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Abstract: In this paper, ultrahigh-Q factor racetrack microring resonators (MRRs) are demonstrated
based on silica planar lightwave circuits (PLCs) platform. A loaded ultrahigh-Q factor Qload of
1.83 × 106 is obtained. The MRRs are packaged with fiber-to-fiber loss of ~5 dB. A notch depth of
3 dB and ~137 pm FSR are observed. These MRRs show great potential in optical communications as
filters. Moreover, the devices are suitable used in monolithic integration and hybrid integration with
other devices, especially in external cavity lasers (ECLs) to realize ultranarrow linewidths.

Keywords: optical devices; resonators; integrated optics; wavelength filtering devices

1. Introduction

With the development of ultrahigh-speed optical interconnection, coherent optical
communication [1–3], and coherent detection technology [4–7], more urgent requirements
are put forward for the narrow linewidth, high power, and high stability of laser source.
However, limited to the length of cavity, the spectral linewidth conventional distributed
feedback (DFB) lasers and distributed bragg reflector (DBR) lasers are typically in the order
of ~MHz, along with a small tuning range around a few nm [8,9]. Therefore, external
cavity lasers (ECLs) become the first choice to replace traditional lasers to supply narrow
linewidth of ~sub 100 kHz and wide tuning range. The ECLs based on blazed diffraction
gratings [4] are of wide tuning range and narrow linewidth, but suffer from huge size, com-
plex package, and difficult alignment, which increase the cost and harm the stability of the
lasers. On the other hand, hybrid integration between photonics chips and semiconductor
lasers provides an ideal method to fabricated ECLs. These hybrid integration ECLs have
been investigated based on different materials, such as III-V [3], silicon [10–12], silica [6],
SiN [13], and polymers [14–16]. Compared with other materials, silica planar lightwave
circuits (PLCs) are attractive for ECLs owing to its high mechanical strength, high thermal
stability, low loss, and almost the same core geometry with fiber cores, which is suitable for
an optical communication system. Besides, silica-based waveguides are widely used to fab-
ricate commercial applications, such as optical splitters [17], array waveguide grating [18],
and optical buffer [19]. Therefore, silica based ELCs are promising to realize large scale
integration for optical communication.

In particular, the microring resonators (MRRs) with compact sizes and ultrahigh-
Q factors show great potential in lasers [10–14,20], sensors [21–24], and filters [25–28].
Compared with basic MRRs, the racetrack MRRs using lateral coupling, increase the
coupling gap size and the fabrication tolerance. Here, in this paper, ultrahigh-Q factor
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racetrack MRRs are designed, fabricated, and experimentally demonstrated. The proposed
racetrack MRRs are built on silica PLCs platform. Owing to the ultralow loss of the
waveguide, ultrahigh Q factors of 1.83 × 106 are acquired. From measured transmission,
a notch depth of 3 dB and ~137 pm FSR is observed. The MRRs are packaged with
fiber-to-fiber loss of ~5 dB. These MRRs are suitable used in optical communications as
filters. Moreover, the devices are potential used in monolithic integration and hybrid
integration with other devices, especially used in external cavity lasers (ECLs) to realize
ultra-narrow linewidths.

2. Device Design and Simulation

The MRR proposed is fabricated on a silica-based PLC platform. The cross-section
of the silica waveguide is shown in the inset of Figure 1a. In order to realize compact
footprint, the refractive index difference between the core and cladding is 2% with different
doping. The refractive indices of the cladding and the core are 1.4448 and 1.4737(@1550 nm)
respectively. The single-mode condition is calculated by MATLAB based on the eigenvalue
equations [29], and the thickness of the core is selected to be 4 µm according to the
simulation results in Figure 1a. As Figure 1b shows, the mode profile of the fundamental
transverse electric (TE) mode is simulated through beam propagation method (BPM) and
the effective refractive index is 1.4615.
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Figure 1. (a) Relations between the core thickness and the effective refractive indices at 1550 nm.
The inset shows the cross-section of waveguide. (b) The mode profile of the waveguide simulated
through BPM method.

The structure of racetrack MRRs with directional couplers (DCs) is shown in Figure 2.
Using the coupled mode theory (CMT) and the transfer matrix technique (TMT) [30,31],
we derive the transmission power Pt1 in the output waveguide, which is,

Pt1 = |Et1|2 =
α2 + |t|2 − 2α|t| cos(θ)

1 + α2|t|2 − 2α|t| cos(θ)
(1)

where α is the loss coefficient of the ring, and t and κ are the coupler parameters with the
relation of

∣∣κ2
∣∣+ ∣∣t2

∣∣ = 1. The phase shift in the ring is,

θ = Lcirβ (2)

where Lcir is the circumference of the racetrack which is given by Lcir = 2πR + 2L, R being
the radius of the ring measured from the center of the ring to the center of the waveguide,
L being the coupling length. The propagation constant β is,

β =
2π

λ
· ne f f (3)

where λ is the wavelength, ne f f is the effective refractive index.
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Figure 2. Schematic of the racetrack micro-ring resonator.

Figure 3 shows the relations between transmission efficiency and bend radius. While
the bend radius is larger than 1460 µm, bend loss could be lower than 1 dB/cm. From the
resonance equation of MRRs, we can derive the expression of the ring radius R and the free
spectral range (FSR) as

R =
mλ0

2πne f f
, FSR =

λ0ne f f

mng
(4)

where m is the resonator order of the MRRs, λ0 is the central resonant wavelength, neff
is the effective refractive index, and ng = ne f f − λdne f f /dλ is the group refractive index.
According to Figure 4, with a decrease in R, FSR will increase dramatically. However, the
bend loss will also increase. Low bend loss means high Q factor, but small FSR will limit
the applications—for example, the port number of wavelength division multiplex (WDM)
systems and working range of sensors. Taking the balance between these parameters,
we select m to be 9519. In this case, from Equation (4) we can estimate the ring radius R
is 1600 µm, and FSR to be 161 pm. With such ring radius, the bend loss of 0.83 dB/cm
is calculated.
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Figure 4. Relations between the resonance order m and the ring radius R and the free spectral
range (FSR).

According to typical loss of silica-based waveguide we published [19], we choose the
loss of waveguide is 0.1 dB/cm to optimize the parameter of the racetrack MRR. The loss
is an average loss of curved and straight waveguides. Then the loss coefficient α (zero
loss α = 1) is 0.984 of the ring with 1600 µm radius and 800 µm coupler length. Based
on Equation (1), we calculate the coupling conditions of the MRR through MATLAB. As
Figure 5 shows, the calculate results indicated the deepest notch, which is the closest to
the critical coupling condition, is obtained while the coupling coefficient κ is 0.2. Then,
we choose the gap of DCs is 4 µm to realize the coupling ratio

∣∣κ2
∣∣ of about 4.4%. Finally,

the simulated transmission spectrum is obtained. As Figure 6a shows, ~141 pm FSR and
~18 dB depth is acquired. Figure 6b shows one peak around 1546.305 nm. The simulated
data shown by the blue hollow circles were fit using the theoretical Lorentzian transmission
in Origin (see the red solid curve). It can be seen that the full width at half maximum
(FWHM) of the resonance peak for the present resonator is about ∆λ = 0.656 pm, which
indicates that a simulated Q factor Qsim of 2.36 × 106 is obtained.
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3. Device Fabrication and Characterization

The designed MRR is fabricated by the PLC foundry, SHIJIA, China on a 6 inch silica-
on-silicon wafer. First of all, the bottom cladding silica layer of ~15 µm is thermally oxidized
on silicon substrate. Then, the core-layer is deposited by plasma-enhanced chemical vapor
deposition (PECVD). After, the core layer is annealed above 1100 °C to be compact. We
pattern the waveguides through UV lithography and fully etch the core layer by inductively
coupled plasma (ICP) dry etching process with a C4F8/SF6 gas mixture. Next, the top
cladding of ~15 µm is deposited by PECVD and annealed again. Figure 7a shows the
picture of the proposed MRRs coupled with fiber arrays (FAs). Figure 7b shows the cross
section of the core waveguide. However, the geometry of core is not exactly a square due
to the fabricating process, leading to transverse magnetic (TM) mode exists in waveguides.
The device is designed to be working under TE mode, as its notch depth is much larger
than that TM mode. We can distinguish different mode in the same spectrum easily.
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Figure 7. (a) Microring resonator (MRR) after package process. (b) The scanning electron microscope
(SEM) photo of the core waveguide cross section

To measure the fabricated optical structures, we use a swept-wavelength laser source
(New Focus TLB-6600) that is tunable from 1510 to 1590 nm. The output signal of the MRR
is detected by a photodetector (Thorlabs PDA10CS, 17 MHz bandwidth) associated with a
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data-acquisition card (DAQ, National Instruments USB-6366). The measured transmissions
were normalized with respect to the transmission from laser source to photodetector.
Owing to the present resonator having an ultra-high Q-factor, the step size of the tunable
laser source was set to be 0.03 pm. Figure 8a shows part of the transmission spectrum.
From this picture, the TE mode and the TM mode can be divided obviously. Besides,
FSR of ~137 pm is also observed, which is consistent with the theoretical analysis and the
simulation result. However, the notch depth of ~3 dB is much lower than simulation. The
reason might be the bend coupling increase the coupling coefficient. The MRRs are well
packaged with fiber-to-fiber loss of ~5 dB and can be used directly. As Figure 8b shows, the
measured data shown by the blue hollow circles were fit using the theoretical Lorentzian
transmission in Origin (see the red solid curve). It can be seen that the full width at half
maximum (FWHM) of the resonance peak for the present resonator is about ∆λ = 0.839 pm,
which indicates that a loaded ultrahigh-Q factor Qload of 1.83 × 106 is obtained. The Qload
is lower than Qsim owing the over-coupling situation.

1 
 

 
Figure 8. (a) Part of the measured transmission spectrum. (b) One peak of measured transmission spectrum with
Lorentzian fitting.

4. Discussion

Table 1 shows a comparison of the microring resonators reported in the recent years
that have a Q-factor higher than 105 based on different platforms. In order to increase the Q-
factor of MRRs, fabrication process and structures have been optimized. In Reference [32],
an intrinsic Q factors of 7.60 × 105 is acquired through etch-less fabrication processes with
thermal oxidation. However, the thermal oxidation process is not standard for silicon
photonics and unavailable for foundries. The same problem is met in Reference [33].
Optimized ICP and chemical mechanical polishing (CMP) are utilized to reduce sidewall
and surface roughness. Though 3.70 × 107 Q-factor is acquired, the method is intended
for SiN waveguides. On the other hand, bend couplers [34] and large radius [35] are used.
In Reference [34], the Euler bend couplers with the effective radius R of 29 µm achieve a
Q-factor as high as 1.30× 106 and 0.9 nm FSR. However, the design shows lack of tolerance.
As for [35], 6000 µm radius decrease the loss but also FSR to 0.017 nm, which limits
applications of the devices. Owing to the loss of polymer waveguides [21], it is hard to get
a Q-factor of >106. In Reference [20], a rolled-up microtubes (RUMs)/ silicon-on-insulator
(SOI) waveguide system with high-quality-factor of 1.5 × 105 is demonstrated. Once the
transfer process is simplified, the system will be used more widely in the field of optical
communications. The proposed silica-based racetrack MRRs are fabricated by the PLC
foundry on a 6 inch silica-on-silicon wafer toward commercial use. The fabrication process
insures ultralow loss waveguide. Hence, an ultrahigh Q-factor of 1.83 × 106 is acquired.
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Besides, the devices are suitable used in monolithic integration and hybrid integration with
other devices, especially used in ECLs to realize ultra-narrow linewidths.

Table 1. Comparison of Ultrahigh-Q Microring Resonators.

Ref. Platform R (µm) FSR (nm) Q-Factor

[32] silicon 50 N.A. 7.60 × 105

[34] silicon 29 0.900 1.30 × 106

[35] silicon 6000 0.017 1.70 × 106

[33] SiN 115 N.A. 3.70 × 107

[21] Polymer planar lightwave circuits (PLC) 60 2 8.00 × 105

[20] Microtube/SOI 3.5 3~33 1.5 × 105

This Work Silica
PLC 1600 0.137 1.83 × 106

5. Conclusions

In summary, we demonstrate ultrahigh-Q factor racetrack MRRs based on silica PLCs
platform. A loaded ultrahigh-Q factor Qload of 1.83× 106 is obtained. A notch depth of 3 dB
and ~137 pm FSR are observed. The measured spectrum is consistent with the theoretical
analysis and the simulation result. The MRRs are well packaged with fiber-to-fiber loss
of ~5 dB and can be used directly. The Q factor and depth of notches can be improved
by tuning to critical coupling situation through tunable MRRs structure. The FSR can
also be enlarged through cascade high-order MRRs. These MRRs show great potential in
optical communications as filters. Moreover, the devices are suitable used in monolithic
integration and hybrid integration with other devices.
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