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1. Negligible Impact of Self-Steepening and Raman Effect

The Raman effect for femtosecond pulses becomes the instantaneous electronic effect,
because the delayed response from the material response function is 10’s of ps and is thus
out of the frame of the pulse of concern [1].

The simulation already accounts for the instantaneous Raman effect by the approxi-
mation used in main paper reference 1. That is to reduce the nonlinear waveguide coeffi-
cient (by a factor 1 — 0.18).

The Raman effect can be totally neglected for SiN waveguides at a pulse wavelength
in the IR, for femtosecond pulses [2], however, we stick with the approximation given in
reference 1 for this case as well.

We recently found that for the fiber case, a better estimate based on experimentation
is given as a reduction in the nonlinear coefficient by subtracting 0.8E —3 (W™ 'm™),
found in [3]; thus, the nonlinear waveguide coefficient becomes 4.4 E —3 (W™ 'm™?) in-
stead of 5.2 E — 3 (W 'm™). We put this new parameter in our simulator to see if the
results change.

In addition, we included self-steepening, following the procedure outlined in the
main text [1]. Here the coefficient for self-steepening is given as 0.05E —3 (W™ 'm™)
(with the normalized time coordinate used in the simulation) for the fiber case is approx.
a factor of 100 less than the SPM coefficient in the fiber and integrated SiN waveguide
case.

To prove that the above effects are negligible, we numerically show the results of the
final normalized power profile versus normalized pulse time (normalized to 72 fs) in the
frame of reference of the pulse at the exit of the fiber with inclusion of both the new Raman
correction and self-steepening (red curve) compared to the old value without these cor-
rections, shown in Fig. 1a. As can be seen, the two power profiles are virtually indistin-
guishable and the 1/e duration values differ only negligibly. The same parameters and
length were used as in the main paper for section 3.1.

The spectral energy density of the two cases (with the same color code as Fig. 1a)
versus normalized frequency (0 frequency corresponds to the freq. of the central wave-
length 1.55um) is given in Fig. 1b. Here too, the curves are negligibly distinguishable with
nearly the same 1/e bandwidth. The same parameters and length were used as in Fig. 1a
(and the main paper).
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Figure 1. a) Normalized power profile of the pulse exiting the ND fiber with and without new Raman gain efficiency
coefficient and self-steepening effect. b) Normalized spectral energy density of the pulse exiting the fiber with and without
mentioned effects. The same parameters and length were used as in the main paper.

This numerical example supports the conclusion that the self-steepening and Raman
terms can be turned off to focus on the SPM—dispersion interaction, without loss of gen-
erality.

2. Proof of Eq. 1
From the condition 7, = 7; and the phase function of the illustrative pulse at location

_ B2

z, in Fig. 2, given as ¢, = ?vz + %v3, it can be shown that,

3
M 4o (S1a)
dv dv

for the phase function for the pulse at location z + Az.

Therefore,
¥y = %v% %VS (S1b)
where,
V1
ﬁz: ~ v, .82
2
Bs = (:—:) Bs (main text Eq. 1)
ending the proof.

3. Derivation of Main Text Eq. 3 and Peak of 8, Explanation

The emergence of the peak of f3, is physically explained by two competing quantities,
i.e., the increasing difference between the actual pulse duration, 7, and the transform-lim-
ited duration, 1;;,, labeled as AT = 7 — 7, as a function of propagation, and the band-
width increase. With increasing AT, the spectral phase coefficient must increase to stretch
the pulse in time. However, the bandwidth increase reduces the spectral phase coefficient.
At the beginning AT increases much more rapidly than the bandwidth increase, but then
saturates as 7;;,, asymptotically approaches zero. Thus, after the peak in the spectral coef-
ficient, the increasing bandwidth reduces the coefficient.



To explain why f3, increases to a peak value, we relate pulse duration to the second-
order spectral phase coefficient. We consider that the pulse’s duration is affected predom-
inantly only by the overall second-order phase at this beginning region of propagation.
The second-order phase approximation is valid in this beginning region since second-or-
der dispersion dominates over higher-orders and the pulse remains Gaussian, so SPM
predominantly also adds second-order spectral phase as well (especially within the 1/e
bandwidth). Thus, by using the equation for second-order dispersive temporal propaga-
tion of a Gaussian pulse [22] the behavior seen in Fig. 3a is explained quite well. The rep-
resentative equation is given as,

r= |14 (4 &)me (S2)

2
Tiim

where 7}, = :—v is the transform-limited duration. Rearranging Eq. S2 for 8, then yields,

b = %l (=) - 1frn s3)

which maximizes when t;,,, = %, or in terms of bandwidth, when t ~ 4v2/Av , which oc-
curs when the peak of Figure 4, curve a, is reached. For further pulse propagation past the
peak of the second-order spectral phase coefficient, T is always greater than 4v2/Av, since
T and Av continually increase with propagation.

While main text equation 3 is also the limit of Eq. S3 for propagation past the peak of
B2, we derive main text equation 3 under the influence of the full higher order dispersion,

now present as the propagation distance has increased. When, T > 4v/2/Av, the approxi-

mation can be made that,
B o 2 d"e
Av Z n—1!dv?
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Rearranging for f8,, we arrive at:

T i 1 de
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Equation S5 is always greater than zero, therefore, at most 3, scales as

T(Az)
B2 (Az) x oo

4. Derivation of Main Text Equation 4

By rearranging Eq. 54, for f3, it is seen that 55 scales at most with the bandwidth like,
1(Az))
B 0] o g s
An adjustment to the proof shown in Eq. 54 -55 in the Supplementary Materials, must
be made for odd-order coefficients (e.g., 3rd order) because they follow the same sign as
the same-order waveguide GVD coefficient and could be negative (e.g., the numerical ex-

ample of Fig. 2 main text). This means that the summation term of Eq. 54 is not smaller
7(Az)
Av(Az)n—1"

where 1,,(Az) = |1, Je — |t /e| | and 74, Je are the time values of

than . However, for odd-orders, it can still be proven that, at most, |5,(Az)| «

. _n(82)
First, |,8n(AZ)| x Av(Az)n—V

the 1/e values. However,

T1je — [To1/e| | £ T =T1e + |T-1/¢|- Therefore, odd-coefficients
17(Az)
Av(Az)n—1
For even-order coefficients, they are always positive because SPM generates bluer
frequencies on the trailing side of the pulse and redder frequencies on the leading side of

scale still in a maximal manner as |, (Az)| «



the pulse. Since the pulse is spreading in time due to the dominant ND f,, this enforces
that all even higher-order coefficients are positive.

Higher-order self-phase modulation, such as self-steepening only contributes to ad-
ditional bandwidth development and thus contributes to the reduction in the third-order
and higher order phase coefficients. The asymmetric temporal profile that develops be-
cause of self-steepening, will not impede the reduction in phase coefficients; instead, it
would contribute to a non-symmetric horizontal scaling of the spectral phase function. It
can be shown that this weighted horizontal scaling reduces the phase coefficients as
shown in the main text equations, but adds as well a small higher order phase contribution
(for example, 4t order) to the order being considered in the analysis. However, this con-
tribution then reduces over the propagation by the same processes as discussed in the
main text. Therefore, it is expected that overall, self-steepening accelerates the phase coef-
ficient reduction over propagation.

5. General Method for Obtaining any AD GVD

In this appendix we derive a general method for obtaining any needed AD GVD such
that the pulse obtains a transform-limited duration at the end of the segment. These results
are not only applicable to sign-alternating dispersion SCG waveguides but for general
nonlinear pulse compression schemes.

We proceed by splitting the AD segment into several sub-segments, for the goal of
compensating the spectral phase of the pulse coming out of the ND segment. The overall
GVD coefficient of these sub-segments is anomalous to compensate for the positive sec-
ond-order spectral phase coefficient of the pulse exiting the ND segment. The number of
such sub-segments, labeled as n, determines the order precision of spectral phase com-
pensation. For example, two sub-segments would compensate up to the third-order spec-
tral phase; three would compensate up to fourth-order and so forth. We show this AD
segment scheme in Fig. 52.

Next, for an optical pulse having traversed these sub-segments, perfect spectral phase
compensation up to order “n + 1” would be achieved if the segments satisfy:

n
- Z dz,kLk =P,
k=1

= dsuli = B3 (56)

n
k=1

n
- Z dn+1,kLk = Bn
k=1

where, d;  is the jth dispersion coefficient (taken about v,) of a sub-segment indexed by
the number k. L, is the length of the specific sub-segment.
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Figure 2. AD segments are split into sub-segments, where the sub-segment dispersion coefficients
satisfy (Al).

We represent Equation Al in the more convenient matrix form,

Ax =y (57)



Where, A is an n by k matrix formed with the d’s as elements, i.e., d; ; (rows labeled
by index j, columns by index k). x is a column vector of segment lengths, and y is the col-
umn vector of increasing the spectral phase derivatives of the pulse exiting the ND seg-
ment about v,. The physical constraint of the above system of equations is that the seg-
ment lengths must all be positive. We also note that normal dispersion segments could be
used, since the sign of higher-order dispersion coefficients are not constrained to a partic-
ular choice (ND or AD), and thus they can be used for these higher-order d; ; in the above
system of equations. A set of unique waveguide GVD’s to enable the solution of (A1) could
be found by varying the sub-segment geometrical cross-section (e.g., such as core radius
in fiber).
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