high accuracy. The presented DCNs-based techniques can be
employed to explore undiscovered mechanisms underlying the distribution and evolution of large
numbers of solitons in dissipative systems in experimental research.

Keywords: fiber nonlinearities; deep learning (DL); artificial intelligence (AI)

1. Introduction

Soliton molecules are localized soliton bound states formed by self-organized dissipa-
tive soliton through subtle interaction mechanisms [1]. The potential of soliton molecules
to expand the transmission capacity in optical communication systems has drawn much
research attention and has become an attractive topic for nonlinear optical fibers in re-
cent decades [2–10]. In addition to predicting the dynamic evolution of soliton molecules
theoretically [3], the dynamic evolution of soliton molecules is also proved experimen-
tally [8–12], which extends the degrees of freedom toward internal dynamics. The internal
dynamics of soliton molecules is difficult to analyze when only the change of the pulse en-
ergy is considered in the oscilloscope traces. Recently, the photonic time-stretch dispersive
Fourier transformation (TS-DFT) technology has been used to real-time monitor the internal
dynamics of soliton molecules in passive mode-locked lasers (PMLs). Concretely, TS-DFT
observe various rare events and transient phenomena including soliton buildup [6,7],
soliton pulsation [13,14], soliton explosion [15,16], and soliton molecules [2–4,9,10]. It ap-
pears tremendous potential in simulating dynamic process of various complex molecules.
The structure of soliton molecules encompasses simple two-soliton and three-soliton
molecules [4,5,10–12], 2+2 soliton molecular complexes [9], composite patterns in both
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global and local ranges [14], and supramolecular arrangements that mimic various many-
body biochemical and biological systems [8]. To restructure the internal dynamics of the
soliton molecules from TS-DFT spectra, a autocorrelation method is usually employed [9].
In this method, a discrete Fourier transform is performed on the interference fringes to
obtain the single-shot autocorrelation traces for retrieving the soliton separation and the
relative phase in the soliton molecules.

However, the autocorrelation method cannot further quantitatively analyze all the
dynamic evolution processes in complex molecular structures, such as relative phase of
each soliton. When multisoliton molecules and soliton pairs with near equal spacing
happen [11], it is almost impossible to obtain relative phase differences (PDs) evolution [17].
Therefore, the autocorrelation method is suitable for analyzing simple soliton molecule
structures consisting of soliton pairs, unequally spacing three solitons [4], etc. Recent
years have seen the rapid growth and development of the field of ultrafast photonics,
where artificial intelligence algorithms are being applied in exploring complex dynamical
processes of soliton molecules in PMLFLs [17], the extreme events in optical fibre modu-
lation instability [18], and the generation and characterization of light pulses [19,20]. In
order to solve the internal dynamics of complex soliton molecules, we introduced artificial
intelligence combining with TS-DFT. Although the residual networks (ResNets) [21] have
been used for exploring complex dynamical processes in soliton molecules experimentally
and numerically based on TS-DFT in passive mode-locked lasers (PMLs), emerging models
continue to push the limits of what can be achieved. It also has proved that the data
generated based on theory can be used to analyze experimental data [17]. It is necessary
to consider whether the network structures outside the ResNets are more accurate and
effective to analyze the internal dynamics of multisoliton molecules.

Recently, deep convolution networks (DCNs) have demonstrated a powerful ability
to apply in mode-locked lasers [17,22], decompose the modes in few-mode fibers [23],
recognize orbital angular momentum modes with fractional topological charges [24], miti-
gate fiber nonlinearity in optical communication [25], and the characterization and control
of ultrafast propagation dynamics [26]. It is well known that convolutional neural net-
works (CNNs) have dominated machine-learning landscape in data-rich applications,
such as VGG (Visual Geometry Group) [27], Residual Networks (ResNets) [21], Dense
Convolutional Networks (DenseNets) [28], and other models. Theoretical and empirical
evidences indicate that the depth of neural networks is crucial for its accuracy and/or
performance [29]. The core of DenseNets and ResNets models is to establish “shortcuts,
Skip Connection” between the front and back layers, which will facilitate shortcuts and skip
connections during training and enable deeper CNN networks to be trained and achieve
higher accuracy. The difference in DenseNets model is that each layer can directly obtain
the gradients from the loss function and the original input signal, thus forming an implicit
form of deep supervision [30,31]. This makes the feature reuse through the connection of
features across the channel for faster error converge. Considering the representativeness
of VGG, ResNets, and DenseNets models and their characteristics of easily deepening the
network layers, the three kinds of models are chosen to compare the ability in extracting
internal dynamics evolution of soliton molecules.

Here, we propose and demonstrate, theoretically, the analysis the internal dynamics
of bound states of complex dissipative solitons by employing DCNs. We implement VGG,
ResNets, and DenseNets which are able to extract the phase evolution information of more
complex soliton molecules from TS-DFT spectra data by modifying the network structure.
Comparing the performance of the three DCNs by numerical analysis, the ResNets and
DenseNets represent lower complexity than VGG and can easily enjoy accuracy gains
from greatly increased layers. The DenseNets we used have better parameter efficiency
and more lower error than ResNets in the test data. Thus, DenseNets have been demon-
strated to achieve superior performance in comparison to other two models by almost any
meaningful metric.
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2. Methods
2.1. Generate Simulated TS-DFT Data of Soliton Molecules

The generation of simulated TS-DFT data of soliton bound state is considering factors
such as bandwidth, sampling, and noise, which has been proven to be used for deep
learning data sets [17]. The complex amplitude of the slowly varying envelope of soliton
molecules is described by the superposition of solitons, which is given by [32]

UM(T) =
M

∑
k=1

uk(T − τk)e
−iϕk
k , (1)

where T is the relative reference time of the pulse, M is the number of solitons, and uk,
τk, and ϕk represent the slowly varying envelope, relative temporal delay, and relative
phase of the k-th soliton, respectively. When the bandwidth and sampling speed of the
electronic devices are matching with experiment, for example, the parameters of a real-time
oscilloscope are 59 GHz and 200 GSa/s, the TS-DFT spectrum with resolution of 2.8626 ps
is calculated first with high temporal resolution (0.01 ps) and then filtered by a fourth-order
Butterworth lowpass filter and downsampled. Thus, the simulated TS-DFT dataset for the
soliton molecules can be acquired based on a series of relative temporal delay τk and phase
ϕk is given. All the TS-DFT data are superimposed white noise. The TS-DFT system, we
used here, has a dispersion-compensating fiber (DCF, −134 ps2/km) with length of 1.5 km.
We assume that the solitons in soliton molecules are hyperbolic secant pulses with a central
wavelength of 1560 nm. As shown in Figure 1, when multisoliton molecules are considered,
the TS-DFT dataset is generated with random PDs. The TS-DFT dataset is filtered and
divided into a training set and a verification set proportionally (8:2). All the TS-DFTs are
converted to bitmap for the inputs of DCNs. After the training via DCNs, the simulated
testing dataset, with noise, is used to predict the PDs of the soliton dynamics.

Figure 1. Processing flow for TS-DFT data for the soliton molecules based on the neural networks.

2.2. Structures of Deep Convolution Networks (DCNs)

The based architectures of three DCNs, namely VGG, ResNets, and DenseNets, are
ref. [28,33,34]. We made some modification in these three models, including the number
of layers of the network, the size of convolution kernel, and the structure of subblock.
Especially, in Figure 2a, a batch normalization (BN) is added before each convolution
block unlike VGG nets in ref [35]. Meanwhile a regularization L2-norm is used in each
convolutional layer. The convolutional layers have the same convolution kernel (Ki) in one
convolution block. With the stack of convolution blocks, the number of convolution kernels
increases or is the same as the previous block. The main parts of ResNets/DenseNets
are made up of their ResBlocks/Dense Blocks as shown in Figure 2b,c. The number
of subblocks for each ResBlock/Dense Block is set respectively. Their structure of the
subblocks are displayed in the box pointed to by the arrow. In addition, all the convolutional
layers with regularization L2-norm are employed and batch normalization is applied
among the layers. The activation function, which uses the rectified linear unit (ReLU) [36]
and the Batch-Normalization [37], regularization L2-norm, and pooling, used in our three
DCNs, can prevent overfitting. The regularization L2-norm makes the objective function
easy to converge to the global optimal solution. The weights of the DCNs are optimized
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during the training process through backpropagation. The optimizer we used is Adam [38],
a variant of stochastic gradient descent that has individual adaptive learning rates for
different parameters, which are calculated from estimates of the first and second moments
of the gradients. Moreover, the mean absolute error (MAE) is chosen here because DCNs
implement regression problems. The function of the optimizer is to reduce the gap between
the predicted value and the sample label value. The DCNs’ models are implemented using
the Tensorflow framework [39].

Figure 2. The structure of the DCNs (deep convolution networks). (a) The VGG Net (Visual Geometry
Group Networks). (b) The ResNet (Residual Networks). (c) The DenseNet (Densely Connected
Convolutional Networks).

3. Results and Discussion
3.1. Soliton Molecular Structure of Test Set

A complex soliton molecular structure with five solitons, which is exhibited in Figure 3,
is used to test the ability of the three DCNs in extracting relative phase differences (PDs).
In particular, the internal phase evolution of the soliton molecules contain oscillating
and the diverging sliding phase [4,5]. The test set includes both phases and the equal
temporal separations so it is impossible to extract internal phase evolution of each soliton
by autocorrelation method. The temporal trace of simulated dataset is shown in Figure 3a.
The temporal separations of the five solitons contain two kinds of equal spacing 17 and
42 picoseconds (ps). As presented in Figure 3a, a phasor representation is constructed
to picture the five-soliton molecules constituted. We defined the leftmost soliton as the
first pulse which is set as the reference with a fixed pointing direction. Then, the PD
from the following pulse to the first pulse are defined as PD2, PD3, etc., denoted by the
variables (ϕ). Figure 3e lists two PDs as representatives containing oscillating and the
diverging sliding phase [40]. The TS-DFT of five-soliton molecules with given phases as
the simulated testing dataset show in Figure 3b. Because there are soliton pairs with almost
equal separation within the soliton molecule, their corresponding autocorrelation peaks are
coherently superposed. The autocorrelation trajectories are flickering as shown in Figure 3c.
Specifically, two roundtrips (580 and 704 roundtrips) of autocorrelation curves are drawn
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in Figure 3d. It is obvious that the intensity varies greatly at the autocorrelation peaks for
the interaction of isometric soliton molecules. This complex molecular structure as a test
set involves the difficulties mentioned above and has the ability to evaluate the merits and
demerits of the DCNs.

Figure 3. (a) Graphical representation of five-soliton molecules. (b) The testing TS-DFT (time-stretch
dispersive Fourier transformation). (c) The autocorrelation trajectories of TS-DFT. (d) Comparison of
two autocorrelation trajectories. (e) Two kinds of phase differences (PDs) evolution as representatives
containing oscillating and the diverging sliding phases corresponding Real PD3 and PD5.

3.2. Perform Three DCNs on TS-DFT Datasets of Five-Soliton Molecules

The TS-DFT dataset, with 39 × 39 pixels each, put into three DCNs for training. We
add three callback functions to control the program. These include dynamic adjustment
of learning rate (LR) which is multiplied by 0.6 to decrease value if the error of lose
function does not decrease after 5 iterations. The Early-Stop function is to terminate the
program when the error of lose function does not decrease after 20 iterations. The Best-
Model function saves optimal parameter model when the error is less than previous error.
The training results are shown in Figure 4. The convergence speed and error of different
networks are diverse because of the number of layers. As shown in Figure 4a, we considered
for VGG of four network layers of 17, 21, 25, and 29. ResNet of three network layers of
65 (k = 512), 77 (k = 515), and 65 (k = 1024) are in Figure 4b. DenseNet of four network
layers of 121 (k = 32), 161 (k = 32), 161 (k = 48), 169 (k = 32) and 169 (k = 48) are in Figure 4c.
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Table 1 lists the depth of networks, the size of parameter model, the number of iterations,
the verification errors and test errors of different model structures for TS-DFT of five-
soliton molecules. Thereinto, the DenseNet of 161(k = 48) has the best testing results with
smallest error 2.2355 and faster convergence rate on the comprehensive. Because overfitting
cannot be avoided completely and different networks have different inhibitory overfitting
effects. Thus, the trends of verification error and testing error have a little inconsistency.
From Figure 4, the error trend remains the same: the lower the verification error, the lower
the testing error. Here we evaluate the accuracy of the networks mainly based on the error
of the test data. It can be seen from Table 1 and Figure 4 that VGG networks have the
worst effect for phase extraction. Its minimum testing error is high, 5.2528. DenseNet,
with minimum testing error 2.2355, has a slightly smaller advantage over ResNet whose
value is 2.6260. By comparing the verification errors of the optimal results in each DCNs,
as shown in Figure 4d, we can still conclude that the VGG shows the worst convergence
and the optimal one is the DenseNet, where the networks with shortcut connection can
suppress gradient explosion better than the common convolutional network.

Figure 4. Verification error of DCNs. (a) Four VGG networks. (b) Three ResNets. (c) Five DenseNets.
(d) Three DCNs with optimal test results.

3.3. Pearson Correlation Analysis of Real and Predicted Values

Next, we compare the real relative PDs (black lines) with the extraction results (red
lines) from the optimal model in each DCN. The left column in Figure 5a is the PDs ex-
tracted from VGG-17 with a minimum error of 5.2528. Figure 5b plot the PDs extracted
from ResNet-77 with a minimum error of 2.6260. In addition, the PDs extracted from
DenseNet-161 (k = 48) with a minimum error of 2.2355 in Figure 5c. The correlation be-
tween the real value and the extracted value is analyzed by Pearson Correlation Coefficient
(PCC). The mean Pearson correlation coefficients (MPCC) of each group of PDs are 0.9739,
0.9906, 0.9975 which correspond to DCNs of VGG-PDs, ResNet-PDs, and DenseNet-PDs,
respectively. After comparing the VGG, ResNet, and DenseNet, the ResNets and DenseNet
represent fewer smaller error and lower complexity than VGG and can easily enjoy ac-
curacy gains from greatly increased layers. It is worth noticing that extremely deep nets
with shortcut paths are easy to optimize, but simply stack layers exhibit higher testing
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error when the depth increases [21]. Because short paths in the network have a strong
regularizing effect and reduce overfitting on smaller training sets [30]. Besides, DenseNets
we used have better parameter efficiency and more lower error than ResNets in the test
data. It has been reported that DenseNets are easier to train due to their improved infor-
mation flow and gradients throughout the network [30,31]. On these, the DenseNets have
the best testing results with smallest testing error and superior parameter efficiency on
the comprehensive. They tend to require far fewer parameters when compared against
alternative algorithms with comparable accuracy. Consequently, we infer that the DCNs
model have the potential to analyze the dynamics of more complex soliton molecules and
DenseNets performs best.

Table 1. Error rates (%) of single-model results on the TS-DFT interference spectra of five-soliton
molecules datasets.

Model-Layers Params Iterations Verification Error (%) Testing Error (%)

VGG17 268 M 479 6.2891 5.2528
VGG21 272 M 324 7.1810 6.5479
VGG25 320 M 747 7.3101 6.8600
VGG29 332 M 339 8.1265 7.3815

ResNet65 (k = 42) 122 M 241 2.7159 2.9438
ResNet65 (k = 44) 426 M 543 2.6445 2.8491
ResNet77 (k = 51) 187 M 478 2.9573 2.6260

DenseNet121 (k = 32) 68.1 M 213 2.6361 2.6155
DenseNet161 (k = 32) 112 M 405 2.6057 2.5037
DenseNet161 (k = 48) 246 M 284 2.5917 2.2355
DenseNet169 (k = 32) 126 M 448 2.5088 2.7286
DenseNet169 (k = 48) 278 M 490 2.6103 2.8331

Figure 5. Relative phase difference (PD2-PD5). (a) The real PDs and VGG-PDs. (b) The real PDs and
ResNet-PDs. (c) The real PDs and DenseNet-PDs.

4. Conclusions

The methods based on DCNs can solve the situation of more solitons and existence
of equidistant soliton pairs where the autocorrelation method is limited. Comparing the
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VGG, ResNet, and DenseNet models, we demonstrate their effectiveness on TS-DFT inter-
ference spectra of more complex five-soliton molecules datasets with equal spacing pairs.
The DenseNets outperform VGG and ResNets in extracting the internal information from
complex five-soliton molecules, where the second best is the ResNets whether considering
parameter efficiency or testing error. The investigation on the soliton molecule in the PMLs
would contribute to understanding the complex nonlinear dynamics of pulse propaga-
tion in PMLs and benefit the potential applications of telecommunications and fiber laser
sources. This provides the possibility of simulating the dynamic behaviors of complex
chemical molecules and other multibody systems based on soliton molecules in PMLs
optically. We expect that our method can promote simulating the dynamic behaviors of
complex chemical molecules and other multibody systems based on soliton molecules in
PMLs optically and explore the potential mechanism of the distribution and evolution of a
large numbers of solitons in a dissipative system.
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