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Abstract: The determination of optical constants (i.e., real and imaginary parts of the complex
refractive index (nc) and thickness (d)) of ultrathin films is often required in photonics. It may be
done by using, for example, surface plasmon resonance (SPR) spectroscopy combined with either
profilometry or atomic force microscopy (AFM). SPR yields the optical thickness (i.e., the product of nc

and d) of the film, while profilometry and AFM yield its thickness, thereby allowing for the separate
determination of nc and d. In this paper, we use SPR and profilometry to determine the complex
refractive index of very thin (i.e., 58 nm) films of dye-doped polymers at different dye/polymer
concentrations (a feature which constitutes the originality of this work), and we compare the SPR
results with those obtained by using spectroscopic ellipsometry measurements performed on the
same samples. To determine the optical properties of our film samples by ellipsometry, we used, for
the theoretical fits to experimental data, Bruggeman’s effective medium model for the dye/polymer,
assumed as a composite material, and the Lorentz model for dye absorption. We found an excellent
agreement between the results obtained by SPR and ellipsometry, confirming that SPR is appropriate
for measuring the optical properties of very thin coatings at a single light frequency, given that it is
simpler in operation and data analysis than spectroscopic ellipsometry.

Keywords: optical properties of ultra-thin dielectric films; surface plasmon spectroscopy; spectro-
scopic ellipsometry

1. Introduction

Surface plasmons (SPs) are electromagnetic waves that are bound to metal/dielectric
interfaces and are capable, among other things, of yielding the optical properties of very
thin films (i.e., down to few angstroms) deposited on metal layers [1–3]. Optical characteri-
zation (i.e., determination of the complex refractive index (nc) and thickness (d)) of thin
films is required inasmuch as these films find applications in optoelectronics and photonics.
Azo-dye-containing polymers are no exception in this regard. Besides SPs, other techniques
can be applied to thin films, such as spectroscopic ellipsometry (SE) and photothermal
deflection (PTD) spectroscopy. The latter can be applied to dye-doped polymers to measure
optical absorption, requiring optical modeling such as Kramer–Kronig to get the refrac-
tive response. Unlike PTD, surface plasmon resonance (SPR) spectroscopy yields a direct
measurement of the complex refractive index (i.e., n and κ) without the need for data
transformation. PTD may be useful, however, where there is a necessity to differentiate
between scattering and absorption losses [4,5]. In this paper, we report on the optical char-
acterization of very thin films (thickness: ∼58 nm) of guest–host azo-dye-doped polymers
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at different dye/polymer concentrations. We use SP resonance (SPR) spectroscopy and
spectroscopic ellipsometry (SE) to independently measure nc and d of our samples by both
techniques. The experimental SPR spectra are theoretically compared to Fresnel’s reflec-
tivity calculations of the layers system used in our study, and SE results are rationalized
by the Lorentz equation for the resonance characteristics (i.e., the absorption of the azo
dye, the host polymer being transparent in the frequency range studied, and Bruggeman’s
effective medium approximation for the dye polymer system, which is considered as a
composite material).

SPs and localized surface plasmons (LSPs) were reported long ago [6,7], and their
use is of the utmost importance in, for example, the field of bio-sensing [8–10], enhanced
spectroscopies [11], dye-sensitized solar cells [12], and photocatalysis [13]. Important
reviews summarize the developments in the field [9,14–19]. The research discussed in
this paper is part of a series of works published by our group in the field of plasmonics,
combining metals and dielectric organic materials. This includes work on surface-enhanced
visible absorption of dye molecules by LSPs at gold nanoparticles [11], optical characteri-
zation of nano-thin layers of dielectric and metals [1,2,20–22], sensing of photoreactions
in molecularly thin layers, plasmons coupling at metal-insulator-metal (MIM) structures,
glucose sensing using such structures [23–25], plasmons and waveguides (WGs), WG–WG
coupling generating Fano resonances (FR), external control of FR by light action, and so on
(for examples, see [26,27]).

Azo-dye-containing materials have been studied extensively in past decades for appli-
cations in holography and optical data storage [28,29], nonlinear optics (NLO), electro-optic
modulation (EO), second-harmonic generation (SHG) [30–33], photomechanical actuation
and matter motion, and so on [34–40]. Azo dyes also have potential applications in dye
chemistry and bio-photonics [41,42], driving a natural interest in their optical character-
ization, namely the determination of the real and imaginary parts of nc as a function of
the wavelength of light. For example, Prêtre et al. developed a method for calculating
the real and imaginary parts of nc and the first order molecular hyperpolarizability of
NLO azo-polymers for SHG based on UV–vis absorption spectroscopy and SE [43], and
Bodarenko et al. determined nc for an azo-dye-doped polymer by SE, driven by the
need for application of EO polymers in silicon-hybrid-organic photonics [44]. Several
other researchers determined the optical properties of azo-dye-containing materials by
SE [43,45,46]. The investigation of the optical properties of the DR1/PMMA nanocompos-
ite material, which is considered as a mixture of two constituents (i.e., DR1 and PMMA),
requires the use of a mixing law describing this material as an effective medium. Maxwell–
Garnett (MG) and Bruggeman (BR) theories are usually employed to model the observa-
tions for composite materials [47,48]. It is not the purpose of this paper to discuss the
detailed differences between these two theories, and we are only stating their usefulness
in describing dye-doped polymer systems. For the DR1/PMMA material studied in this
paper, we found that BR’s theory better fits our observations compared to MG. Other
authors compared the usefulness of the two theories to model the same type of materials
and found that BR is more appropriate than MG for modeling azo-dye-doped PMMA [45],
and that BR theory is appropriate for modeling NLO guest–host systems [46,49].

In this paper, we determine the real and imaginary parts of nc for Disperse Red One
(DR1), an azo dye that is well known for its photoisomerization and NLO properties [50],
incorporated into a poly-methyl-methacrylate (PMMA) matrix at different dye/polymer
concentrations by using SPR and SE, and we show that there is an excellent agreement
between SPR and SE in the determination of the real and imaginary parts of nc for quite thin
(i.e., 58 nm) DR1/PMMA films. For this range of thicknesses of the DR1/PMMA dielectric
layer, only SP is observed (vide infra), and waveguides occur for thicker films [51].

2. Materials and Methods

For UV–Visible absorption, SPR, and SE measurements, we prepared DR1/ PMMA
thin films in the following manner. Commercially available DR1 and PMMA (product
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reference 182230), with an average molecular weight of Mw ~120,000 and a glass transition
temperature Tg of 110 ◦C, were purchased from Sigma-Aldrich, and were used without
purification. The statistical segment length of the PMMA (density: ~1.188 g·cm−3) used
in our study is not available to us, however the statistical segment length of PMMA of a
density of 1.13 g·cm−3 is 6.5 Å [52]. A set of mixture solutions of DR1 and PMMA with
different concentrations was prepared. First, we dissolved PMMA in chloroform with
0.83 weight percent (% w/w) concentration, and we stirred the solution for 12 h with
a magnetic stirrer. Then we added the DR1 powder into the PMMA solution with 8%,
10%, and 12% w/w relative to PMMA. The DR1/PMMA solutions were also stirred for
12 h. The prepared solutions were then spin-coated onto cleaned glass substrates with
appropriate speed to achieve the desired film thickness. Spin coating was performed with
5500 rpm to obtain thin films with thicknesses of ∼58 nm. Finally, the films were dried
at 80 ◦C for 30 min, followed by 115 ◦C for 1 min to remove the solvent remaining after
spin-coating. We measured the film’s thickness, d, by a profilometer (Bruker), at four
different positions for each sample, and we found that our samples were homogeneous
with d = 58 nm± 4 nm.

3. Results and Discussion
3.1. UV-Visible Spectroscopy

The absorption spectra of the film samples were measured by using a UV–visible
spectrophotometer (Perkin Elmer-Lambda 1050). Figure 1a shows the absorption spectra
of our film samples (e.g., of DR1/PMMA thin films) with different weight concentrations
of DR1 versus PMMA C (% w/w), and the same thickness (i.e., ∼58 nm). For all the films
prepared, the maximum absorption is observed at 488 nm and is assigned to the π→ π*
transition of trans-DR1, as is well known from the literature [50].
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Figure 1. (a) Absorption spectra of DR1/PMMA thin films with different weight concentrations of DR1 versus PMMA
C (% w/w). The inset shows a linear evolution of the maximum of absorption, at λDR1

max = 488 nm of the film, with its
concentration, for a fixed film thickness d ∼58 nm; and the absorbance extrapolate to the origin. The solid curves are the

experimental data, and the close circles’ curve is a Lorentzian theoretical fit y = y0 + (2A/π)(w/
(

4(x− xc)
2 + w2

)
, while

the open circles’ curve is Gaussian theoretical fit y = y0 + Ae− ln (2) (x−xc)
2/w2

/w
√

π/4ln(2), where y0 is the baseline. (b)
The values of the characteristic parameters of the Lorentzian and Gaussian are given in the table. The Lorentzian function
does not fit the data as well as the Gaussian function at the infrared tail ∼700 nm.

The inset to Figure 1a shows that the maximum absorption increases linearly with
the increased concentration C (% w/w) of the dye according to Abs (OD) = εt·d·C (i.e.,
the Lambert-Beer law), where εt is the molecular extinction coefficient of trans-DR1, d the
thickness of the DR1/PMMA film, and C the concentration of DR1. Aggregation may occur
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when dye concentration exceeds 12% in weight [53,54]; however, in our case, we did not
observe aggregation of DR1 at 12% w/w, since the shape of the absorption spectrum of
the 12% sample is the same as those at lower concentrations, and the linear increase of the
absorbance with the concentrations extrapolates to the origin (see inset to Figure 1a). This
indicates that the chromophores can be considered as isolated for all concentrations studied.

Lorentz and Gaussian functions curve fitting are applied to the UV–visible spectra
of the DR1/PMMA films by using the equations shown in the caption to Figure 1a for
each function. Where xc, is the center of the peak, w is the width of the peak at half height,
and H is the amplitude (in OD units) defined by H = 2A/wπ for the Lorentzian and by
H = A/w

√
π/4 ln(2) for the Gaussian (where A is the area under the absorption band).

These parameters (i.e., xc, w, and H) are the most representative of each spectrum in Lorentz
and Gaussian fitting. Each of the DR1/PMMA spectrums has unique Lorentz parameters
as shown in Figure 1b. For all concentrations, we found that xc is located at ∼488 nm
(corresponding to central energy of ∼2.54 eV). H has different values corresponding to
the optical densities of the different concentrations of DR1. Figure 1a shows that the
Gaussian function fits the absorption spectra nicely as well and yields nearly the same
theoretical spectra as those obtained by the Lorentzian fit, except at the tail ∼700 nm,
where the Gaussian better fits the experimental data than the Lorentzian. The characteristic
parameters of both functions, summarized in the table in Figure 1b, are close enough.
We extracted the extinction coefficient of our sample using both sets of parameters, and
we found nearly the same values of the extinction coefficients of the samples at the three
concentrations studied. Indeed, using κ = (λ α/4π) for the extinction coefficient of the
sample, with α = 2.303H/d being the optical density of the sample in units of [43], we
found the values of 0.0925 (0.088), 0.1094 (0.1033), and 0.1279 (0.1202) at 488 nm, and
0.0065 (0.0069), 0.0108 (0.0093), and 0.0115 (0.0105) at 632.8 nm, for κ for the 8%, 10%, and
12% samples, respectively. The values between parentheses are those corresponding to the
Gaussian function. The values of κ found by UV–vis spectroscopy are nearly the same as
those we found by SPR spectroscopy and SE (vide infra).

3.2. SPR Spectroscopy

We will briefly recall the principle of SPR spectroscopy, and how it is used to calculate
the optical properties of very thin coatings (up to a few tens of nanometers). Then, we
will discuss our experimental results of SPR observations in films of the same thickness
and different dye concentrations. SPs are electromagnetic waves that are bound to and
propagate along the interface between metal and dielectric. They penetrate to different
extents into the metal and the dielectric, with penetration depths given by their field
amplitudes decaying exponentially perpendicular to the interface [1,55–57]. The dispersion
relation of SPs is given by:

kSP =
ω

c

√
εm(ω).εd(ω)

εm(ω) + εd(ω)
(1)

where k0
SP is the longitudinal component of the SP wave vector and is proportional to

the wave frequency ω, and c is the speed of light in vacuum. εd(ω) and εm(ω) are the
complex dielectric constants of the dielectric and the metal, respectively, and they are
light-frequency-dependent. A free wave of wave-vector k and frequency ω propagating in
the dielectric, at an incidence angle θ, is characterized by:

k0
photon =

ω

c

√
εd(ω) sin θ (2)

Equations (1) and (2) indicate that a free wave, characterized by a line (i.e., the light
line on Figure 2a), cannot couple to an SP wave unless its k vector is augmented, by, for
example, adding a prism, or a grating that brings the additional longitudinal k vector
required for coupling [1]. When coupling takes place, a resonance phenomenon is observed
in the attenuated total reflection (ATR) spectrum, as can be seen from, for example, an
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angular scan (Figure 2b). In such a scan, θc is a critical angle at which light incident on
the prism/metal is totally reflected from the base of the prism, a phenomenon referred to
as total internal reflection (TIR). Below θc, the metal film acts as a mirror, and reflectivity
is still high with little transmission, while above θc, TIR takes place, and ATR occurs
via coupling to a resonance (i.e., SPR). A dip occurs in the reflectivity curve at θ0. The
coupling angle (i.e., θ0) is given by the energy and momentum matching condition between
surface plasmons and photons. When a dielectric coating is applied to the metal layer, the
resonance condition changes and θ0 shifts to larger angles θ1 (Figure 3a). From this shift
and Fresnel’s calculations, one can calculate the optical thickness of the coating. This is
what is discussed next for our DR1/PMMA thin films.
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Figure 2. (a) Dispersion relation of SPs (i.e., ω vs. kSP (e.g., Equation (1)), referring to the SP at an
Ag-air interface (SP0), and when a thin dielectric coating (DC) is deposited on the Ag layer (SP1).
The light line is also indicated in this figure. A light frequency ωL crosses the dispersion curves
at k0

SP and k1
SP, and it determines the coupling angle θ0 and θ1, for k0

SP and k1
SP, respectively. The

thin DC shifts the SP dispersion curve to higher coupling (k1
SP = k0

SP + ∆kSP, i.e., resonance, angle,
and momentum). (b) Experimentally observed SPR at a prism/Ag (thickness~56 nm) system with
a 638 nm laser light. The scatters are experimental data points, and the solid curve is a Fresnel’s
theoretical fit.

As schematically depicted in Figure 3a, the bilayer stack used for our SPR measure-
ments consisted of an Ag layer (thickness: ~56 nm) coated with a 58-nm thin layer of
DR1/PMMA. The stack was deposited onto cleaned BK7 glass slides (15 × 22 mm with a
refractive index of 1.5151 at λ = 632.8 nm [58]), which were put in contact with a 90◦ BK7
glass prism by an index-matching oil. The DR1/PMMA dielectric layer was deposited
on Ag by the spin-coating process. To measure the angle-scan ATR spectra (i.e., SPR in
Kretschmann configuration), we used a custom-made optical setup, which is described
in detail in [59]. To do so, the sample/prism system was mounted on a (θ, 2θ) rotating
stage, where θ is the internal angle of incidence (see Figure 3a). The sample/prism system
was illuminated by P-polarized (e.g., transverse magnetic (TM)-polarized) light from a
Helium–Neon (He–Ne) laser operating at the wavelength of 632.8 nm, with few µW of
power to avoid absorption by the sample, even though at this wavelength the sample
presents negligible absorption. The reflected light was measured by using a Si photodiode
connected to a lock-in-amplifier as a function of θ. The precision of the measurement
of θ was 0.018◦. The error that this precision can cause on reflectivity measurements is
∆R = 7× 10−3.

Figure 3a shows the experimental and the theoretical fit ATR angular spectra for an Ag
layer (∼56 nm) without and with DR1/PMMA (~58 nm) at different weight concentrations
C (8%, 10%, and 12% w/w). Electromagnetic (EM) calculations of the reflectivity of light at
multilayer structures based on Fresnel reflection were performed using a freely available
software package (Winspall) to reproduce experimental ATR spectra. We used a value of
the refractive index at the wavelength λ = 632.8 nm, for BK7 prism of ng = 1.5151 from
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a database [58], and we extracted the refractive index and the thicknesses of Ag, which
led to the theoretical spectrum that fits the experimental one well. Theoretical fits to the
experimental data yielded the values nAg = 0.0679 + i4.087 of the refractive index and the
thicknesses (i.e., 56 nm) of the Ag layer. The refractive index of silver determined in our
work (0.0679 + i4.087) is close to that found in the literature (0.0562 + i4.276) [58,60]. The
thickness of the Ag layer obtained from the theoretical SPR curves was identical to that
measured by profilometry.
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Figure 3. Angle-scan ATR spectra in a Kretschmann configuration for a single Ag layer (56 nm)
at a wavelength of 632.8 nm. (a) Experimental (dots) and theoretical (solid curve) ATR spectra of
an Ag layer sample without and with DR1/PMMA thin films (d ~ 58 nm) at 8%, 10%, and 12%
w/w as indicated on the figure. (b) Dependence of SPR angle and full width at half maximum
(FWHM) versus DR1 concentration in PMMA. (c) Refractive index (real, n, and imaginary, κ, parts)
of DR1/PMMA versus DR1 concentration. Note the linear dependence of n and κ of DR1/PMMA
on the DR1 concentration. The scatters are experimental data adapted from the SPR curves at the
corresponding concentrations, and the full lines are guides to the eye.

In Figure 3a, we see that the ATR scan at the prism/Ag system exhibits a sharp
dip at 42.96◦, due to the excitation of SP at the Ag/Air interface. The full width at half
maximum (FWHM) of this dip was about 0.34◦. After adding the outermost layer of 58 nm
of DR1/PMMA, the resonance shifts towards higher incidence angles: 56.59◦, 58.13◦, and
59.66◦ for the DR1 concentration of 8%, 10%, and 12% w/w, respectively (Figure 3b). This
figure also shows that the FWHM of the mode increases linearly with the dye concentration
owing to the increase of losses (i.e., linear increase of κ with the DR1 concentration). Indeed,
by fitting the experimental data of SPR observed with DR1/PMMA, we extracted the optical
properties (n and κ) of the outermost layer (i.e., DR1/PMMA) for different concentrations
of DR1 (Figure 3c). We found a linear relationship between the dye concentration and the
mode shift, as well as the refractive index (n and κ) of the material. This result confirms the
fact that both the refractive index and the extinction coefficient of material are proportional
to the molecules concentration in agreement with the UV–vis data of the previous section
(see also [61]). Next, we discuss the determination of nc = n + iκ, i.e., n and κ, by SE.

3.3. Spectroscopic Ellipsometry

Ellipsometry data were acquired using a commercially available variable angle SE
system (VASETM, J.A. Woollam). The principle of operation of SE is schematically depicted
in Figure 4. A light beam is first polarized by passing through a polarizer, and is then
reflected from the sample surface at an angle of incidence ϕ. After reflection, light passes
through a second polarizer, which is called an analyzer, and it falls onto the detector. Our
sample consists of a thin film of DR1/PMMA (vide infra) deposited on the top of an ITO
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glass (∼147 nm). All measurements were performed in air at room temperature for three
angles of incidence (60◦, 70◦, and 80◦) and in the wavelength range 400–1000 nm. The data
analysis was made using Complete EASE software (version 5.04). The SE method is based
on Fresnel reflection coefficients measurement [62], which is given by:

ρ =
rp

rs
= tan(ψ)ei∆ (3)

where rp and rs are the complex Fresnel reflection coefficients for parallel (P-) and per-
pendicular (S-) polarized (i.e., transverse electric (TE)) light to the plane of incidence,
respectively, and delta (∆) and psi (Ψ) are the ellipsometry angles [62,63]. We determined
the optical properties, n and κ, of DR1/PMMA at different dye concentrations, as functions
of the wavelength, by fitting the ∆ and Ψ using the SE software (Figure 4). The most
appropriate way of simulating the dielectric functions of the DR1/PMMA thin films is to
treat the films as a mixture of two constituents. Generally, Bruggeman effective medium ap-
proximation (B-EMA) is frequently used to calculate the dielectric function of the composite
layer based on the volume ratios (f ) and the dielectric functions of each constituent [62–64].
The complex dielectric constant of DR1/ PMMA was fitted using B-EMA, given by:

f DR1
v

ε̃DR1 − ε̃

ε̃DR1 + 2ε̃
+ f PMMA

v
ε̃PMMA − ε̃

ε̃PMMA + 2ε̃
= 0 (4)

where ε̃ = ε′ + iε′′ is the effective complex dielectric function of the mixture, with
ε′ = n2 − κ2 and ε′′ = 2nκ, and ε̃DR1 and ε̃PMMA are the complex dielectric functions
of DR1 and PMMA, respectively. f DR1

v and f PMMA
v are the volume fractions of DR1 and

PMMA with ( f DR1
v + f PMMA

v = 1). The values of volume fractions can be calculated by
using Equation (5).

f DR1
v =

f DR1
w

f DR1
w + (1− f DR1

w ). ρDR1
ρPMMA

(5)

where f DR1
w is the weight fraction of DR1, and ρDR1 = 1.1523 g·cm−3 and ρPMMA =

1.1880 g·cm−3 are the densities of DR1 and PMMA, respectively. We determined the
optical properties of the DR1/PMMA mixture as follows: for the PMMA constituent, we
used the dielectric functions parameterized in the database of the software, and for the
DR1 constituent (i.e., an absorbing compound), we used the Lorentz model describing
absorption. The Lorentz parameters are obtained by fitting the experimental data of ∆ and
Ψ of the DR1/PMMA mixture for each concentration, allowing us to extract n and κ of DR1
and the DR1/PMMA composite.
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Figure 4. (a) Schematic of light reflection on a layered stack (i.e., polymer film on top of an ITO layer),
which we used in our SE experiments. The experimental data, measured at three different angles
(i.e., 60◦, 70◦, and 80◦ incidence angles) are (b) delta (∆) angle and (c) psi (ψ). Experiments were
performed on DR1/PMMA thin films (thickness ~ 58 nm) at 8%, 10%, and 12% w/w concentrations
(only the data of 8% w/w are shown). Dotted curves are experimental data and the theoretical fits are
represented by full curves. See text for more details.
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It is well known that Lorentz oscillators are primarily useful for describing resonant
absorption peaks due to doping of a transparent dielectric material with an absorbing
dye [63]. DR1 is one of such dyes, and it absorbs light in the UV–visible range. It has an
absorption peak centered at 488 nm. When DR1 is introduced as a guest into a PMMA
matrix, the absorption of the DR1 can still be described by the Lorentz formula, which
gives the dimensionless complex dielectric function of DR1 as a function of the photon
energy E (Equation (6)).

ε(E) = ε′ + iε′′ = ε′(∞) +
N

∑
k=1

Ak

E2
k − E2 − iBkE

(6)

where ε′ and ε′′ are the real and imaginary parts of the complex dielectric function of DR1,
ε′(∞) is its real dielectric function at infinite energy (offset term), and N is the number of
oscillators. Each oscillator is described by three parameters: Aκ is the amplitude of the kth
oscillator in units of (eV)2, Bκ is the broadening of the kth oscillator in units of eV, and Eκ is
the center energy of the kth oscillator [45]. For DR1, a single oscillator centered at 2.5 eV
yields the best fit value, corresponding to 495 nm. This value is close to (i.e., shifted by 7 nm)
the experimentally observed wavelength (i.e., 488 nm), corresponding to the maximum
absorption of DR1 in the visible region of the spectrum (Figure 1a). SE data allows for
the determination of n and κ of all constituents of a composite material, in our case DR1
and PMMA, as well as their composition, and we could extract n and κ of neat DR1. To
do so, we used both the model of Brugemann for the composite material and the Lorentz
model to account for the absorption of DR1 in the composite (vide infra). Data for PMMA
is available from the literature and from the Complete EASE software. We did not measure
neat PMMA independently, but the theoretical dispersion curve of PMMA extracted from
the database. (i.e., from EASE software) and used in our Bruggeman effective medium
match well with that of the literature [44]. Indeed, the refractive index of PMMA extracted
from the EASE software at 632.8 nm is nPMMA

632.8 nm = 1.4888, and is close enough to the value
of nPMMA

632.8 nm = 1.4889 that we found in our previous works using plasmonic structures [59].
The fit parameters of DR1 corresponding to Equation (6) (i.e., ε′(∞), A1, E1, B1) are shown
on the table as an inset to Figure 5a. These fitting parameters allow for the determination
of the dispersion curve of n and κ as a function of the wavelength using the data of ∆ and
Ψ. We found the same values of the parameters of the table in the inset of Figure 5a for all
3 concentrations (i.e., 8%, 10%, and 12% of w/w) of DR1 compared to PMMA. These values
yielded the best theoretical fits of the experimental data.

Figure 5 shows the dispersive curves of optical constants (n and κ) of neat DR1
(Figure 5a) and DR1/PMMA composite at different concentrations (Figure 5b–d) as ob-
tained from SE experiments. Figure 5a shows that for neat DR1, the value of κ at the
wavelength of maximum extinction (i.e., 495 nm) is 1.066. This is in good agreement with
the value of κ (i.e., 1.077) which we extracted from [43] using the data of this reference.

The extinction coefficient κ, which is related to the absorption coefficient α by κ =
(λα/4π), is calculated to be 1.077 using λ = 478 nm and H/d = 123× 103cm−1, with
H/d calculated in [43], using 478 nm corresponding to the maximum absorption of DR1
measured in chloroform. Comparing n and κ of DR1/PMMA in Figure 5b–d with those
for neat DR1 in Figure 5a, we see that the values of n and κ of DR1/PMMA are lower
than those of neat DR1, and that n and κ increase with the increased concentration of
DR1 in the DR1/PMMA composite. The molecular polarizability of DR1 is larger than
that of PMMA. For both SPR and ellipsometry, the measurements at each concentration
were repeated three times and the value of n and κ was calculated as the average of the
three measurements for each sample. Table 1 summarizes the results of n and κ of all the
samples measured with UV–vis spectroscopy, SE, and SPR, together with data from the
literature [43,44]. A good agreement between the data from our paper and the literature is
obtained, and interestingly enough, n and κ obtained from SE measurements are reasonably
close to those obtained by SPR spectroscopy.
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Table 1. Optical Constants of neat DR1 and thin films of DR1/PMMA at 488 nm and 632.8 nm. The precision of the
measured data by spectroscopic ellipsometry and SPR is 2× 10−3 and 4× 10−4 for n, and 4× 10−3 and 1× 10−4 for κ,
respectively.

DR1/PMMA
Concentration

Literature SPR a Ellipsometry a UV-Vis a

632.8 nm 632.8 nm 488 nm 632.8 nm 488 nm 632.8 nm

n κ n κ n κ n κ κ κ

Neat DR1 2.0536 b - - - 1.835 1.058 2.136 0.126 - -
8% w/w - - 1.5401 0.0075 1.534 0.082 1.537 0.008 0.0925 0.0065
10% w/w 1.5450 c 0.008 c 1.5540 0.0101 1.545 0.098 1.550 0.011 0.1094 0.0108
12% w/w - - 1.5650 0.0120 1.553 0.120 1.561 0.012 0.1279 0.0115

a This paper; b From [43]; c From [44].

4. Conclusions

The optical properties, n and κ, of azo-dye-contacting materials are often researched
for photonics applications, especially for NLO including EO modulation and SHG. In this
paper, we determined n and κ of DR1-doped PMMA for different dye concentrations, a
feature which is useful for researchers working in the fields of, for example, NLO and
plasmonics. We also demonstrate the potential of SPR spectroscopy in determining such
properties for ultrathin films of the NLO dye-doped polymer studied, especially that SPR
mode shifts were observed at different concentrations of DR1. Both the determination of n
and κ and the observed SPR modes shifts for different dye concentrations constitute the
originality of this work. We also used UV–vis spectroscopy and SE with Lorentz theory
and Bruggeman effective medium approximation to determine n and κ of the films studied.
The results obtained by SPR measurements are in good agreement with those obtained by
UV–vis and ellipsometric spectroscopies.
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