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Abstract: In optical transmitters generating multi-level constellations, optical modulators are pre-
ceded by Electronic Digital-to-Analog-Converters (eDAC). It is advantageous to use eDAC-free
Optical Analog to Digital Converters (oDAC) to directly convert digital bitstreams into multi-
level PAM/QAM optical signals. State-of-the-art oDACs are based on Segmented Mach-Zehnder-
Modulators (SEMZM) using multiple modulation segments strung along the MZM waveguides
to serially accumulate binary-modulated optical phases. Here we aim to assess performance lim-
its of the Serial oDACs (SEMZM) and introduce an alternative improved Multi-Parallel oDAC
(MPoDAC) architecture, in particular based on arraying multiple binary-driven MZMs in parallel:
Multi-parallel MZM (MPMZM) oDAC. We develop generic methodologies of oDAC specification
and optimization encompassing both SEMZM and MPMZM options in Direct-Detection (DD) and
Coherent-Detection (COH) implementations. We quantify and compare intrinsic performance limits
of the various serial/parallel DD/COH subclasses for general constellation orders, comparing with
the scant prior-work on the multi-parallel option. A key finding: COH-MPMZM is the only class
synthesizing ‘perfect’ (equi-spaced max-full-scale) constellations while maximizing energy-efficiency-
SEMZM/MPMZM for DD are less accurate when maximal energy-efficiency is required. In particular,
we introduce multiple variants of PAM4|8 DD and QAM16|64 COH MPMZMs, working out their
accuracy vs. energy-efficiency-and-complexity tradeoffs, establishing their format-reconfigurability
(format-flexible switching of constellation order and/or DD/COH).

Keywords: optical modulation; optical DAC; Segmented MZM; Multi-Parallel MZM

1. Introduction

Electronic Digital to Analog Converters (DAC), abbreviated eDAC, are key interfaces
from the digital to the analog domain. In high-speed digital optical transmitters, the Digital
to Optical (D/O) translation typically comprises power consuming and costly eDAC-based
data conversion, followed by analogue optical modulation. In a conventional optical link,
eDACs are used to drive multilevel analog signals into the optical modulators. However, it
would be advantageous, from the viewpoints of performance, energy efficiency, complexity
and cost reduction, to adopt direct Digital to Optical domain (D/O), conversion, eliminating
the eDAC intermediaries. This would be particularly useful in future generations along
the roadmap of ultra-high-speed photonic interconnects, as eDAC technology is ever more
expensive and is becoming increasingly difficult to keep scaling up in datarate, while
keeping power dissipation in check and retaining ENOB performance.

It appears that non-incremental improvements in oDAC are pending radical concep-
tual advances in the underlying all-optical D/A architectures. To alleviate the tough trade-
offs curtailing the evolution of photonic networks, as well as enable reconfigurable photonic
interconnects, it would be highly valuable to open up innovative venues for improved
tradeoffs, unlocking novel capabilities of agile-switchable format-flexible Optical-DAC
(oDAC) based direct D/O conversion.

Photonics 2021, 8, 38. https://doi.org/10.3390/photonics8020038 https://www.mdpi.com/journal/photonics

https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://doi.org/10.3390/photonics8020038
https://doi.org/10.3390/photonics8020038
https://doi.org/10.3390/photonics8020038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/photonics8020038
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/2304-6732/8/2/38?type=check_update&version=3


Photonics 2021, 8, 38 2 of 48

An oDAC is essentially an optical multilevel constellation generator (e.g., a source of
optical PAM4 or PAM8 in one-dimension (1D) or optical QAM constellations in 2D). But
unlike conventional eDAC + modulator optical transmitter structures, oDACs should be
driven right from the digital input bitstream (preferably generated by state-of-the-art CMOS
at low voltage swings), without internally resorting to intermediary electrical multilevel
signals, thus, eliminating the problematic ultra-high-speed eDACs. Multiple analog two-
level electrical signals, as generated by an array of 1-bit electrical drivers (each driven by
a bit of the input codeword) are an integral part of oDAC constitution, as each of these
analog two-level signals drives an elementary 1-bit modulation-gate. The optical outputs
of the array of 1-bit gates are superposed in a suitable optical field characteristic (phase or
amplitude), akin to addition of currents or voltages from elementary electrical sources in
an eDAC. In oDACs, the analog summation of elementary sources occurs in the optical
domain. This fundamental concept will be clarified once we review and advance beyond
state-of-the-art oDAC implementations. Existing and newly-introduced oDACs may be
broadly classified as either ‘serial’ or ‘multi-parallel’ (MP), these terms referring to the
interconnection topology of the 1-bit elementary modulation gates internal to the oDAC.

The predominant activity in the oDAC research area over the last decade has pertained
to ‘serial’ structures, based on partitioning the electrodes of the basic Mach-Zehnder Mod-
ulator (MZM). The so-called Segmented Mach-Zehnder Modulator (SEMZM), refs. [1–16]
breaks up the MZM electrodes pair along the two MZM waveguides into multiple (shorter)
electrically isolated segments. Each modulation-segment amounts to an elementary 1-bit
modulation gate driven by a separate binary signal. It is the summation of the optical
phases contributed by the array of 1-bit segments along the device that generates a multi-
level output optical signal (by interference of the optical fields, once the top and bottom
output waveguides of the SEMZM are superposed in the output combiner).

As alternatives to the incumbent SEMZM ‘serial’ technology, there have been scant
demonstrations, of ‘multi-parallel’ oDAC functionality, arraying in parallel a pair of 1-bit
(OOK) [17–19] or 2-bit (QPSK) [20–25] modulation gates, fed by splitting a common op-
tical source, with their outputs superposed in an optical combiner. These structures are
referred to here as Multi-Parallel oDAC (MPoDAC). We further distinguish between Di-
rect Detection (DD) and coherent detection (COH) MPoDAC operational modes. Prior
MPoDAC work [17–19] solely targeted DD PAM4 based on two parallel OOK EAMs–no
solution was offered there for either COH or for higher-order DD oDACs. Conversely,
refs. [20–25] only target QAM generation-DD PAM is out of scope. Noting that these earlier
multi-parallel trailblazing earlier-work MPoDAC structures have not made their way into
the mainstream, our main interest is to propose innovative modifications and extensions,
revealing an extended MPoDAC family significantly outperforming existing oDACs, flexi-
bly reconfigurable between PAM (DD) or QAM (DD) of variable constellation size. The
superior efficiencies and flexibility of this new oDAC architecture indicate that a disruptive
shift in research is likely to occur in oDAC architectures, migrating from the serial to
the multi-parallel paradigm, in order to meet the challenges of upcoming generations of
reconfigurable short-reach interconnects. Such architectural transition would potentially
enable improved performance, energy-efficiency and agile-reconfigurability. Notably, most
existing SEMZM oDACs, unfortunately, require a Bbits: Sbits digital encoder (look-up-table
with B < S, with B the number of bits and S the number of segments). Once current SEMZM
designs are made ‘DAC-free’ by eliminating redundant segments (taking S = B), which
enables operating without the ultra-high-speed power-hungry encoder, the SEMZMs ex-
hibit excessive constellation distortion. To attain the full oDAC energy-efficiency benefit,
it is imperative to eliminate the power-hungry encoder, albeit without (or at minimal)
distortion penalty.

A highlight of our work is to introduce a Binary-Weighted (BiWgt) sub-class of COH
MPMZM using Direct Binary Drives (S = B) for their 1-bit MZMs gates, ‘eating the cake and
having it too’: Generating ‘perfect’ COH constellations, encoder-free, at ultra-low power.
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The remainder of the paper is structured as follows. In Section 2 we formulate clas-
sifications, specifications and optimization criteria for generic oDAC design. Section 3
introduces constellation quality measures and critically proposes a new ‘maximin-distance’
methodology for optimizing optical one-directional (1D) constellations. Section 4 reviews
and rigorously models state-of-the-art serial-oDACs (SEMZM), enabling consistent perfor-
mance benchmarking. In Section 5 we introduce our contending generalized multi-parallel
oDAC architecture, its novel parameterization and efficient photonic integrated circuit
(PIC) implementations, assuming usage of MZMs for realizing the 1-bit gates–referring to
this favored MZMs-based MPoDAC implementation as Multi-parallel MZM (MPMZM).
Furthermore, a generic model is derived for the MPMZM transfer factor for COH and DD
operation. Section 6 derives optimized solutions for ‘perfect’ generation of COH PAM
1D constellations of any order based on MPMZMs. We also propose generation of QAM
constellations by IQ nesting of COH PAM 1D MPMZMs. In Section 7 we develop several
variants of DD and COH MPMZMs, optimizing them in particular for PAM4 constellations,
comparing our schemes with prior MPoDAC work by Verbist et al. [17–19] and Yamazaki
and Goh [20–25]. We also explain the crucial role played by chirp-free operation in order
to mitigate a major source of ISI, as enabled by our MPMZM designs. Section 8 outlines
optical re-programmability capabilities of our introduced MPMZMs, in support of next
gen of reconfigurable optical interconnects. Finally, Section 9 concludes this work.

2. Generic oDACs: Classification, Parameterization, Coding

1-bit gates: To introduce the principle of operation, we briefly consider first the
realizations of 1-bit modulation gates used as building blocks (BB) in all considered oDAC
types. We introduce two types of 1-bit gates: (i) a BPSK phase modulator, referred to as a
Phase Gate (PG). (ii) An intensity on-off-keying modulator (OOK) that will be referred to
as an Intensity Gate (IG). Typically, in our MPMZM oDACs, we shall use MZMs to realize
either PG or IGs (differing just in the type of two-level analog drive waveforms, bipolar or
unipolar, applied to the MZM).

The Transfer Factor (TF) (defined as ratio of output and input complex fields) of
an MZM is well-known-expressed here (up to a fixed complex factor and omitting the
time-dependence) as:

FMZM = ejφ sin φ∆ = ej 1
2 (φtop+φbot) sin 1

2 (φtop − φbot)

with φtop|bot =
π

Vπ
Vtop|bot = φ± φ∆ ⇔ φ ≡ 1

2 (φtop + φbot), φ∆ ≡ 1
2 (φtop − φbot)

(1)

with|denoting or, i.e., one of two options. Here φtop|bot

∣∣∣Vtop|bot denote the respective

phases|voltages accrued in the top|bottom waveguides and φ, φ∆ are the common (aver-
age) and (half-)differential phase components of the pair φtop, φbot. Note that the differential
voltage between the two MZM arms is φtop − φbot = 2φ∆, thus φ∆, is equal to half the
differential phase between the arms, thus φ∆ may be viewed (under conditions presently
discussed below) as the single-ended RF-induced phase in each arm in a push-pull scheme.

To optimize performance, we impose on our 1-bit gates (as well as on the entire
oDAC) the chirp-free requirement, requiring that the total phase of the output field TF of
our devices be constant from symbol to symbol and also during the symbol transitions).
On, the contrary in case there is chirp, then Inter-Symbol-Interference (ISI) arises due to
propagation along the end-to-end electro-optical linear channel (including the electrical
drivers and the photodetection system), whenever the transfer function of the channel
exhibits nonlinear phase frequency response (e.g., dispersion). When the PG and IG
1-bit gates are implemented as MZMs, to ensure chirp-free operation we require that
the common phase φ be constant (symbol and time-independent). In particular let us
henceforth assume that the common phase is null: φ = 0 = 1

2 (φtop + φbot), the underlying
assumptions for which are (i): We are not interested in (and we discard) any common
structural phase accrued along the two MZM arms, which is common to both arms of
the MZM. (ii): there is no constant differential phase bias between the two arms, induced
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either structurally (by having one arm slightly optically-longer) or electrically (having
bias electrodes inducing a constant differential phase shift). Then, using (1), we have
φ = 0 = 1

2 (φtop + φbot), implying that the top and bottom phases must be antipodal (have
identical absolute values and opposite signs at any time):

‘adopted push-pull’ drive for MZM 1-bit gates : φbot(t) = −φtop(t), φ = 0 (2)

Evidently, the null common phase, φ = 0, enabling condition, is a special case of
constant common phase, thus the adopted push-pull drive scheme satisfies the chirp-free
condition.

Having discussed a generic MZM based 1-bit gate, let us consider such gates in the
context of SEMZM or MPMZM oDACs, using the index s = 1, 2, . . . , S to label the S 1-bit
gates used in the MPMZM or SEMZM oDAC. The top|bottom phases of the s-th 1-bit gate
may be both expressed in terms of the half-differential phase, φ∆:

push-pull (differential, antipodal) top|bot drives : [φtop
s (t), φbot

s (t)] = [φ∆
s (t),−φ∆

s (t)] (3)

It remains to specify the differential phase, φ∆
s [k] during the k-th symbol interval in

terms of the bit driving the gate (distinguish between PG (BPSK), bCOH
s [k] = ±1, and IG

(OOK), bCOH
s [k] = 0

∣∣1):

COH : PG (BPSK) : φ∆[k] = bCOH
s [k]φpk

s = ±φ
pk
s ⇒ [φ

top
s [k], φbot

s [k]] = [±φ
pk
s ,∓φ

pk
s ]

DD : IG (OOK) : φ∆
s [k] = bDD

s [k]φpk
s = φ

pk
s

∣∣∣0 ⇒ [φ
top
s [k], φbot

s [k]] = [φ
pk
s ,−φ

pk
s ]
∣∣∣[0, 0]

(4)

In the case of an SEMZM type of oDAC, s labels each of the modulation segments (thus
in SEMZM, a gate is a modulation segment), consisting of two partial electrodes, push-pull
driven just like the top|bottom electrodes of an MZM in (4). Evidently the segments of
an SEMZM are not full 1-bit MZM gates. Rather, each segment is a dual-drive Phase
Modulator (PM) (essentially a dual-drive MZM without end couplers). The top|bottom
PMs are driven per ‘adopted push-pull’ scheme (4).

Continuing our specification of (4), φ
pk
s there denotes the peak absolute value of volt-

age of the s-th gate, and it practically suffices to have all phases bounded by π
2 . Expressed

in terms of the backoff, the phases satisfy π
2 ≥ φ

pk
s = kbkoff

π
2 , 0 < kbkoff ≤ 1. Plugging diff

phases from (4) into (1) yields:

FPG
s = sin φ∆ = sin(±φ

pk
s ) = ±s, FIG

s = sin(φpk
s )
∣∣∣0 = s

∣∣∣0 with s ≡ sin kbkoff
π

2
(5)

Thus, PGs|IGs realized as MZM, driven as outlined above, act as chirp-free BPSK|OOK
1-bit gates, amounting to 1-bit oDACs, constituting building blocks for multi-bit oDACs as
discussed next.

In our approach, max-full-scale operation of an MZM-based PG or IG is obtained by
taking the peak phase per MZM arm to equal φ

pk
s = π

2 . At this no-backoff (max-full-scale)
(5) then reduces to:

FPG
s = ±1 , FIG

s = 1
∣∣∣0. (6)

Considering IG 1-bit gates in particular, for max-full-scale OOK generation (no-
backoff) the induced phases in the two MZM waveguides (obtained by plugging φ

pk
s = π

2
into the second line of (4)), are:

DD : IG (max-full-scale OOK, no-backof) : [φtop
s [k], φbot

s [k]] = [
π

2
,−π

2
]
∣∣∣[0, 0] (7)

Notably, for IGs, our adopted push-pull scheme (7) for phase modulations of the two
MZM arms, differs from the conventional Quadrature Bias (QB) scheme customarily used
for Intensity Modulation (IM) Direct Detection (IM-DD) MZMs. In the conventional QB
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approach to OOK modulation over DD links, one MZM arm is structurally or electrically
phase-biased to accrue an extra phase of π

2 relative to the other arm (equivalently both arms
are electrically phase-biased ±π

4 , such that their bias phase difference be π
4 − (−π

4 ) =
π
2 ))

i.e., the optical lengths of the two arms (in the absence of applied drive voltages) differ
by a quarter wavelength. Moreover, the electrical drive waveforms in the QB scheme
(in the case of no-backoff-max-full-scale OOK generation), are taken as push-pull bipolar
voltages inducing phaseshifts ±π

4
(
∓π

4
)

in the MZM upper (lower) arm. In contrast, in our
proposed bias scheme (7) for MZM-based IGs, the drives are push-pull unipolar, and the
MZM arms we are not statically biased to differ in phase, but rather the two MZM arms
are symmetric (in the absence of applied drive waveforms) in the sense that they have the
same static optical lengths. We henceforth refer to our IG phase-bias&drive scheme (4)
and (5), as Symmetric Bias (SB), to have it distinguished from conventional Quadrature
Bias (QB). In the Appendix A section we compare the two MZM IG schemes, proving their
functional equivalence, and considering additional engineering aspects of the electrical
drives for IGs and PGs. The Appendix A further formally proves that the QB scheme may
also be adopted for DD SEMZM oDACs, as an alternative to using the DD SEMZM with
our SB type phase-biasing and driving. The Appendix A further shows that both QB and
DB schemes operate chirp-free and may be used as DD 1-bit gates in chirp-free oDACs.

Generally, oDACs taxonomy comprises criteria such as detection method, topology,
constellation type, dimensionality, oDAC code, which we now briefly outline in turn:

Detection method: COHerent detection (COH) vs. Direct Detection (DD). We shall see
that either of the oDAC types, SEMZMs or MPoDACs, may be configured as transmitters
for either for COH or DD reception, using a common PIC for each kind, but modifying the
ancillary electronic systems.

Topology: We distinguish between two main oDAC topological architecture types:

(i) Serial (SE) structure (the SEMZM): Combining two or more gates in tandem, typically
using phase gates in order to additively superpose their phase contributions along
the serial optical path.

(ii) Multi-Parallel (MP) structure (MPoDAC or MPMZM in particular): Combining the
outputs of two or more optical gates in parallel, with their output terminated in a
passive optical combiner device to optically interfere (superpose) the output fields of
the individual gates.

Constellation type: henceforth, constellation means an optical 1D constellation, i.e., a
collection of points along the real-axis (e.g., PAM). We shall also consider 2D constellations
in the IQ plane (e.g., QAM). For 1D oDACs, the constellation levels are the coordinates
of the constellation points along an axis specified in the optical field domain for COH
oDACs, in the optical power domain for DD oDACs (the power and field levels being
non-negative). For 2D oDACs, the complex-plane (IQ) constellations are necessarily COH
ones, as the constellation points are generally distinguishable by amplitude and phase.
Along the respective I and Q axes we have a pair 1D COH constellations, e.g., for a 16QAM
2D constellation we have a pair COH PAM4 constellations. COH PAM means here a bipolar
symmetric version of PAM, e.g., {−3E, −E, E, 3E} is COH PAM4 in the optical field domain,
whereas {0, I, 2I, 3I} is DD PAM4 in the power (intensity) domain.

Dimensionality: oDAC generated constellations are specified by the integer triplet
(D, C, S) where D = 1, 2 designates either a 1D or 2D constellation, C is the constellation
size (also called order), e.g., C = 4 for PAM4, C = 16 for 16QAM. The integer S denotes the
number of 1-bit gates used in the oDAC PIC structure. Examples: S = 3 for an MPMZM
with three parallel paths each comprising a 1-bit driven MZM (used to generate a PAM8
constellation, C = 8), i.e., (D, C, S) = (1, 8, 3); S = 7 for a SEMZM with seven segments (also
used to generate a PAM8 constellation), i.e., (D,C,S) = (1, 8, 7). We shall always assume
dyadic-sized oDAC constellations (dyadic meaning integer-power-of-two): C = 2B = 4, 8, 16,
. . . . A description equivalent to (D, C, S) is then (D, C, B), with B ≡ log2 C = 2, 3, 4, . . . an
integer denoting the intrinsic number of bits needed to represent the constellation size, C,
in binary notation.
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oDAC code: A collection of C binary codewords, each of length S. Each codeword,
consisting of a string of S bits, is uniquely (one-to-one) associated with one of the levels of
the 1D constellation. In each symbol interval, the codeword bits are input, concurrently,
into the 1-bit gate array. The S individual bits of the codeword are used to drive the
individual 1-bit gates of the oDAC (one bit of the codeword per gate) to generate one of
the C levels of the constellation. Each codeword in turn, when fed into the 1-bit gate array
input, uniquely commands a constellation level, thus the S bit codewords may be used
as labels distinguishing between the C constellation levels. By definition the oDAC input
consists of a parallel binary word comprising these B bits representing the codewords
labels or addresses. The S bits of each codeword should not be confused with the B bits
representing the C ≡ 2B possible binary strings, each uniquely labeling each of the C
constellation levels. The B-bit words are inputs into the oDAC in each symbol interval,
whereas the S bit codewords are internally applied during the symbol interval to the oDAC
1-bit gate array. In fact, we have the constraint S ≥ log2 C ≡ B, i.e., there are two cases:

(a) if S = B, then the B-bit word, which is input into the oDAC in each symbol interval,
coincide with the codeword, i.e., may be directly used to drive the 1-bit gates. The
electrical drives of this oDAC configuration are referred to here as Direct Binary
Drives (DBD), (alternatively referred to as Direct Digital Drive in [8,26,27], in the
restricted context of an SEMZM), since the B input bits are simply directly routed to
B 1-bit gates to generate each one of the C ≡ 2B levels of the constellation. Such an
oDAC with S = B, as just described, does not require a B:S encoder (as the B input
bits are directly applied to drive the same number of 1-bit optical gates) and will
be, henceforth, referred to as “Binary Weighted” (BiWgt) oDAC–its 1-bit gates are
DBD-fed, eliminating the power-hungry encoder.

(b) if S > B, then there is redundancy, as the 1-bit gate array is longer than the intrinsic
number of bits, B, needed to uniquely specify the C ≡ 2B distinct levels. A digital B:S
mapper is necessary to generate the S-bit codewords from the B-bit input labels index-
ing each of the C codewords of the code (and the C levels of the constellation), The
B:S mapper, or digital encoder, may either store the code lookup table (LUT) or syn-
thesize it in digital logic, which would be trivial at low speed, but it is power-hungry
at ultra-high-speed. In fact, in conventional eDACs of the Thermometer-Weighted
(ThWgt) type, the B:S mapper may account for about half the power consumption.
Since a major motivation for using an oDAC in lieu of an eDAC + modulator is
attaining energy-efficiency, the usage of the redundant S > B mode should be avoided
whenever possible. Therefore, BiWgt oDACs are preferable from the viewpoint of
energy-efficiency (further enjoying the least complexity and other ancillary advan-
tages, since the 1-bit gates count, S, is reduced down to its lower bound B). In most
cases, state-of-the-art oDACs, taking the redundancy away to operate in BiWgt-mode
(having S = B) end up impairing constellation quality (equivalently elevates the error
rate of the optical link).

In contrast, our novel COH MPoDACs, introduced in Section 5, will all be of the BiWgt
type, thus enjoying the energy-efficiency and simplicity of the BiWgt oDAC family, but we
shall see that, unlike SEMZM, they are intrinsically free of constellation impairments.

Code Matrix: The oDAC code, i.e., the collection of C codewords, each having S bits,
may be arrayed in a code table or code matrix, B, of size C× S, having the codewords as
its rows, denoted bT [c], c = 1, 2, . . . , C, with T the transpose (by convention b[c] denote
column-vectors) and c the codeword index (a pointer to codewords in the code table). The
entries Bcs, 1 ≤ c ≤ S, 1 ≤ s ≤ S of the B matrix consist of Boolean values, defined to
correspond to unipolar|bipolar voltage drives: For DD oDACs Bcs ≡ BDD

cs ∈ {0, 1}; COH
oDACs Bcs ≡ BCOH

cs ∈ {−1, 1}.
BiWgt oDAC code: For BiWgt oDACs, we have S = B and the code matrix is now

sized [2B × B]. We may now use a simple counting code, with its c-th codeword bT [c], c =
1, 2, . . . , C, consisting of the bitstring of the binary representation of the code index, c (bits
listed from right to left starting from the Least Significant Bit (LSB) on the right to the
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Most Significant Bit (MSB) on the left). The rows of B are indexed by c, 1 ≤ c ≤ S, with c
running as usual from top to bottom, whereas the columns are unconventionally indexed
as S − 1 ≥ s ≥ 0 with s running from right to left (just as the codeword bits do), and
expressing c in binary representation; then the bits bs[c] of c become the entries in the c-th
row of B, which is the c-th codeword with elements:

bT
DD[c] = [bS−1[c] . . . b1[c] b0[c]] where bs[c] = Bcs satisfy c =

S−1

∑
s=0

bs[c]2s, bs[c] ∈ {0, 1} (8)

Examples will clarify it, for the lowest orders of BiWgt oDAC, S = B = 2 and S = B = 3,
the respective counting code matrices are listed below (using the convention that spaces sep-
arate entries in a row; semicolons separate rows–thus the codewords are simply separated
by semicolons):

BDD
[4×2] = [0 0; 0 1; 1 0; 1 1], BDD

[8×3] = [0 0 0; 0 0 1; 0 1 0; 0 1 1; 1 0 0; 1 0 1; 1 1 0; 1 1 1]

As for the corresponding COH codes, those are obtained from the DD codes by the
affine mapping

BDD
cs = 2BDD

cs − 1, c = 1, 2, . . . , C, s = S− 1, . . . , 2, 1, 0 (9)

The COH counting codes are obtained from the DD counting codes replacing 0 s by
−1 s. Examples:

BCOH
[4×2] = [−1 − 1; −1 1; 1 − 1; 1 1],

BCOH
[8×3] = [−1 − 1 − 1; −1 − 1 1; −1 1 − 1; −1 1 1; 1 − 1 − 1; 1 − 1 1; 1 1 − 1; 1 1 1]

(10)

ThWgt oDAC code: We have seen that S is lower-bounded by B. The question is
whether there is an upper limit to be practically imposed on S. It may be proven that there
is no added benefit using more than S = C− 1 = 2B − 1 1-bit gates. Thus, S is bounded
from below and above:

2 ≤ B ≤ S ≤ C− 1 = 2B − 1 (11)

The extreme case S = C − 1 = 2B − 1 still requires a B:S encoder (as all oDACs
with S > B do), but its code may be designed for arbitrary constellation generation and
in particular for a “perfect” equi-spaced max-full-scale constellation. Such oDAC will be
referred to as Thermometer-Weighted (ThWgt). The cost to be incurred in exchange of
these benefits of the ThWgt, is that for larger constellation orders, the excessive size of
S (which now depends nearly exponentially on the number of bits, B) implies a sharp
increase in opto-electronic complexity and footprint, excess power consumption due to
the sizable B:S encoder and the oDAC photonic circuit with its high count of 1-bit gate
drivers, enhanced cross-talk between the multiple RF lines, timing skews, and additional
impairments. Therefore, despite its perfect constellation capability, we deem the ThWgt
oDAC configuration undesirable, except for the lowest order PAM4 constellation (C = 4,
B = 2).

3. Constellation Specification and Optimization

An optical constellation may be specified for COH detection by its field vector and for
DD by its intensity (or power) vector:

ECOH = {ECOH
c }C

c=1 = {ECOH
1 , ECOH

2 , . . . , ECOH
C },

IDD = {IDD
c }

C
c=1 = {PDD

1 , PDD
2 , . . . , PDD

C } = {
(
EDD

1
)2,
(
EDD

1
)2, . . . ,

(
EDD

C
)2} ≡

(
EDD)2

(12)

where, by convention, any nonlinear function of a vector (e.g., squaring, square-root) is the
vector of nonlinear functions. We note that DD constellation specifications are formulated
in terms of the target power vector, while internal oDAC analysis is conducted in the field
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domain. For design purposes the power domain constellation specified in the DD case,
is mapped into an underlying field constellation, EDD =

√
IDD. We design our oDACs

such that all output complex field values share a common phase and discard it, effectively
treating input CW and output fields as real-valued.

DD oDAC analysis and design is formulated in terms of the internal fields required to
generate the target EDD, (which is going to ensure the target IDD). Actually, it is advanta-
geous to redefine the field and power domain quantities as oDAC I/O transfer factor (TF)
ratios of either field amplitude or optical intensity, for COH, and DD respectively, in the
relevant field amplitude or power domain:

FCOH
c ≡ ECOH-out

c /ECW-in, PDD
c ≡ IDD-out

c /ICW-in =
∣∣∣EDD-out

c

∣∣∣2/
∣∣∣ECW-in

∣∣∣2 =
∣∣∣FDD

c

∣∣∣2, c = 1, 2, . . . , C

Henceforth, these real-valued non-negative transfer factors, in the appropriate do-
main (field amplitude or power) are treated as the constellation levels and collected into
constellation vectors, blurring the distinction between the TF of an oDAC and its output
constellation:

FCOH = {FCOH
c }C

c=1 = {FCOH
1 , FCOH

2 , . . . , FCOH
C },

PDD = {PDD
c }

C
c=1 = {PDD

1 , PDD
2 , . . . , PDD

C } = {
(

FDD
1
)2,
(

FDD
2
)2, . . . ,

(
FDD

C
)2} ≡

(
FDD)2 ⇔ FDD ≡

√
PDD

(13)

Note: when the CW input field (or power) is unity, then F and P, coincide with E and I,
respectively. Thus, the TFs (13) may be viewed as normalized constellations (constellations
henceforth refers to the TFs). Moreover, throughout this work, unless otherwise stated,
we assume ideal hypothetical models whereby, excess losses and other non-idealities are
absent. Therefore, the ‘constellations’ modelled in this work are idealized, revealing the
intrinsic performance (the term intrinsic will be interpreted as ‘assuming ideal lossless
conditions’), i.e., our models essentially represent performance limits.

The excess loss, if uniform throughout the oDAC device (not path-dependent), may be
modelled by scaling down the intrinsic constellations (13) by the square root of the power
excess loss factor.

Therefore, in absence of optical amplification, the intrinsic analysis (lossless assump-
tion) implies that all transfer factors are bounded above by unity:∣∣∣FCOH

c

∣∣∣ ≤ 1⇔ FCOH
c ∈ [−1, 1], FDD

c ∈ [0, 1],
∣∣∣PDD

c

∣∣∣ ≤ 1. (14)

The first and last element of a constellation (be it in the field or power domain)
are referred to as the LSB and MSB, respectively and their difference is defined as the
constellation Full-Scale (FS):

{LSBCOH, MSBCOH} = {FCOH
1 , FCOH

C }, FSCOH ≡ MSBCOH − LSBCOH ≤ 2

{LSBDD, MSBDD} = {FDD
1 , FDD

C }, FSDD ≡ MSBDD − LSBDD ≤ 1
(15)

Our intrinsic (i.e., idealized) designs will strive to achieve max-full-scale performance:

max-full-scale : {LSBCOH, MSBCOH} = {−1, 1} ⇒ FSCOH = 2; {LSBDD, MSBDD} = {0, 1} ⇒ FSCOH = 1

We shall see that most of our COH designs generate field constellations which are
symmetric:

sym COH : FCOH
c = −FCOH

C+1−c ⇔ FCOH
c + FCOH

C+1−c = 0, c = 1, 2, . . . , C (16)

Likewise, many of our DD designs generate power constellations symmetric w.r.t. to
the half-full-scale point:

sym DD : PDD
c = FS− PDD

C+1−c ⇔ FDD
c + FDD

C+1−c = FS, c = 1, 2, . . . , C (17)
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In the max-full-scale case the last equation reads:

sym max-full-scale DD : PDD
c = 1− PDD

C+1−c ⇔ FDD
c + FDD

C+1−c = 1, c = 1, 2, . . . , C (18)

Perfect constellations are defined as equi-spaced and max-full-scale:

FCOH-perf = 1
C−1{2c− C− 1}C

c=1

PDD-perf = { c
C−1}

C−1
c=0 ⇔ FDD-perf =

{√
c

C−1

}C−1

c=0

(19)

Examples of useful equi-spaced max-full-scale constellations (perfect) labels dropped
for brevity):

F2-PAM COH = {−1, 1} = BPSK, F4-PAM COH = { −1,− 1
3 , 1

3 , 1}, F8-PAM COH = {−1,− 5
7 ,− 3

7 ,− 1
7 , 1

7 , 3
7 , 5

7 , 1}

F2-PAM DD = {0, 1} = OOK, F4-PAM DD =

{
0,
√

1
3 ,
√

2
3 , 1
}

, F8-PAM DD = 10−Kbkff
dB /20

{
0,
√

1
3 ,
√

2
3 , 1
} (20)

For a perfect (max-full scale equi-spaced) constellation, (19), the C − 1 segments con-
necting adjacent pairs of levels out of the C levels, are all of lengths 1

C−1 , 2
C−1 respectively;

these are the Nearest-Neighbors (NN) distances–all constant here. Generally, NN distances
are obtained as the first differences of successive constellation levels (assuming the levels
are sorted in increasing order):

for c = 2, 3, . . . , C : dNN-COH
c = ∆Fc ≡ Fc − Fc−1, dNN-DD

c = ∆Pc ≡ Pc − Pc−1 = |Fc|2 − |Fc−1|2, FS =
C−1

∑
c=1

dNN
c (21)

The NN-distances are collected into distance vectors,

dCOH = {dCOH
1 , dCOH

2 , . . . , dCOH
C } = {dCOH

c }C−1
c=1 = {FCOH

c+1 − FCOH
c }C−1

c=1 ≡ Differences[FCOH]

dDD = {dDD
1 , dDD

2 , . . . , dDD
C } = {dDD

c }
C−1
c=1 = {PDD

c+1 − PDD
c }

C−1
c=1 ≡ Differences[PDD]

PDD=(FDD)
2

(22)

For oDAC-based optical transmission applications, we adopt, as Figure of Merit (FOM)
for the constellation quality, the constellation minimal-distance (in short min-distance),
namely the least of all NN-distances:

dCOH
min-dist ≡ min

[
dCOH

]
= min{dCOH

1 , dCOH
2 , . . . , dCOH

C }; dDD
min-dist ≡ min

[
dDD

]
= min{dDD

1 , dDD
2 , . . . , dDD

C } (23)

Intuitively, this min-distance FOM is a measure of the degree of crowding of the
constellation, indicative of transmission error rates (BER or SER)–as it is well known in
communication theory. Now that we have selected our performance quantifier, a key objec-
tive in every oDAC design will be maximization of the constellation minimal distance over
the oDAC parameters. Thus, oDAC design is viewed as a so-called maximin optimization
problem for the vector NN-distances, over the oDAC parameters (denoted params):

d̂COH
maximin ≡ max

oDAC params
s.t. Constraints

min[dCOH(params)] = min
[
Differences

[
FCOH(params)

]]
d̂DD

maximin ≡ max
oDAC params

s.t. Constraints

min[dDD(params)] = min
[
Differences

[(
FDD(params)

)2
]] (24)

As for the Constraints, those are posed by the physical oDAC configuration and
the nature of its parameters. An additional source of constraints stems from the implicit
assumption that the constellation be monotone-increasing, i.e., that its constellation levels
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(be they field or power) be sorted in increasing order. A bound on the maximin-distance is
derived by solving,

dequi-spaced
maximin-dist = max

{dNN
1 ,dNN

2 ,...,dNN
C−1}

min
s.t. FS=∑C−1

c=1 dNN
c =FS

[dNN
1 , dNN

2 , . . . , dNN
C−1] =

FS
C− 1

The solution is formally hard to derive (as all maximin solutions are) but it is intuitively
evident:

equi-spaced constellation as maximin distance optimizer : d̂NN
c =

FS
C− 1

, c = 1, 2, . . . , C− 1 (25)

Thus, the ‘best’ maximin constellation subject to the fixed LSB and MSB end-points
(or the fixed distance FS between them), is an equi-spaced one. The optimal solution
(denoted by a hat) is then obtained when the FS is maximized (a condition we referred to
as maximin):

perfect maximin distance upper bound : d̂maximin-dist =
FS

C− 1

∣∣∣∣ FS = 1 for DD
FS = 2 for COH

=

{ 1
C−1 , DD
2

C−1 , COH

We cannot expect better results than those: the perfect oDAC designs, to strive for, are
equi-spaced max-full-full-scale:

dDD
min-dist[any constellation] ≤ dDD-equi

maximin-dist =
1

C− 1
, dCOH

min-dist[any constellation] ≤ dCOH-equi
maximin-dist =

2
C− 1

(26)

This suggests a Normalized Figure (NFOM) for any oDAC design in terms of its
constellation quality: define the oDAC NFOM (on a linear scale) as follows:

NFOMoDAC = doDAC
min-dist/d̂maximin-dist =

{
doDAC-DD

min-dist / 1
C−1 = (C− 1)doDAC

min-dist

doDAC-COH
min-dist / 2

C−1 = (C− 1)doDAC
min-dist

, (27)

or in dB units, NFOMoDAC
dB = 10 log10 NFOMoDAC. Alternative approaches for character-

izing oDAC performance may be based on figures of merit ported from the domain of
electronic DACs (eDAC). E.g., an oDACs may be characterized by its integral or differential
nonlinearity. Unfortunately, such “linearity” figures of merit do not consistently correlate
with transmission error rates, which are only loosely correlated with the so-called oDAC
linearity (a measure of how closely the actually synthesized constellation resembles an equi-
spaced one (preferably also max-full-scale). The constellation quality (maximin-distance
and NFOM) is just one criterion to assess oDAC designs by. See Table 1 for additional
(mutually inter-dependent) oDAC design characteristics.

Table 1. oDAC design specs/criteria.

(i) Bandwidth (speed)
and datarate Scalability

(ii) Chirp Distortion
(time-varying phase)

(iii) Energy Efficiency
(power dissipation)

(iv) Optical Modulation loss
(intrinsic)

(v) Nonlinear Distortion.
(constellation min-distance)

(vi) Transmission Error
probability
(constellation min-distance)

(vii) Cross-talk
Distortion-among txLines of
1-bit building blocks

(viii) Time-skew distortion. (ix) Calibration / Tracking
(stabilization robustness)

(x) Electronic/Photonic
Complexity
(IC, PIC)

(xi) Footprint (size and shape) (xii) Robust parametric
control

(xiii) Amenability to optical
amplification

(xiv) Compatibility with
plasmonics (xv) Agile programmability
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4. Constructive Review of Serial oDACs–Rigorous Modeling of Segmented
MZMs (SEMZM)

Figure 1 depicts an exemplary S = 8 segment ThWgt SEMZM optical structure, aiming
to implement oDAC functionality. The contiguous MZM electrodes are partitioned into S
segments. Each segment acts a “partial MZM” with push-pull drive, having its upper and
lower electrodes driven by a pair of (variable) voltages preferably antipodal voltages (as
shown below). Hypothetically assuming a single segment is electrically driven (the other
segments grounded or removed) we would obtain a “partial” MZM modulator with a short
electrode pair, inducing just a fraction of the maximally possible peak phase modulation,
as attained when all segments are active. When all the segments are modulated in unison,
driven by properly synchronized binary signals, the total differential phase along the
device may assume a multiplicity of values, inducing, by interference in the output coupler
multiple optical amplitude (or power) levels at the device output. Each level is determined
by the combination of polarities of the voltages applied to the various segments, as detailed
below.

Photonics 2021, 8, x FOR PEER REVIEW 11 of 51 
 

 

oDAC-DD oDAC1
oDAC oDAC min-dist min-dist1

min-dist maximin-dist oDAC-COH oDAC2
min-dist min-dist1

/ ( 1)ˆNFOM / ,
/ ( 1)
C

C

d C d
d d

d C d




    
 

 (27)

or in dB units, oDAC oDAC
dB 10NFOM 10 log NFOM . Alternative approaches for charac-

terizing oDAC performance may be based on figures of merit ported from the domain of 
electronic DACs (eDAC). E.g., an oDACs may be characterized by its integral or differen-
tial nonlinearity. Unfortunately, such “linearity” figures of merit do not consistently cor-
relate with transmission error rates, which are only loosely correlated with the so-called 
oDAC linearity (a measure of how closely the actually synthesized constellation resembles 
an equi-spaced one (preferably also max-full-scale). The constellation quality (maximin-
distance and NFOM) is just one criterion to assess oDAC designs by. See Table 1 for addi-
tional (mutually inter-dependent) oDAC design characteristics. 

Table 1. oDAC design specs/criteria. 

(i)_Bandwidth (speed) 
and datarate Scalability 

(ii) Chirp Distortion 
(time-varying phase) 

(iii) Energy Efficiency 
(power dissipation) 

(iv) Optical Modulation loss 
(intrinsic) 

(v) Nonlinear Distortion. 
(constellation min-distance) 

(vi) Transmission Error probability 
(constellation min-distance) 

(vii) Cross-talk Distortion-among 
txLines of 1-bit building blocks (viii) Time-skew distortion. (ix) Calibration / Tracking 

(stabilization robustness) 
(x) Electronic/Photonic Complexity 
(IC, PIC) (xi) Footprint (size and shape) (xii) Robust parametric control 

(xiii) Amenability to optical 
amplification 

(xiv) Compatibility with plasmonics (xv) Agile programmability 

4. Constructive Review of Serial oDACs–Rigorous Modeling of Segmented MZMs 
(SEMZM) 

Figure 1 depicts an exemplary S = 8 segment ThWgt SEMZM optical structure, aim-
ing to implement oDAC functionality. The contiguous MZM electrodes are partitioned 
into S segments. Each segment acts a “partial MZM” with push-pull drive, having its up-
per and lower electrodes driven by a pair of (variable) voltages preferably antipodal volt-
ages (as shown below). Hypothetically assuming a single segment is electrically driven 
(the other segments grounded or removed) we would obtain a “partial” MZM modulator 
with a short electrode pair, inducing just a fraction of the maximally possible peak phase 
modulation, as attained when all segments are active. When all the segments are modu-
lated in unison, driven by properly synchronized binary signals, the total differential 
phase along the device may assume a multiplicity of values, inducing, by interference in 
the output coupler multiple optical amplitude (or power) levels at the device output. Each 
level is determined by the combination of polarities of the voltages applied to the various 
segments, as detailed below. 

 
Figure 1. Segmented MZM (SEMZM) 7 segments oDAC architecture-optimized Thermometer-
Weighted (ThWgt) DAC structure for generation of PAM8. The S = 7 electrode segment lengths 

Figure 1. Segmented MZM (SEMZM) 7 segments oDAC architecture-optimized Thermometer-
Weighted (ThWgt) DAC structure for generation of PAM8. The S = 7 electrode segment lengths are
shown to scale for ThWgt operation (generation of an equi-spaced C = 8-levels constellation). The
guard spaces between segments not shown to scale.

We now proceed to model the SEMZM comprehensively and rigorously, beyond
the cursory modeling available in the segmented modulator literature which has been
more focused on experimental demonstrations. The SEMZM TF is obtained from the
generic MZM TF formally replacing the MZM differential phase in (1), by the sum of the
differential phases of each of the segments, and also setting the common phase to null,
φ = ∑S−1

s=0 φs = 0, as all segments are push-pull driven for chirp-free operation, in both the
COH mode (based on PG-drives) and in the DD mode (based on IG-drives):

FSEMZM
c = ejφ sin φ∆ = sin φ∆ = sin

(
S−1

∑
s=0

φ∆
s

)
= sin

(
S−1

∑
s=0

bs[c]φ
pk
s

)
(28)

where φ∆
s = bs[c]φ

pk
s with bs[c] the s-th bit of the c-th codeword, assuming in the COH|DD

cases the respective Boolean values bCOH
s [c] ∈ {±1}, bDD

s [c] ∈ {0, 1}. Alternatively, (28)
is written highlighting the one-to-one correspondence between oDAC codewords and
constellation levels:

b[c]↔ Fc = sin ∑S−1
s=0 bs[c]φ

pk
s = sin

(
bS−1[c]φ

pk
S−1 + . . . + b1[c]φ

pk
1 + b0[c]φ

pk
0

)
= sin b[c]TΦ,

where c = 1, 2, . . . C, F = [F1 F2 . . . FC], b[c] ≡
[
bpk

S−1[c] . . . bpk
1 [c] bpk

0 [c]
]
, Φ ≡

[
φ

pk
S−1 . . . φ

pk
1 φ

pk
0

] (29)

This formula referred to here as the SEMZM equation is equivalent to known results,
e.g., [8,26,27], (though we differ in our compact notation). The C distinct output field levels
(collected in the C elements of the constellation vector, F) are generated by applying in
each symbol interval various bit combinations (codewords) to binary-drive each of the S
segment elementary modulators.

The SEMZM design parameters to optimize over are: I. Segments count, S. II. Push-
pull voltage Vpk (taken identical for all segments). III. Segments lengths: {Ls}S

s=1 s.t.
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∑S
s=1 Ls ≡ Lπ , with the total length denoted here Lπ since the used Vπ , is referred to the

overall length of all the electrodes. Generally, for either a generic MZM or for a push-pull
dual phase-modulator (PM), e.g., a single segment of the SEMZM, of length L, driven at
voltage V, the induced phase shift is given by φ = V·L

Vπ ·Lπ
· π

2 , where Lπ is the particular
“reference” electrode length that Vπ is stated at (Vπ defined as the voltage needed to induce
pi-phaseshift in a waveguide with electrodes length Lπ). This generic phaseshift formula is
applied to each segment, having Vπ specified relative to an effective aggregate electrode
of a reference MZM, of length (denoted Lπ , as we refer Vπ to it) equal to the sum of all
segment electrode lengths; we note that the Vπ-length product equals LπVπ for all segments
(due to the SEMZM waveguides and electrodes cross-sectional invariance) and we further
assume Vpk

s = Vpk = const., i.e., a common peak voltage be used for all segments. Under

these assumptions the s-th segment phase is, φ
pk
s = Ls

Lπ

Vpk
Vπ

π
2 , s = 1, 2, . . . , S, thus φ

pk
s ∝ Ls

(∝ denotes proportionality). We now derive a useful constraint on the sum of all segment
phases (defining kbkoff ≡ Vpk/Vπ):

S

∑
s=1

φ
pk
s =

S

∑
s=1

Ls

Lπ

Vpk

Vπ

π

2
=

1
Lπ

Vpk

Vπ

π

2

S

∑
s=1

Ls =
1

Lπ

Vpk

Vπ

π

2
Lπ =

Vpk

Vπ
· π

2
= kbko f f ·

π

2
(30)

phases-sum-constraint :
S

∑
s=1

φ
pk
s = kbkoff ·

π

2
, 0 < kbkoff ≤ 1 (31)

In particular, kbkoff = 1⇒ Vpk = Vπ , i.e., at no backoff, max-full-scale is attained:

max FS condition : Vpk = Vπ ⇔ kbkoff = 1⇔ 0 <
S

∑
s=1

φ
pk
s =

π

2
(32)

We may now readily evaluate the constellation min and max levels (LSB and MSB).
For DD, as bDD

s ∈ {0, 1}, the least non-negative field level is evidently nulled out by setting
all bits to zero. Thus, the LSB is zero. Since, 0 < φ

pk
s , 0 ≤ bs ∈ {0, 1} we then have

∀c : 0 ≤ Fc = |Fc| =
∣∣∣∑S

s=1 bsφ
pk
s

∣∣∣ ≤ ∑S
s=1 φ

pk
s .

The upper bound of Fc is attained setting all bits to unity, bs = 1, s = 1, 2, . . . , S,
yielding the MSB:

LSBDD = 0 ≤ FDD
c ≤ min

c
FDD

c = sin
S

∑
s=1

φ
pk
s = sin

kbkoffπ

2
= MSBDD (33)

For the COH SEMZM, the bits are bipolar, bDD
s ∈ {−1, 1}. The max total phase is

attained (as in the DD case) by setting all bits to equal unity bs = 1, s = 1, 2, . . . , S, thus
the MSB is again ∑S

s=1 φ
pk
s . However, the LSB is now attained by setting all bits negative,

bs = −1, s = 1, 2, . . . , S (this minimizes Fc = ∑S
s=1 bs[c]φ

pk
s ) thus the LSB in the coherent

case is negative, antipodal to the MSB.
The LSB and MSB are the min and max of the COH constellation (using sin ∑S

s=1 φ
pk
s =

sin kbkoffπ
2 ):

LSBCOH = − sin
kbkoffπ

2
= min

c
FCOH

c ≤ FCOH
c ≤ min

c
FCOH

c = sin
kbkoffπ

2
= MSBCOH (34)

To operate either the DD SEMZM or the COH SEMZM at max-full-scale we need to
satisfy:

max-full-scale constraint :
S

∑
s=1

φ
pk
s =

π

2
(35)

We derive the following bounds on the field constellation levels and full-scales for
DD,COH:
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0 ≤ FDD
c ≤ sin kbkoffπ

2 ≤ 1, −1 ≤ − sin kbkoffπ
2 ≤ FCOH

c ≤ sin kbkoffπ
2 ≤ 1, for c = 1, 2, . . . , C

FSDD = sin kbkoffπ
2 ≤ 1, FSCOH = 2 sin kbkoffπ

2 ≤ 2; kbkoff = 1⇒ FSDD = 1, FSCOH = 2
(36)

A consequence of the phases-sum-constraint, 0 < ∑S
s=1 φ

pk
s = kbkoff · π

2 ≤
π
2 , (with or

without backoff), is that the absolute values of inner products in the SEMZM Equation (29),
are bounded: b[c]TΦ ∈

[
−π

2 , π
2
]
, thus the sine in compound function sin b[c]TΦ has its

domain restricted to the
[
−π

2 , π
2
]

segment, over which the sine is a monotonic bijection, its
inverse function, the arcsine (asin), also being a monotonic bijection. Taking the arcsine of
both sides of (29) then yields:

SEMZM equation equivalent forms : sin b[c]TΦ = Fc ⇔ b[c]TΦ = asinFc
⇔ sin BΦ = F ⇔ BΦ = asinF

(37)

For design purposes, the target constellation vector is always specified in the field
domain, as an F vector, even if we aim for a DD constellation, in which case power-domain
constellation PDD would rather specified, with the underlying field constellation indirectly
derived from it as FDD =

√
PDD. The second equivalent version in (37) is a linear equation

in the unknown vector Φ (the nonlinearity having been lumped into the RHS vector, asin F).
The SEMZM equation, itemized for the two respective COH and DD cases, then reads, in
code matrix notation:

COH : sin BΦ = F⇔ BΦ = asinF; DD : sin2 BΦ = P⇔ BΦ = asin
√

P, where P = F2 (38)

Our approach to SEMZM design consists of specifying a target field constellation,
selecting the oDAC code = {b[c]}C

c=1 (or equivalently the code matrix B, arraying the
codewords as its rows) then optimizing over the “phases design vector” Φ ≡ {φs}0

s=S−1
(s.t. constraint (30)), either by solving BΦ = asinF, if an exact solution does exist, or by
finding an approximate solution by solving the maximin problem (24), with F expressed
per first form in (37).

As for code design, it is useful to order the codewords of the code {b[c]}C
c=1 such that

the LSB|MSB level be generated for the first|last codeword:

LSB : bDD[1] = {0, 0, . . . , 0}T , bCOH[1] = {−1,−1, . . . ,−1}T

MSB : bDD[C] = {1, 1, . . . , 1}T , bCOH[C] = {1, 1, . . . , 1}T

To fully specify the SEMZM code, it remains to state the remaining C − 2 codewords.
For the thermometer-weighted (ThWgt) SEMZM design, the c-th codewords (DD and
COH) are given by

bThWgt-DD[c] = [

S=C−1 terms︷ ︸︸ ︷
1 1 ....1︸ ︷︷ ︸

c−1 terms

0 0 . . . 0︸ ︷︷ ︸
C−c terms

], bThWgt-COH[c] = [

S=C−1 terms︷ ︸︸ ︷
1 1 ....1︸ ︷︷ ︸

c−1 terms

−1 − 1 . . . − 1︸ ︷︷ ︸
C−c terms

], c = 1, 2, . . . C

Example: ThWgt SEMZM for PAM8 generation: B = 3, C = 2B = 8, S = C− 1 = 7.
The COH and DD types variants of the code matrix are the given by these C × S =
C× (C− 1) = 8× 7 matrices:

BThWgt-DD =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1


, BThWgt-COH =



−1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 −1
1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1
1 1 1 1 1 −1 −1
1 1 1 1 1 1 −1
1 1 1 1 1 1 1


(39)
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We next prove that for an SEMZM having C − 1 = 2B− 1 segments, based on the
ThWgt code, when no backoff is used, there exists a unique design enabling to synthesize
any desired max-full-scale PAM-C constellation (the perfect, equi-spaced, max-full-scale
constellation in particular). Unfortunately, this flexibility comes with a price tag of pro-
hibitive power consumption and high complexity, due to the excessive number of segments,
nearly exponential in oDAC number of bits:

ThWgt SEMZM : S = C− 1 = 2B − 1 > B ≥ 2 (S� B for large constellation orders). (40)

The code matrix for the ThWgt SEMZM is C× S = C× (C− 1), i.e., the rows count
equals the columns count plus one. Inspection of the first codeword and the last one shows
that the first and last equation in the system of linear equations (37) b[c]TΦ = asin F are
redundant, as the first codeword is linearly dependent on other codewords (e.g., inspect
the first row of the PAM8 ThWgt SEMZM code matrix for either COH or DD in (37) for
definiteness). Once the first equation is discarded, (37) is then reduced to the following
system of C−1 linear equations in C − 1 unknowns:

BΦ = asin F⇔ BredΦ = asin Fred, with Bred ≡ [bT [2]; bT [3]; . . . ; b[C]], Fred ≡ [F2 F3 . . . FC]
T (41)

Since, for the ThWgt-codes, the reduced matrix, Bred (obtained from B by discarding
the first row) is now square (C− 1)× (C− 1) and has full rank, there is always a solution,
formally expressed as Φ̂ = (Bred)

−1(asin Fred) We are not going to write down the solution
explicitly, but what matters is the methodology of the proof of existence just carried out,
leveraged to prove a new result for SEMZM oDACs with segment count, S, less than
constellation levels number minus one (cf. 40):

Non-ThWgt SEMZM : S < C− 1 = 2B − 1⇒ no exact solution given most target constellations (42)

Proof: In this case the S× (C − 1) code matrix B is tall (height < width), and so is
the reduced code matrix Bred, which is one unit shorter in height. The linear system of
equations BredΦ = asin Fred is now overdetermined (more equations than unknowns) and
there is generally no solution, except in the accidental case when the RHS happens to fall
in the column space of Bred.

A key practical limitation is highlighted by our rigorous SEMZM analysis: unfortu-
nately, the most energy efficient BiWgt SEMZM (S = B < 2B − 1 = C − 1), is unable to
synthesize arbitrary constellations. In particular perfect max-full-scale equi-spaced constel-
lations are out of reach unless one gives up the BiWgt advantages: the energy-efficiency +
low-complexity benefit, upon adopting the ThWgt SEMZM, which is power-hungry and
complex (and long, lossy) with excessive number of segments. We may elect a compromise,
accepting a tradeoff between constellation quality vs. energy-efficiency + low-complexity,
by adopting SEMZM designs with B < S < 2B − 1 (i.e., neither BiWgt nor ThWgt), with
more segments, S, than the number of bits, B, but still fewer than the 2B − 1 of them. Along
this tradeoff axis, the higher S is, the higher the constellation quality, but the higher the
penalties in the power consumption, complexity, footprint and other impairments such as
electrical crosstalk, time-skews.

A sizeable portion of the energy-efficiency penalty in redundant designs with more
segments than bits (S > B) is due to the need for a high-speed Bbits:Sbits digital encoder,
increasingly power-hungry as the ratio S/B increases beyond unity. It is only the BiWgt
class of oDACs that eliminates this encoder, but then one must watch out for excessive
constellation distortion (reduced min-distance).
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4.1. BiWgt SEMZM: Dyadic Electrodes Design and Its Performance

For substantial modulation backoff of about 50% or more, (i.e., the constellation full-
scale optical power is at least halved), we may approximate asin F ≈ F in (37), reducing
the SEMZM equation to:

backed-off SEMZM eq : b[c]TΦ ∼= F⇔ Fc ∼= b[c]TΦ =
S−1

∑
s=0

bs[c]φ
pk
s (43)

An analogy may be set up with electronic DACs. The output current levels in a
BiWgt eDAC are generated by summing up elementary current sources {is}S

s=0 which are
dyadic-weighted meaning that they form a geometric sequence with ratio 2:

Ic =
S−1

∑
s=0

bs[c]is, bs[c] ∈ {±1} or bs[c] ∈ {0, 1}, is = 2s−1i0 (44)

The eDAC electrical output levels come out equi-spaced. Equations (43) and (44)
are analogous, with the phases φ

pk
s playing the role of the elementary current sources

is. This suggests that in order to generate an equi-spaced constellation with the backed-
off SEMZM we should take φ

pk
s = 2s−1φ

pk
0 . Along with the phases-sum-constraint, (31)

∑S
s=1 φ

pk
s = kbkoff

π
2 , this implies:

Dyadic phases design : φ
pk
S : φ

pk
S−1 : . . . : φ

pk
2 : φ

pk
1 : φ

pk
0 = 2S : 2S−1 : . . . : 4 : 2 : 1, φ

pk
s = kbkoff

π/2
2S − 1

2s−1 (45)

As a common peak voltage Vpk = kbkoffVπ is used for all segments, the electrode
lengths form a dyadic sequence as well: LS : LS−1 : . . . : L2 : L1 : L0 = 2S : 2S−1 : . . . : 4 :
2 : 1. Backoff does save power consumption but causes intrinsic modulation loss, as the
equi-spaced constellation is compressed relative to its max-full-scale span. If the backoff is
reduced or eliminated then the approximation which enabled the dyadic design to yield an
equi-spaced constellation is no longer valid. Nevertheless, we prove, in the next subsection,
that upon using dyadic phases, the constellation min-distance monotonically increases in
the kbkoff variable. Therefore, by using design (45), albeit at kbkoff = 1, the constellation
min-distance will be seen to increase relative to having kbkoff < 1.

4.1.1. PAM4 DD SEMZM Dyadic Design Performance

Let us exemplify the dyadic design for 2-bit BiWgt DD SEMZM, namely C = 4, B = 2
DD PAM4. The dyadic design, at backoff factor denoted for brevity k ≡ kbkoff, is specified
as a 2:1 ratio of phases:

φ
pk
1 : φ

pk
0 = 2 : 1⇔

(
φ

pk
1 , φ

pk
0

)
=
(

2
3 , 1

3

)
k π

2

{bT
DD[c]}

4
c=1 = (bDD

1 [c], bDD
0 [c]) ∈ {[0 0], [0 1], [1 0], [1 1]}

(46)

Substituting the four 2-bit codewords above into the field constellation levels expres-
sion yields:

FPAM4 DD
c

(
φ

pk
1 , φ

pk
0

)
= sin

[
bT [c] ·

[
φ

pk
1 , φ

pk
0

]]
= sin

[
b1[c]φ

pk
1 + b0[c]φ

pk
0

]
, c = 1, 2, 3, 4

FPAM4 DD
(

φ
pk
1 , φ

pk
0

)
= {F2SE

4 , F2SE
3 , F2SE

3 , F2SE
1 } = {0, sin φ

pk
0 , sin φ

pk
1 , sin(φpk

0 + φ
pk
1 )}

(47)
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Substituting the binary-weighted phase parameter values (46) into this field vector,
yields:

PPAM4 DD =
[
FPAM4 DD

(
2
3

π
2 k, 1

3
π
2 k
)]2

= {0, sin πk
6 , sin πk

3 , sin πk
2 }

2
= {0, sin2 πk

6 , sin2 πk
3 , sin2 πk

2 }

dPAM4 DD
min-dist (k) = min

[
dPAM4 DD

]
= min

[
Differences

[
PPAM4 DD]] = min{d1(k), d2(k), d3(k)}

= min{sin2 πk
6 , sin2 πk

3 − sin2 πk
6 , sin2 πk

2 − sin2 πk
3 }

(48)

The power constellation for k = 1 (no backoff) is listed below (its min distance is 1
4 ):

PPAM4 DD(k = 1) = {0, sin2 π

6
, sin2 π

3
, sin2 π

2
} = {0,

1
4

,
3
4

, 1}, dPAM4 DD
min-dist (k = 1) = min{1

4
,

1
2

,
1
4
} = 1

4
= 0.25 (49)

Experimental demonstrations of PAM4 DD typically use substantial backoff of the
order of 3 dB (e.g., [3]). The corresponding k value is found by solving the equation
sin2 πk

2 = 1
2 , yielding k = k3dB = 0.5 (indeed, the field TF of a reference MZM is

sin πk
2

∣∣∣
k==k3dB=0.5

= sin π
4 = 1√

2
. This value is also the MSB of the PAM4 constellation,

−3 dB down in optical power relative to a max-full-scale constellation). At 3 dB backoff,
plugging k = k3dB = 0.5 into (48), the min-distance is:

dPAM4 DD
min-dist (k3dB) = min{sin2 πk

6 , sin2 πk
3 − sin2 πk

6 , sin2 πk
2 − sin2 πk

3 }k=k3dB=0.5

= min{ (
√

3−1)
2

8 , 1
4 −

(
√

3−1)
2

8 , 1
4} = min{0.067, 0.183, 0.25} = 0.067

(50)

This min-distance corresponds to a normalized figure of merit for the 3-dB backed-off
configuration:

NFOMPAM4 DD SEMZM(k3dB) = dPAM4 DD
min-dist (k3dB)/

1
C− 1

∣∣∣∣
C=4

= 0.067/
1
3
= 0.201 = −6.97 dB (51)

Comparing this min-dist = 0.067 at 3 dB backoff, with our no-backoff (k = 1) solu-
tion (49) which has min-dist = 0.25, we see that the backoff policy substantially degrades
the constellation min-distance. Thus, the ‘common wisdom’ of backing-off the SEMZM ‘to
make it linear’ is actually detrimental. To formally prove that the optimal setting is the no-
backoff one, let us parameterize the min-distance over the k variable. Three NN-distances,
featuring in (48),

{d1(k), d2(k), d3(k)} = {sin2 πk
6

, sin2 πk
3
− sin2 πk

6
, sin2 πk

2
− sin2 πk

3
},

are plotted in Figure 2. It is apparent that we have d2(k) > d1(k) < d3(k) all over the
domain (0,1). Thus, the min-distance coincides with d1(k):

dPAM4 DD
min-dist (k) = min{d1(k), d2(k), d3(k)} = d3(k) = sin2 πk

2
− sin2 πk

3

The maximum of the min-distance function over k evidently occurs at the right-end of
the (0,1) interval, k = 1, thus the optimal solution is indeed the one we suggested in (49).
Compared with the “perfect” power constellation, PDD PAM4 perfect = {0, 1

3 , 2
3 , 1}, having

min-distance 1
3 , the ratio of minimal distances yields the constellation Normalized Figure

of Merit (NFOM):

NFOMPAM4 DD SEMZM
no backoff: k=1 = dPAM4 DD

min-dist (k = 1)/
1

C− 1

∣∣∣∣
C=4

=
1
4

/
1
3
= 0.75⇒ NFOMoDAC

dB = −1.25 dB (52)

which is 5.62 dB higher than the NFOM (51) at the typical 3 dB backoff.
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Figure 2. Nearest-Neighbor distances vs. backoff factor, k for a PAM4 DD SEMZM. The PAM4
constellation min-distance, parameterized by k, is given by the lowest of the three NN-distance curves,
namely d1, seen monotonic increasing with its maximum occurring at k = 1. Thus, it is no-backoff
operation optimizes the maximin distance to its peak value 0.25 (see Equation (49)). In contrast,
the 3 dB backoff typical setting k = 0.5 (motivated by the “constellation linearity” misconception),
degrades the min-distance down to 0.067.

To recap, we worked out the min-distance of the backed-off constellation maximizing
its min-distance over the backoff factor, k, and have shown that the maximin distance occurs
at k = 1. The practice of backing off the PAM4 DD SEMZM is a misconception, giving up
performance unnecessarily, since having an equi-spaced constellation is irrelevant. From
communication-theoretic considerations it follows that the essential factor determining BER
is the minimal-distance of the constellation, which is what we have optimized (adopting the
conventional dyadic taps design). Therefore, the experimental practice of backing off the
PAM4 DD SEMZM is not recommended (unless it is acceptable to sacrifice communication
link performance in order to reduce power consumption).

4.1.2. PAM4 COH SEMZM Dyadic Design Performance

We now also work out a coherent version of the dyadic BiWgt 3SE. Still using the
dyadic pair of phases,(46)

(
φ1, φ0

)
=
(

2
3 , 1

3

)
π
2 we adopt the bipolar code,

{bT
COH[c]}

4
c=1 = (bCOH

1 [c], bCOH
0 [c]) ∈ {[−1 − 1], [−1 1], [1 − 1], [1 1]} (53)

The four field levels

FPAM4 COH
c

(
φ

pk
1 , φ

pk
0

)
= sin

[
bCOH

1 [c]φpk
1 + bCOH

0 [c]φpk
0

]
, c = 1, 2, 3, 4

are now:

FPAM4 COH(φ1, φ0) = {sin(−φ1 − φ0), sin(−φ1 + φ0), sin(φ1 − φ0), sin(φ1 + φ0)} (54)

The best performance is also obtained at no backoff, k = 1, plugging into the field
vector (54) the same dyadic phase parameter values (46), as used for the DD design,(

φ1, φ0
)

k=1 =
(

2
3

π
2 , 1

3
π
2

)
yielding:

Fnaive2SE-COH
(

2
3

π

2
,

1
3

π

2

)
= {sin(−π

2
), sin(−π

6
), sin

π

6
, sin

π

2
} = {−1,−1

2
,

1
2

, 1} (55)
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with distances vector and minimal distance given by,

dnaive2SE-COH(k = 1) = Differences{−1,−1
2

,
1
2

, 1} = {1
2

, 1,
1
2
} ⇒ dnaive2SE-COH

min-dist (k = 1) =
1
2

The resulting NFOM of the constellation (see (27)) happens to be the same as in the
DD case:

NFOMoDAC = dnaive3SE-DD
min-dist (k = 1)/

2
C− 1

∣∣∣∣
C=4

=
1
2

/
2
3
= 0.75⇒ NFOMoDAC

dB = −1.25 dB (56)

Thus, our proposed no-backoff PAM4 COH design also has an intrinsic insertion loss
of −1.25 dB, as the DD design does. This is not accidental, as it may be shown that there is
an affine isomorphism between DD and COH SEMZM optimized constellations, but this is
going to be treated elsewhere.

5. Multi-Parallel oDACs (MPMZM in Particular)

The previous sections have revealed uneasy tradeoffs in SEMZM serial oDACs, which
we aim to relieve by introducing an alternative multi-parallel oDAC (MPoDAC) photonic
architecture for 1D constellation generation in optical transmitters, depicted in Figure 3.
This novel oDAC architecture significantly improves the triple tradeoff between oDAC
power-consumption (as well as complexity, size, cost) versus constellation quality vs.
modulation rate. The S-way MPoDAC generic photonic structure is seen to feature S
parallel paths comprising elementary oDAC building blocks:

One-bit modulation gates. Light is fanned out, ‘S-way’, by the variable 1: S splitter
to feed the S parallel paths (S ≥ 2), each of which are 1-bit modulated and coherently (in
phase) superposed in the S:1 optical combiner, which performs optical fan-in to generate
a single useful output beam (excess light may emerge and be terminated at other ports
of the combiner). In addition, the paths also contain, in tandem to the 1-bit gates, slow
tunable phaseshifters, maintaining equal common phases of the optical fields of the parallel
paths, at the internal point of superposition inside the optical combiner. This proposed
MPoDAC structure may be parameterized (soft-reconfigured) to achieve two types of
reception functionality, either COH or DD.

In the favored implementations of our proposed MPoDAC generic structure, we
assume MZMs with binary voltage drivers are used for the 1-bit gates in each of the
parallel paths. We refer to the resulting MZMs-based MPoDAC, based on MZM 1-bit
gates, as Multi-Parallel MZM (MPMZM). The parallelized MZMs are either used as PGs
(BPSK modulators requiring bipolar drives) for COH or as IGs (OOK modulators requiring
unipolar drives) for DD. Specific examples of the MPMZM photonic layout for PAM8 and
PAM4 generation are shown in Figure 4. A common photonic structure supports either DD
or COH constellation generation, the two usage modes sharing the same PIC, just differing
in the type of voltage drivers (unipolar or bipolar) for the MZMs in the multiple paths.
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Figure 3. S-way MPoDAC for DD or COH 1D constellations generation. The 1-bit GATES are Phase-Gates (PG) for COH,
Intensity-Gates (IG) for DD. PM means (slow) Phase Modulator. VAR means variable. The structures of the VAR splitter
and combiners will be elaborated below.
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Fan-in/fan-out: The variable 1:S and S:1 fan-in/out modules in Figure 3, Figure 4
may be realized, on photonic integration platforms, as Mode-Converters (MC), assembled
out of meshes of slow thermo-optic (TO) or electro-optic (EO) MZMs and PMs. For the
topology of interconnecting MZMs and PMs to form the splitters, see related reconfigurable
realizations of optical multiports in [28–38]. Combiners are essentially mirror images of
the splitters, so it suffices to specify the splitter structures. A 1:2 splitter may be simply
realized as a 2:2 MZM (with one of the input ports unused). A variable 2:2 MC, modeled
as an arbitrary 2 × 2 unitary matrix, is a recurring BB in the fan-out/in modules (see
Figure 5a), comprising a 2:2 MZM terminated in a push-pull PM. The other subfigures
of Figure 5 depict constructions of VAR 1:3 and VAR 1:4 Splitters and Combiners. The
MPMZM variable taps are implemented by tuning, in unison, the actuating phases of the
constituent MZMs and PMs inside each of the 2:2 MCs, based on Control&Calibration
(C&C) techniques for Photonic Integrated Circuits (PIC), techniques akin to those described
in [39–47]. Postulating ability to accurately set the fan-out/fan-in modules, our novel
analysis and design methodology for an S-way MPoDAC aims to evaluate the optimal
MPoDAC parameters: the splitting and combining ratios (the taps), to either synthesize
perfect target 1D constellations (COH PAM-2B bipolar) or to maximin-optimize an imperfect
unipolar constellation for DD. It is essentially the adjustment of the fan-in/out modules
taps that shapes the MPoDACs constellation.

Figure 6 provides yet another system view (complementing the component-oriented
view of Figure 4) of the first two MPMZM lowest orders: 2|3-bit (PAM4|8) DD|COH
MPMZMs, elaborating on the internal structures of the fan-out/in modules, based on the
fan-out/in structures of Figure 5.
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of the VAR 2:2 MC (which is a recurring BB in 1:3 and 3:1 of the 3-bit MPMZM), were already detailed in Figure 5a.
(a): PAM4 DD|COH. (b): PAM4 DD|COH. A common photonic layout, based on the fast MZM array, interconnected
to the phaseshifters array and to the fan-out/in modules, is used for both DD|COH. Abbreviations: PG = Phase Gate.
IG = Intensity Gate. PM = Phase Modulator. MC = Mode-Converter. VAR = Variable (tunable). The PGs and IGs are both
implemented as MZMs (with bipolar and unipolar drives, respectively). Thus, each photonic layout may be electronically
reconfigured (switching the drivers from bipolar to unipolar) to generate either DD or COH. In Section 8 we show that the
layout; (b) may be equipped with ancillary electronics to become reconfigurable between PAM8|PAM4 × DD|COH (four
programmable operation modes).

Ancillary electronics: Having specified the photonic architecture above, let us recall
that the MPoDACs are integrated electro-optical devices. Ancillary electrical subsystems
are further required beyond the photonics: Ultra-high-speed electronic drives for the fast
(1-bit gates) and slow-rate C&C functionality, to converge and track the oDAC parameters,
as elaborated next.

Algorithmic Intelligence Fabric: Slow-rate C&C functionality, initializing and sta-
bilizing the generated MPMZM constellations, is implemented on the Algorithmic Intel-
ligence Fabric (AIF), which runs on low-power digital processors (SW or real-time HW)
equipped with slow A/D and D/A data conversion interfaces. Further to the core C&C
functionality, the AIF is also tasked with the MPMZM reconfigurability, essentially process-
ing the information from sensed optical outputs via monitor photodiodes and TIAs and
optimizes the slow parameters of the MPMZM PIC by actuating control voltages tuning an
array of slow phaseshifters on the PIC. The core C&C functionality required to digitally
enable the MPMZM oDACs consists of tuning the phases of the phaseshifters used for
coherent combining, in order to set and stabilize the coherent in-phase superposition of
the 1-bit-gated paths. The AIF also adjusts and stabilizes the split/combine ratios of the
1:S and S:1 modules by actuating their internal tuning phases. In principle, assuming
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that all path phases are equalized by the C&C for coherent combining, the target output
constellation uniquely specifies required optimal tap values to be set and stabilized into
the split and combine modules. The 1:S splitting ratio and S:1 combining ratios, referred
to as taps (splitting or combining coefficients), must be relatively accurately fabricated in
(for fixed splitter or combiner) or be actuated to be stabilized at their optimal target values
(for splitter or combiner which have adjustable, tunable taps). The splitting and/or the
combining ratios may be either tunable or fixed (tunable splitter/combiner components
may be more optimally set and stabilized, fixed splitters/combiners are easier to fabricate
but may be less accurately fabricated and may drift over environmental disturbances).
E.g., for the generation of a perfect PAM8 COH constellation, the power-splitting (and
power-combining) taps should be in the ratios 4:2:1. The C&C system is tasked with setting
and maintaining the taps and the path phases. It is recommended that at least one of the
splitter or combiner tap vectors be tunable, subject to initialization and tracking to optimal
values by the C&C system. Fortunately, the environmental disturbances affecting the taps
and path phases stability are slow (sub-Hz to kHz order of magnitude) thus, the C&C
calibration and stabilization may be performed by means of low-bandwidth, low-power
electronics and digital-analog control loops.

The C&C system is evidently an essential enabler for this multi-parallel oDAC ar-
chitecture. The AIF provides a layer of slow-rate algorithmic intelligence, accompanying
modern MPoDACs. This is akin to the trend of Digitally Assisted Analog Systems in
ultra-high-speed RF mixed-signal electronics. In recent years there have been substantial
advances in photonic C&C techniques similar to those described in [39–47], applicable to
optical programmability. Those techniques may be directly leveraged to the MPoDAC
C&C task for the taps and the path phases initialization and stabilization–to which topic a
separate publication will be devoted.

1-bit-gates (PG and IG): When the 1-bit gates in the generic MPoDAC are realized
as MZMs, the MPoDAC is referred to as Multi-Parallel MZM (MPMZM). Each path now
comprises an MZM to be driven as either PG, namely BPSK modulator, or IG, namely
OOK modulator (for COH|DD, respectively). The bipolar and unipolar voltage drives are
both push-pull, to ensure chirp-free operation (same chirp-free design considerations as
explained for the SEMZM segments and the overall oDAC in Sections 2 and 4). The two
types of MZM-based 1-bit gates are compactly expressed as:

Fb = b · gMZM, where b = { bCOH ∈ {−1, 1}
bDD ∈ {0, 1} , gMZM =

√
axcss

MZM sin(kbkoff
π

2
), (57)

with b the driving Boolean value, bipolar|unipolar for COH|DD (BPSK|OOK), g the peak
gate transfer factor, and axcss

MZM < 1 modeling the excess power loss of the MZM.
Prior work in MPoDACs: As for MPoDAC or MPMZM earlier works in 1D constella-

tion generation, it is solely the case S = 2 that was addressed to the best of our knowledge:
see the device in Verbist et al. works, [17–19], which would be described in our terminology
as a particular case of a MPMZM oDAC for PAM4 DD generation (presently shown to
differ from our own proposed realizations). This prior work 2-way (S = 2) device combines
a pair of parallel EAMs incoherently, at 90◦ diff. phase, at some relatively large intrinsic
loss; in contrast, in our approach multi-parallel fields are always added up coherently at
we add up the two path fields coherently, i.e., in phase, at 0◦, diff. phase, attaining no
intrinsic modulation loss for PAM4 COH constellation. Moreover, Verbist et al. is relegated
solely to PAM4 while we generalize here the MPMZM approach to both COH detection
and DD realizations, for arbitrary higher-order PAM constellations (while in the specific
case of PAM4 DD, our scheme performs better than the Verbist et al. one). The coherent
in-phase addition of paths is to be preferred as it intrinsically enables chirp-free operation,
mitigating chirp-induced ISI-eliminates intrinsic modulation loss for COH, and reducing it
for DD, respectively.

Another prior work by Yamazaki et al., for the generation of COH 2D constellations (C-
QAM) parallelizes QPSK (2bit) modulators, forming four-point elementary constellations
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in IQ-plane, but our approach for C-QAM generation is more robust. We develop 1D
constellation generation first (by parallelizing BPSK rather than QPSK modulators), and just
nest a pair of such 1D MPMZM PAM COH constellation generators, in optical quadrature.
In contrast, the approach in Yamazaki’s prior work assembles the 2D MPoDAC out of
parallel elementary BBs each generating QPSK, which is less robust as the I and Q errors
tend to be correlated in that approach, and less flexible. Our novel multi-parallel approach
will also be contrasted with the prevalent SEMZM serial approach. But first let us model
the MPMZMs, develop their transfer factors and their optimizing taps.

5.1. Generic Model of the MPoDAC (MPMZM for DD|COH Constellation Generation in
Particular)

In this subsection we analytically model the S-way MPMZM, developing a code matrix
based linear framework for analysis. This is our MPoDAC with S parallel paths, having its
1-bit gates implemented as MZM-PG|MZM-IG for COH|DD, respectively.

MPoDAC parameters: Let the 1:S fan-out module have optical field splitter taps
w ≡ {ws}

S
s=1 assumed real-valued (as their phases are lumped with the parallel paths

phase factors), thus the power-splitting taps are their squares: W ≡ {Ws}
S
s=1 with Ws = w2

s .
Similarly, the S:1 fan-in module has combining taps u ≡ {us}

S
s=1, U ≡ {Us}

S
s=1, Us = u2

s .
Our model ideally assumes lossless splitter and combiner, thus unitarity constraints hold
(1all is an all-ones column vector):

S

∑
s=1

Ws = 1T
allW =

S

∑
s=1

w2
s = ‖w‖2 = 1,

S

∑
s=1

Us = 1T
allU =

S

∑
s=1

u2
s = ‖u‖2 = 1 (58)

To model (uniform, port-independent) losses, introduce field attenuation factors
axcss

W , axcss
U for the splitter and combiner (the power attenuation factors are their squares).

The split and combine field transfer taps, including excess losses are written as {axcss
W ws}

S
s=1,

{axcss
U us}

S
s=1. The transfer factors of the PG|IG 1-bit gates (for COH|DD MPoDACs respec-

tively), compactly expressed as per (57), where the S 1-bit MZM gates, arrayed in parallel,
are assumed identical, all driven at peak field transfer factor g = axcss

MZM sin(kbkoff
π
2 ):

FMZM
s = bCOH|DD

s · g, s = 0, 2, . . . , S− 1, bCOH
s ∈ {−1, 1}, bDD

s ∈ {0, 1}, (59)

The s-th path TF is then given by the product of the MZM TF and the path propagation
loss which is denoted axcss

path (including the excess losses of the phaseshifter):

Fpath
s = FMZM

s axcss
pathejθs = bCOH|DD

s gMZMaxcss
pathejθs = bCOH|DD

s sin(kbkoff
π

2
)axcss

MZMaxcss
pathejθs (60)

Here θ ≡ {θs}
S
s=1 are the end-to-end phases accrued along of each of the S paths.

These phases include both environmental induced phases as well as the slow intentional
phaseshifts we apply in the phaseshifters (the slow PMs in Figures 3, 4 and 6) in order to
equalize the end-to-end phases.

MPoDAC transfer factor (output constellation): The end-to-end MPoDAC TF is
obtained by superposing (adding in the combiner) the end-to-end field TFs of the S paths
(in turn obtained by multiplying the field TFs of individual elements along each path),
applicable to COH|DD MPMZM.

FS-MP = ∑S−1
s=0 wsaxcss

W · Fpath
s · axcss

U usejθss

= ∑S−1
s=0 wsaxcss

W · bCOH|DD
s sin(kbkoff

π
2 )axcss

MZMaxcss
path · e

jθs usaxcss
U ejθss

(61)
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Lumping together all power attenuation factors, axcss ≡ axcss
W axcss

MZMaxcss
pathsaxcss

U the field
TF becomes:

FS-MP = sin(kbkoff
π

2
)axcss

S−1

∑
s=0

bswsusejθss = sin(kbkoff
π

2
)axcss

S−1

∑
s=0

bs
√

WsUsejθss (62)

where we used Ws = w2
s , Us = u2

s ⇒ wsus =
√

WsUs .
Ideally, we perform slow phases equalization (by C&C) to tune all common phases to

be the same: θss = const. ≡ θs0, s = 0, 2, . . . , S− 1⇒ Fpath
s = bCOH|DD

s ejθs0 .
We shall see that it is having the paths common phases all equal that enables coherent

addition and chirp-induced-ISI-free operation. The equal common phase factors, ejθs0 ,
may then be factored out of the sum (indicative of the paths adding up “in phase”, i.e.,
coherently), yielding:

FS-MP = sin(kbkoff
π

2
)axcssejθs0

S−1

∑
s=0

bs
√

WsUs. (63)

We shall normalize the end-to-end transfer factor of the MPoDAC, (63), by having it
divided through the constant complex factor preceding the sum, sin(kbkoff

π
2 )axcssejθs0 , in

effect discarding this complex constant (this field transfer factor normalization removes the
common attenuation and also effectively de-rotates the common value of common phase
of all paths ejθs0). Abusing the notation to denote the normalized field factor by the same
letter, F, as we used in (63), but labeling it by the codeword, c = 1, 2, . . . C, we have:

FS-MP
c =

S−1

∑
s=0

bs[c]wsus =
S−1

∑
s=0

bs[c]
√

WsUs. (64)

The codeword index, c, also labels the field level, FS-MP
c generated in response to the

c-th codeword. The multilevel action of the MPoDAC consists applying codewords to the S
MZM gates array (one codeword bit per gate), in order to generate the various constellation
field levels:

bT [c] ≡ (bS−1[c], . . . , b1[c], b0[c]), c = 1, 2, . . . , C, bi[c] ∈ {−1, 1} for COH, bi[c] ∈ {0, 1} for DD.

5.2. Linear Model for MPoDACs with Matched Split/Combine Taps

It turns out that an important special case occurs when the splitter taps are respectively
equal the combiner taps, a condition referred to here as the matched-taps MZM design
(in the sense that the combiner taps vector being matched to the splitter taps vector, like a
vector-matched-filter in MIMO theory):

matched taps design : us = ws ⇔ Us = Ws ⇒
√

WsUs = Ws (65)

Plugging the last expression into(64), the c-th field level becomes a linear functional of
the taps vector-an inner product of the of the c-th codeword, b[c], with the taps vector,W:

FS-MP-matched
c =

S−1

∑
s=0

bs[c]Ws = bT [c]W, with bT [c] ≡ [bS−1[c] . . . b1[c] b0[c]) (66)

The linear transformation,

W ≡ [WS−1 WS−2, . . . , W1 W0]
T → FS-MP ≡

[
FS-MP

1 , FS-MP
2 , . . . , FS-MP

C

]T
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is compactly expressed in matrix form, introducing the C× S code matrix B, as

MPoDAC equations (matched-taps design) : BW = F (67)

collecting the C codewords as the rows of B (the c-th row of B is bT [c]). This matrix-vector
linear transformation (or the collection (66) of inner products) is referred to as the MPoDAC
equation. The design of an MPoDAC for a target constellation vector involves solving
the system (67) of C linear equations in S unknowns (assuming the solution exists). If
there is no solution, we may still optimize the BW product to yield an F vector exhibiting
maximin distance, as per the generic oDAC optimization principle outlined in Section 3.
The difference between coherent and direct detection is in the entries of the B matrix,
taken from the set {−1,1} for COH, {0,1} for DD. In fact, the mapping 2BDD

cs − 1 = BCOH
cs

transforms the DD matrix elements into corresponding COH code elements.
We note that the MPoDAC equation is similar to the SEMZM equation except that there

is no sine nonlinearity here-the formulation here is entirely linear. Upon exactly solving
or optimizing (67), we also impose the taps unitarity constraint, W0 + W1 + . . . + WS−1 =
1T

allW = 1. In fact, we may adopt for the MPMZM either the counting code (for BiWgt
designs) or thermometer code (for ThWgt designs, same ThWgt code as introduced in
the SEMZM). In both the BiWgt code and the last ThWgt code, the last codeword (c = C)
consists of all-ones. In the DD BiWgt code, the first codeword is all-zeros, while in the
COH BiWgt code the first code is all minus-ones. Our target constellation may be taken to
be max-full-scale, without loss of generality, meaning that the first and last levels (LSB and
MSB) are (0,1) for DD and (−1,1) for COH. It follows that the first equation of the system
(67) is redundant and may be dropped, and we are left with C − 1 equations, c = 2, 3, . . . ,
C in S unknowns. The very last equation of the system (67) (for c = C) amounts to the
unitarity constraint. Just like in the model we developed for the SEMZM (except that here
we have no sine nonlinearity), we may introduce a reduced code matrix, Bred by dropping
the first row of B (the first codeword) and a reduced field vector, Fred by dropping the first
field level (0 for DD and −1 for COH) replacing (67) by the following system of C − 1
linear equations in S unknowns.

reduced MPoDAC equations (matched-taps design) : BredW = Fred

These linear models actually apply to both DD as well as COH MPMZMs. However,
a key distinction between the DD and COH cases arises regarding the domain of definition
of the 1D target constellation. COH constellations are stated in the optical field domain,
whereas DD constellations are stated in the optical power domain (the square of the field).
Thus, a target DD constellation is specified as PDD =

[
PDD

1 PDD
2 . . . PDD

C
]T , in terms of its

power constellation vector to be mapped back to a field domain,

FDD =
√

PDD ≡
[√

PDD
1

√
PDD

2 . . . ,
√

PDD
C

]T

(e.g., if specified equi-spaced in the power domain it won’t be equi-spaced in the field
domain).

It is essential to consider the optical fields underlying the target optical power domain
constellation:

reduced DD MPMZM equations (matched-taps design) : BDD
red W =

√
PDD

red

reduced COH MPMZM equations (matched-taps design) : BCOH
red W = FCOH

red

(68)

Our proposed DD MPMZMs are still coherent optical structures, interfering parallel
optical paths linearly in optical field. It is just that their constellations are specified in the
power domain.
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6. BiWgt MPMZM as Energy-Efficient Generator of Inherently Perfect Coherent
(Bipolar) PAM

We have introduced in (19) perfect constellations as max-full-scale (LSB = −1, LSB = 1)
equi-spaced ones. For coherent transmission the COH C-PAM perfect constellation (with
increment 2

2B−1 ):

F
perfect

COH PAM-C =
1

C− 1
{2c− C− 1}C

c=1

To synthesize such perfect constellation by an MPMZM, we invoke the following
theorem, which may be formally proven by induction (readily verified by simulating it in a
few lines of code):

A “dyadic signed sum” of B terms,±2B−1 . . .± 4± 2± 1, generates 2B odd consecutive
integers:

{±2B−1 . . .± 4± 2± 1}all sign combos =
(
−2B + 1,−2B + 3,−2B + 5, . . . , 2B − 5, 2B − 3, 2B − 1

)
(69)

Porting this mathematical result to the MPMZM optical physics, consider a B-bits
BiWgt MPMZM with matched power-splitting taps forming a geometric sequence with
ratio 2 (referred to as dyadic):

Wdyadic
B-bits =

1
2B − 1

[
2B−1 . . . 8 4 2 1

]
=

1
2B − 1

[
2B−1 . . . 23 22 21 20

]
(70)

These dyadic tap vectors satisfy the unitary constraint, thus represent physically
realizable matched MPMZM designs. Further using the bipolar COH counting code,
constructed as in (10), the resulting c-th constellation level is seen to belong to a perfect
B-bits COH PAM constellation:.

Fc = bT
COH[c]W

dyadic
B-bits = ∑S−1

s=0 bCOH
s [c]

[
Wdyadic

B-bits

]
s

= bCOH
s [c]2B−1 + . . . + bCOH

s [c]22 + bCOH
s [c]21 + bCOH

s [c]20 = 1
2B−1{±2B−1 . . .± 4± 2± 1}all sign combos

= 1
2B−1

(
−2B + 1,−2B + 3,−2B + 5, . . . , 2B − 5, 2B − 3, 2B − 1

) (71)

Examples for the lowest orders of COH PAM constellations (most useful in upcoming
generations):

PAM4 COH : Wdyadic
2-bits = 1

3 [2 1]T = [ 2
3

1
3 ]

T ⇒ F
perfect

COH PAM4 = 1
3{−3,−1, 1, 3} = {−1,− 1

3 , 1
3 , 1}

PAM8 COH : Wdyadic
3-bits = 1

7 [4 2 1]T = [ 4
7

2
7

1
7 ]

T ⇒ F
perfect

COH PAM8 = 1
7{−7,−5− 3,−1, 1, 3, 5, 7}

(72)

Perfect QAM Generation with an IQ-Nested Pair of MPMZMs

While a COH PAM constellation may be transmitted by itself over an optical fiber or
WDM or PDM tributary, the most useful application of the 1D COH PAM-2B generators de-
veloped above is to enable 2D perfect 22B -QAM constellations by quadrature multiplexing
of two such 1D PAM-2B tributaries, for example, generate 16QAM use two COH PAM4
MPMZMs, as IQ tributaries. Evidently, the QAM signals generated may be further polar-
ization multiplexed. See Figure 7a for QAM and PDM-QAM generation. The Quadrature
Multiplexer (QMUX) component is described in Figure 7b. By calibrating and stabilizing
the dyadic taps (70) within each of the four MPMZM, a perfect QAM constellation would
be in principle obtained for each of the IQ tributaries.
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7. BiWgt MPMZM as Energy-Efficient Generator of Inherently Perfect Coherent
(Bipolar) PAM

DD PAM4 oDACs, whatever their implementation, be it SEMZM or MPMZM based,
are likely to be poised as key building blocks over several upcoming generations of short-
reach and ultra-short reach photonic networks, in light of their simplicity and robustness
(compared to higher order oDACs), since PAM4 DD enables the advantage of doubled
spectral efficiency relative to OOK-links. Moreover, as low-cost energy-efficient coherent
detection-based links will eventually make their debut into intra-datacenter photonic
networks, QAM16 is likely to be deployed following QPSK introduction. As QAM16
may be synthesized by means of IQ-nesting a pair of COH PAM4 oDACs, it is important
to comparatively evaluate the performance of contending COH PAM4 oDACs (used in
16QAM). We address both COH and DD variants of PAM4 MPMZM oDACs, comparing
their performance with that of PAM4 COH and DD PAM4 SEMZM. The DD PAM4 MPMZM
will be shown to not be amenable to a perfect solution (unlike the perfect COH PAM4
MPMZM), but will be optimized in this section based on our maximin methodology
(Section 3).

This section is structured as follows: COH PAM4 MPMZM is analyzed in Section 7.1 be-
low as a special case of the generic COH PAM-2B treated in the last section. In Section 7.2 we
further propose a more robust COH PAM4 photonic structure, based on 50–50 splitter, at the
expense of giving up just a little bit of performance. Sections 7.3 and 7.4 treat the DD PAM4
variants, with matched taps and fixed 50–50 splitter, respectively. Sections 7.5 and 7.6 ad-
dress chirp-impairments, as arising in the Verbist et al. prior work (whereas chirp is
intrinsically mitigated in our MPMZM approach). In Section 7.7 we compare all four
contending PAM4 MPoDAC options. Our COH and DD PAM4 MPMZM variants provide
our first example of reconfigurability–based on a common photonic layout reprogrammed
to switch between COH or DD PAM4 operational modes.

7.1. COH PAM4 MPMZMs- the Matched Taps Perfect Design

As seen in (72), a perfect PAM4 COH constellation, F
perfect

COH PAM4 = {−1,− 1
3 , 1

3 , 1} with
largest possible min-distance, 2

3 , is generated based on the dyadic matched taps design:

COH PAM4 matched taps : Wdyadic = [Wdyadic
1 Wdyadic

0 ]
T
= [Udyadic

1 Udyadic
0 ]

T
=

1
3
[2 1]T = [

2
3

1
3
]
T

(73)

The block diagram of the photonic layout for this perfect COH PAM4 matched-taps
MPMZM was already seen in Figure 6a. The variable 1:2 splitter and variable 2:1 combiner
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may each be realized as a single slowly tunable MZM. The C&C system tune the taps of the
matched variable splitter and combiner to realize fan-out and fan-in power ratios of 2

3 : 1
3 .

7.2. Fixed 50–50 Tap COH PAM4 MPMZM- Reduced Complexity Design

Attaining accurate particular values for a splitter or combiner tap, and maintaining
them steady, generally requires tunable taps and a calibration and/or control electro-optic
subsystem (tuning and control electronic circuitry, electro-optic phase actuation methods,
optical monitor points etc.). We then assess trading off a fraction of the performance of
the perfect COH PAM4 constellation for simplification of the photonic structure and the
C&C system. We propose replacing either the variable splitter or the variable combiner
by a fixed one. This MPMZM is based on essentially the same block diagram, Figure 6a,
as the matched taps COH PAM4 scheme of the last subsection, but either the splitter or
the combiner (but not both) are now fixed, with their taps nominally set in fabrication to a
suitable value, assumed relatively stable in the wake of environmental disturbances. Let us
adopt having a fixed 1:2 splitter at 50–50 splitting ratio (e.g., use Multi-Mode-Interference
(MMI) device, tending to attain 3 dB stable operation by virtue of its structural symmetry)
and redesign the MPMZM, while optimizing the 2:1 combiner which is still variable. The
main advantage of using a 50–50 splitter is complexity reduction (removal of the variable
MZM) at the expense of a moderate reduction in performance as evaluated below, based
on the reproducibility and relative stability of the 50–50 splitting ratio. Now, as we longer
use matched-taps, the MPMZM Equation (68) is not usable. We revert to the more general
model (64), Fc = ∑S−1

s=0 bs[c]
√

WsUs. Fixed 50:50, splitter implies taps W1 = W0 = 1
2 . It

remains to optimize over the two U-taps at the combiner side. Here we have a special case,
S = 2 of the S-way MPMZM Equation (64) for generally unmatched-taps:

F2-MP-fixed
c = bCOH

1 [c]
√

W1U1 + bCOH
0 [c]

√
W0U0 = bCOH

1 [c]
√

1
2 U1 + bCOH

0 [c]
√

1
2 U0

= 1√
2

(
bCOH

1 [c]
√

U1 + bCOH
0 [c]

√
U0
)
= 1√

2

(
bCOH

1 [c]
√

U1 + bCOH
0 [c]

√
U0
)
= 1√

2

(
±
√

U1 ±
√

U0
) (74)

The dyadic taps design is applied to the two field taps, u1 =
√

U1, u0 =
√

U0, requiring
that they be in 2:1 ratio (in contrast to the matched-taps case, wherein it is the power taps
that are in 2:1 ratio):

u1 : u0 =
√

U1 :
√

U0 = 2 : 1⇔ U1 : U0 = 4 : 1⇔ (U1, U0) = (
4
5

,
1
5
)⇔

(√
U1,

√
U0

)
= (

2√
5

,
1√
5
)

Substitution into (74) then yields the field constellation for the fixed 50–50 PAM4 COH
MPMZM:

F2-MP-fixed
c = 1√

2

(
±
√

U1 ±
√

U0
)
= 1√

2
(± 2√

5
± 1√

5
) = 1√

10
(±2± 1) = 1√

10
(−3,−1, 1, 3)

=
(
− 3√

10
,− 1√

10
, 1√

10
, 3√

10

) (75)

This constellation is evidently equi-spaced, but it is not max-full-scale. Indeed, its
MSB (equal to the intrinsic modulation loss TF) is less than unity, implying a reduction in
the NFOM figure of merit:

MSB2-MP-fixed = F2-MP-fixed
4 =

3√
10

= 0.949 = −0.46 dB (76)

While the PAM4 COH constellation generated by the matched split/combine design
is max-full scale, i.e., its intrinsic modulation loss is 0 dB, the fixed design, worked out
here, gives up 0.46 dB of NFOM performance but is less complex: there is nothing to tune
in the 50:50 uniform splitter, which is readily fabricated, and there is essentially just one
combiner tap, U0, to tune–the combiner (as the U1 complements U0 to unity ideally). In
both cases, we must tune the push-pull phase of the two parallel paths, to null out their
differential phase. But we now have a single tap to control, not two. Another fixed tap
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option is designing and fabricating the fixed splitter (e.g., a directional coupler) not at 50:50
split but rather aiming for ideal 2

3 : 1
3 power ratio (73) (consistent with the matched splitter

and combiner taps design, both being 2
3 : 1

3 ). The penalty, for slightly deviating from the
nominal ratio, may be shown to be quite low. This fixed tap scheme might perform better
than the 50–50 one.

7.3. DD PAM4 MPMZMs–Maximin Optimization Yields the Matched-Taps Solution

Fortunately, essentially same MPMZM photonic structures introduced in the last
two sections for PAM4 coherent detection (namely the matched-taps option and the fixed
50–50 option) are reusable for direct detection as well, albeit with generally different
split/combine taps and with different drives for the two parallel-nested MZMs, which now
implement IGs (OOK modulators), by using push-pull unipolar voltage drives (rather than
bipolar voltage drives as used for COH PAM4).

Here we optimize the MPMZM parameters for best performance based on the maximin
distance methodology of Section 3. At the optimized operating point, perfect linearity and
null modulation loss of the MPMMZM are no longer attainable with the DD PAM4 variant
(in contrast with COH PAM4 generation with the MPMZM, which was seen to exhibit
inherently perfect performance).

Again, we have here the special case, S = 2, for the unmatched S-way MPMZM
Equation (64),

FDD-PAM4
c = ∑1

s=0 bs[c]
√

WsUs = bDD
1 [c]

√
W1U1 + bDD

0 [c]
√

W0U0

= bDD
1 [c]

√
(1−W)(1−U) + bDD

0 [c]
√

WU, c = 1, 2, 3, 4
(77)

here with DD code bits. To eliminate W1, U1 in the second line above, we used the tap
unitary constraints W0 + W1 = 1 = U0 + U1, and W0, U0 were simply denoted as W, U, for
brevity.

At this point we do not yet know that the optimal solution for the taps satisfies U = W,
i.e., optimal taps should be matched, but we shall prove it rigorously, for the particular
PAM4 case at hand.

The OOK modulating bit pairs [bDD
1 [c] bDD

0 [c]] may be read off the rows of the code
matrix:

PAM4 DD code matrix : BDD PAM4 = [0 0; 0 1; 1 0; 1 1] (78)

Substituting these four codeword bit pairs in turn into (77) yields the four constellation
levels:

FDD-PAM4 = {0,
√

WU,
√
(1−W)(1−U),

√
(1−W)(1−U) +

√
WU} (79)

Absolute-squaring this optical field constellation yields the optical power domain
constellation:

{P1, P2, P3, P4} = {0, WU, 1−W −U + WU, 1−W −U + 2WU + 2
√

WU(1−W)(1−U)} (80)

The nearest-neighbors (NN) distances in the power domain, parameterized by W, U,
are given by:

{d1, d2, d3} ≡ {P2 − P1, P3 − P2, P4 − P3} = {d1(W, U), d2(W, U), d3(W, U)}

= {WU, 1−W −U, WU + 2
√

WU(1−W)(1−U)}
(81)

Since d3 > d1, it suffices to evaluate the inner min just for the first two NN distances
d1, d2:
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d̂maximin dist = max
W,U

min{d1(W, U), d2(W, U)}︸ ︷︷ ︸
dmin-dist(U,W)

= max
W,U

dmin-dist(U,W)︷ ︸︸ ︷
min{UW, 1−U −W}

(
Ŵ0, Û0

)
= argmax

W,U
min{d1(W, U), d2(W, U)} = argmax

W,U

dmin-dist(U,W)︷ ︸︸ ︷
min{UW, 1−U −W}

(82)

To evaluate (82), let us first work out the min of the dmin-dist(U, W) term, a map with
domain consisting of the unity-side square (0, 1)× (0, 1)), assigning point (U, W) the lower
of the two heights of the graphs UW, 1−U −W above the given point:

dmin-dist(U, W) ≡ min{UW, 1−U −W}, s.t. (U, W) ∈ (0, 1)× (0, 1) (83)

We note that when U|W increase while the other variable, W|U, respectively, is
kept constant, the function UW monotonically increases, while the function 1−U −W
monotonically decreases, throughout the square domain (as we move away from the origin
in the first quadrant of the W-U plane). The evaluation of the minimum (83) yields a
piecewise defined function dmin-dist(U, W) in the two variables W, U (see the contour plots
and 3D plots in Figure 8).
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tour lines, the min-distance is maximized at the bright (red) point at the intersection of the 45° 
Figure 8. W-U plane plot of the min-distance function for PAM4 DD MPMZM. Following the contour
lines, the min-distance is maximized at the bright (red) point at the intersection of the 45◦ diagonal
with the curved peaked white crest of the contour map. This graphically verifies the result analytically
proven in this subsection, that the optimum realizing W and U parameters satisfy U = W, i.e., usage
of matched-split-combine taps is indeed optimal for PAM4 DD.

The boundary between the two piecewise subdomains in the unity-side square in the
W-U plane, is the locus (solution set) of this affine equation (with coefficients parameterized
by W):

UW = 1−U −W, s.t. (U, W) ∈ (0, 1)× (0, 1)

Solving this equation for U or conversely solving it for W, yields parametric de-
scription of the boundary curve, in either of the following alternative equivalent forms
U = 1−W

1+W , W = 1−U
1+U . This curve with endpoints (0,1) and (1,0) in the unit square domain,

gives rise to a partition of the unit square into two regions (lower-left and upper-right).
The min function (83) may then be given an explicit piecewise description the said two
regions, in terms of the two functions UW, 1−U −W. The inequalities describing these
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two regions, are W ≤ 1−U
1+U , W > 1−U

1+U (these two regions may be alternatively described
by inequalities exchanging the roles of U and W: U ≤ 1−W

1+W , U > 1−W
1+W ). The min-distance

function (83) is then explicitly expressed as:

dmin-dist(U, W) ≡ min{UW, 1−U −W} =
{

UW, if U ≤ 1−W
1+W

1−U −W, if U > 1−W
1+W

=

{
UW, if W ≤ 1−U

1+U
1−U −W, if W > 1−U

1+U
(84)

It turns out that the maximum, over W, of the min-dist function (83) in the (0, 1)× (0, 1)
open square domain of the W-U plane, is attained right on the boundary curve. Consider
the restriction of dmin-dist(U, W) onto the boundary, namely the curve,

dmin-dist(U, W)|(U,W)∈boundary = dmin-dist(U, W)|U= 1−W
1+W

= dmin-dist(
1−W
1 + W

, W) = UW|U= 1−W
1+W

=
1−W
1 + W

W

seen parameterized by a single free variable, W. We may then readily locate the point
along this 1D parameterization whereat the maximum of the 2D function dmin-dist(U, W) is
attained:

max
W
{dmin-dist(W)} = max

W
{1−W

1 + W
W} = 3− 2

√
2

where the max was obtained by elementary calculus. The W-value realizing the 1D
maximum is Ŵ = argmax

W
{ 1−W

1+W W} =
√

2− 1 = 0.414, which, upon substitution into the

1D function, yields the max value 1−W
1+W

∣∣∣
W=Ŵ=

√
2−1

= 3− 2
√

2. Having obtained Ŵ, and

using the parametric equation of the boundary curve, U = 1−W
1+W , we readily generate the

second coordinate, Û of the (Ŵ, Û) point on the curve, which attains the maximum of the
restriction dmin-dist(U, W) along the boundary: Û = 1−Ŵ

1+Ŵ
: (Ŵ, Û) = (Ŵ, 1−Ŵ

1+Ŵ
)
∣∣∣
Ŵ=
√

2−1
=

(
√

2− 1,
√

2− 1).
This optimizer point, attaining the maximum when restricted to the boundary curve,

is seen to be the intersection of the unit square diagonal, (which has equation U = W) with
the boundary curve, as we have Û = Ŵ =

√
2− 1 = 0.414. It is possible to show that the

boundary maximal point,

(Ŵ, Û) = (Ŵ, Ŵ) = (
√

2− 1,
√

2− 1) (85)

is actually the global maximum of the 2D function dmin-dist(U, W) over the entire unit-
square domain.

To recap, the optimal matched taps in this PAM4 DD design are

(Ŵ1, Ŵ0) = (Û1, Û0) = (1− Û, Û) =
(

1− (
√

2− 1),
√

2− 1
)
=
(

2−
√

2,
√

2− 1
)
= (0.586, 0.414) (86)

It is at the identified global point (85) that the first two PAM4 DD NN-distances of the
constellation, {d1(W, U), d2(W, U)} = {UW, 1−U −W} get equal, yielding the maximin
point:

{d̂1, d̂2} = {d1(Ŵ, Û), d2(Ŵ, Û)} = {UŴ, 1− Û − Ŵ} = {
(√

2− 1
)(√

2− 1
)

, 1−
(√

2− 1
)
−
(√

2− 1
)
}

= {
(√

2− 1
)2

, 1− 2
(√

2− 1
)
} = {3− 2

√
2, 3− 2

√
2}

We conclude that d̂1 = d̂2 = 3− 2
√

2.
As for d̂3 using (81), repeated here d3 = UW + 2

√
UW(1−U)(1−W), yields

d3 = UW + 2
√

UW(1−U)(1−W)

∣∣∣∣
U=W=

√
2−1

= 4
√

2− 5 = 0.657 (87)
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The maximin distance for d̂1 = d̂2 = 3− 2
√

2 < 4
√

2− 5 = d̂3 equals

d̂ = min{d̂1, d̂2, d̂3} = min{d̂1, d̂2} = min{3− 2
√

21, 3− 2
√

2} = 3− 2
√

2 = 0.172 (88)

Interestingly, d̂1 + d̂2 + d̂3 = (3− 2
√

2) + (3− 2
√

2) + (4
√

2− 5) = 1, i.e., the PAM4
constellation based on our optimal design U = W =

√
2− 1 (henceforth referred to as

our preferred (pref) design for the PAM4 DD) is max-full-scale, though this is not an equi-
spaced constellation (just its first three points are uniformly spaced while its fourth point is
farther away from the third point). To verify this, use (80) for the levels of the constellation
points:

{P1, P2, P3, P4}U=W=
√

2−1 = {0, 1−U −W + UW, 1−U −W + 2UW + 2
√

WU(1−W)(1−U)}U=W=
√

2−1

= {0, 3− 2
√

2, 6− 4
√

2, 1} = {0, 0.172, 0.343, 1}
(89)

consistent with

{d̂pref
1 , d̂pref

2 , d̂pref
3 } = {3− 2

√
2, 3− 2

√
2, 4
√

2− 5} = {0.172, 0.172, 0.657}

⇒ d̂pref
maximin-dist = min{d̂pref

1 , d̂pref
2 , d̂pref

3 } = 3− 2
√

2 = 0.172
(90)

where the parameters above are labeled pref to indicate that they pertain to our optimal
preferred design (matched taps PAM4 DD MPMZM). To recap, we have proven that our
optimal DD PAM4 design is matched, i.e., its splitter and combiner tap settings are identical
(Û = Ŵ) and we have worked out the optimal taps, Û = Ŵ =

√
2− 1 = 0.414, to maximize

the minimum distance of the PAM4 DD constellation, while the phase setting is null to
ensure chirp-free (ISI free) operation:

(Ŵpref, Ûpref) = (
√

2− 1,
√

2− 1) = (0.414, 0.414)⇒ d̂pref
maximin-dist = 3− 2

√
2 = 0.172,

d̂pref
min-dist = d̂pref

1 = d̂pref
2 = 3− 2

√
2 = 0.172, d̂pref

3 = 1− 2d̂pref
1 = 4

√
2− 5 = 0.657

(91)

The design just developed above, requires having both the 1:2 splitter and 2:1 combiner
tunable in order to adjust their settings to optimal, in our preferred DD PAM4 design (91).
The matched splitter and combiner, are to be set to a particular (irrational number) maximin-
realizing tap value: Ŵpref = Ûpref =

√
2− 1 = Ŵequi = Ûequi.

7.4. Fixed 50–50 DD PAM4 MPMZM Generator

We now propose a DD PAM4 MPMZM design variant based on a fixed splitter or
combiner, akin to our fixed 50–50 COH PAM4 MPMZM design introduced in Section 7.2.
Here we introduce a fixed 50–50 DD PAM4 MPoDAC structure in two flavors: either
using a 50–50 splitter and a tunable optimized combiner, or a tunable optimized splitter
and a 50–50 combiner. For definiteness let us model and optimize the case of fixed 50–50
splitter, i.e., tap W0 ≡ W = 1

2 and variable combiner, with tap U0 ≡ U to be optimized.
Plugging these parameters of into the model (77) yields a triplet of minimal distances all
parameterized by the tunable combine tap U, an unknown at this point:

{d1(U), d2(U), d3(U)}|W= 1
2
= {UW, 1−U −W, UW + 2

√
UW(1−U)(1−W)}W= 1

2

= { 1
2 U, 1

2 −U, 1
2 U +

√
U(1−U)}

(92)

The generic maximin problem then reduces here to a 1D one over the U-variable (the
superscript (n) refers to a n-vector, here n = 3, as there are three NN-distance elements for
PAM4):

d̂ ≡ max
U

d(3)min-dist(U)︷ ︸︸ ︷
min{d1(U), d2(U), d3(U)} = max

U
d(3)min-dist(U) (93)
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Given the constraint 0 < U < 1, it follows that we always have 1
2 U = d1 < d3 =

1
2 U +

√
U(1−U). Thus, d3 does not impact the minimal distance evaluation, which is

entirely dependent upon the first two NN distances. The constellation minimal distance is
just the least of the first two distances:

d(3)min-dist(U) ≡ min{d1(U), d2(U), d3(U)} = min{d1(U), d2(U)} ≡ d(2)min-dist(U)

The maximin problem to solve here is

d̂ ≡ max
U

min{d1(U), d2(U), d3(U)} = max
U

d(2)min-dist(U)︷ ︸︸ ︷
min{d1(U), d2(U)}

≡ max
U

d(2)min-dist(U) = maxmin{ 1
2 U, 1

2 −U}
(94)

It amounts to maximizing a single variable function, d(2)min-dist(U) = min{ 1
2 U, 1

2 −U}.
To work out a piecewise expression for it, we compare, at every point U, the two functions
d1(U) = 1

2 U, d2(U) = 1
2 −U, which monotonically increase and decrease respectively (the

first one is linear with positive slope while the second one is affine with negative slope).
The critical tipping point where the graphs of the two functions intersect is obtained as
solution of the linear equation: d1(U) ≡ 1

2 U = 1
2 −U ≡ d2(U). The “tipping point” is

U = Û = 1/3, separating the two regions of the piecewise specifications of d(2)min-dist(U):

d(2)min-dist(U) ≡ min{d1(U), d2(U)} = min{1
2

U,
1
2
−U} =

{ 1
2 U, if U ≤ 1

3
1
2 −U, if U > 1

3
(95)

The maximum of this function over U evidently occurs right at the tipping point
U = Û50–50 ≡ 1

3 . It is at this point that the maximal min distance is attained. Having
obtained the optimizer parameter Û50–50 = 1

3 , the 50–50 design and its performance (its
maximin distance) are now fully specified:

Û
∣∣

W=1/2, U=1/3
≡ Û50–50 = argmax

U

d(2)min-dist(U)︷ ︸︸ ︷
min{d1(U), d2(U)} = argmax

U
d(2)min-dist(U) = 1

3

d̂
∣∣∣

W=1/2, U=1/3
≡ d̂50–50

maximin-dist = argmax
U

d(2)min-dist(U) = d(2)min-dist(Û50–50) = d(2)min-dist(
1
3 ) =

1
2 U
∣∣∣
U= 1

3

= 1
6 = 0.167

(96)

To recap, the 50–50 design
(

W50–50 = 1
2 , U50–50 = 1

3

)
exhibits the maximin distance

performance d̂50–50 = 1/6 = 0.167.
We reiterate that while the splitter is fixed (50–50), the variable combiner must be

tuned to 2
3 : 1

3 power splitting ratio. In this 50–50 optimized design the NN-distances come
out, per (92), as

{d50–50
1 , d50–50

2 , d50–50
3 } = {UW, 1−U −W, UW + 2

√
UW(1−U)(1−W)}W= 1

2 ,U= 1
3

= { 1
6 , 1

6 , 1
6 +

√
2

3 } = {0.167, 0.167, 0.638}
(97)

Thus, the third NN distance for the 50–50 design is now

d50–50
3 =

1
6
+

√
2

3
= 0.638>d50–50

min-dist = d50–50
1 = d50–50

2 =
1
6
= 0.167 (98)

Compared with our preferred (matched taps) design (91), d̂pref
maximin-dist = 3− 2

√
2 =

0.172, the distance (96) d̂50–50
maximin-dist =

1
6 is just 2.94% or 0.25 dB lower (worse). This

seems a marginal price to pay in exchange for the simplicity of using a fixed 50–50 splitter,
as there is now just a single combining tap to tune (rather than two tunable taps in the
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preferred matched taps design). We may also assess that the maximal distance of the 50–50
design (which coincides with the third NN distance, the third NN distance of the 50:50
design), namely d50–50

3 = 1
6 +

√
2

3 = 0.638, is just 2.86% lower than dpref
3 = 4

√
2− 5 = 0.657

of our matched taps preferred design.

d50:50
3 = d3

∣∣
W = 1

2 , U = 1
3

ψ = 0

= UW + 2 cos ψ
√

UW(1−U)(1−W)

∣∣∣∣ W = 1
2 , U = 1

3
ψ = 0

= {
1
6

,
1
6

,
1
6
+

2√
3

} (99)

The MSB power level for this 50:50 design is

d50–50
1 + d50–50

2 + d50–50
3 =

1
6
+

1
6
+ (

1
6
+

√
2

3
) =

1
2
+

√
2

3
= 0.97,

which is just 3% under the maximally possible unity MSB level for the preferred optical
design. The design we outlined here is also a favorite to its simplicity and given that it
is just 0.25 dB suboptimal in its NFOM, compared to the matched taps optimal preferred
design.

To recap, our 50–50 design proposed here for DD PAM4, based a 50–50 fixed splitter
(or combiner) optimizing the tunable combiner (or splitter respectively), to 1

3 : 2
3 power

splitting ratio, and setting null relative phase between the two intensity-gated paths, is
just slightly suboptimal (<~3% maximin-distance degradation) relative to our optimal
preferred design.

Our 50–50 DD PAM4 oDAC structure is reusable for coherent detection of bipolar
PAM4.

Another useful aspect of the favorite 50–50 BiWgt oDAC design just introduced just
above, is that the same photonic structure, setting one fixed 50–50 tap and null relative
phase parameter,

(
W50–50 = 1

2 , U
)

, is reusable in a sub-optimal (though nearly optimal)
design for coherent detection as well (provided that U is reoptimized for COH operation).
Thus, the same opto-electronic structure is able to support both PAM4 DD and COH (the
only difference being in the intensity gates drivers which must be unipolar and bipolar,
respectively).

We conclude that a common physical realization, based on a pair of parallel MZMs,
with a 50:50 splitter and a variable (tunable) combiner set to either 1

3 : 2
3 or 1

5 : 4
5 respectively,

may dually serve both 2MP DD and 2MP COH generation of PAM4 or bipolar PAM4.
This is an example of reconfigurability of the PAM4 MPMZM (see more on the optical
reprogramming topic in Section 8)

7.5. The Differential Phase in PAM4 BiWgt MPMZM as Chirp Mitigation Enabler

In our proposed MPMZM oDAC structure, we have stated that a necessary parametric
condition is to equalize all of the S parallel paths to a common phase (which we discarded
from the MPMZM transfer factor). In particular, for a PAM4 BiWgt MPMZM this implies
that the common phases of the two paths be equal. Specializing the MPMZM TF (63) to the
2-way case (S = 2), we have:

F2-MP
c = sin(kbkoff

π

2
)axcss

1

∑
s=0

bs[c]
√

WsUsejθs ∝ b1[c]
√

W1U1ejθ1 + b0[c]
√

W0U0ejθ0 (100)

In our designs, we equalize all path phases to a common value, θ0. Here this amounts
to setting θ1 = θ0, then factoring out ejθ0 ahead of the sum and then discarding it, as a
fixed rotation of the constellation in the complex plane is inconsequential, since by the
time it reaches the optical receiver, it compounds with other such fixed rotations in the
propagation process. It is then derotated by the phase recovery function of a COH receiver
or is wiped out by direct detection in a DD receiver.
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However, here, we wish to model the impact of running the PAM4 BiWgt MPMZM
with θ1 6= θ0, which will be seen to yield a major chirp-impairment. Introducing the
differential phase between the two paths phases, ψ ≡ θ1 − θ0, we rewrite (100) as

F2-MP
c ∝ ejθ0

(
b1[c]

√
W1U1ejψ + b0[c]

√
WsUs

)
The BiWgt MPMZM TF is written (normalized, replacing proportionality,∝, by equal-

ity, =), as:
F2-MP

c = b1[c]
√

W1U1ejψ + b0[c]
√

W0U0 (101)

This 2-way PAM4 BiWgt MPMZM evidently has it levels FS-MP
c , complex-valued with

phase varying “all over the place”, as the random bits of the code make their transitions. To
see this, work out the field constellations for the COH and DD PAM4 variants, substituting
the codewords, BDD PAM4 = [0 0; 0 1; 1 0; 1 1],

BDD PAM4 = [−1 − 1; −1 1; 1 − 1; 1 1] (102)

working out the phases of the four complex levels, which will be seen to assume three
or four distinct values, now. For example, in the DD case the phases of the four field-
constellation complex levels are:

{∠F2-MP
1 ,∠F2-MP

2 ,∠F2-MP
3 ,∠F2-MP

4 } = {0, 0, ψ, atan
√

W1U1 sin ψ√
W1U1 cos ψ +

√
W0U0

} (103)

Therefore, most transitions between the bits will induce phase variations, which
once coupled with linear channel memory, with nonlinear phase frequency response (e.g.,
dispersion) will cause elevated ISI, an effect to which we referred as chirp-induced-ISI. This
is also the case even with the DD variant of this PAM4 MPMZM (although phase is not
detected), since the underlying field phase variations induce amplitude variations via the
ISI-chirp mechanism (PM to AM conversion).

In the DD case, we express the power-domain constellation as the absolute square of
the field:

P2-MP-DD
c =

∣∣F2-MP-DD
c

∣∣2 =
∣∣bDD

1 [c]
√

W1U1ejψ + bDD
0 [c]

√
W0U0

∣∣2
= bDD

1 [c]W1U1 + bDD
0 [c]W0U0 + 2 cos ψ · bDD

1 [c]bDD
0 [c]

√
W1U1W0U0

∣∣
W0=W,U0=1−W

= bDD
1 [c](1−W)(1−U) + bDD

0 [c]WU + 2 cos ψ · bDD
1 [c]bDD

0 [c]
√
(1−W)(1−U)WU

(104)

where we used the fact that the DD code bits equal their own squares:

(bs[c])
2 = bs[c] ∈ {0, 1}

Plugging in the DD codewords from (102), yields the four power constellation levels:

{P1, P2, P3, P4} = {0, WU, 1−W −U + WU, 1−W −U + 2WU + 2 cos ψ
√

WU(1−W)(1−U)} (105)

The NN-distances are readily obtained by taking first-differences:

{d1, d2, d3} = {WU, 1−W −U, WU + 2 cos ψ
√

WU(1−W)(1−U)} (106)

These DD power constellation levels are bits-independent, the only apparent effect is
a reduction in P4 that is caused by ψ 6= 0. However, even in this DD case, the impairment
is due to the underlying optical field having its bits-dependent phase (103) interact with
the channel memory, which will cause chirp-induced ISI, an effect which is not visible at
all in (105), which describes the power constellation in the absence of ISI.
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When the common phases of the two paths are set equal, θ1 = θ0, we have ψ = 0.
This ensures elimination of chirp-induced-ISI, as the field constellation (101) now reduces
to result (77):

F2-MP-DD
c = bDD

1 [c]
√

W1U1ejψ + bDD
0 [c]

√
W0U0

∣∣∣ ψ = 0
W0 = W, U0 = 1−W

= bDD
1 [c]

√
(1−W)(1−U) + bDD

0 [c]
√

WU

The complex-valued field has been reduced to a real-valued one, therefore its phase
is zero, no matter what the transmitted bits are (actually the output phase is generally
a non-zero constant-the common phase component which was derotated away in our
derivation of the TF). Having zero (or constant) phase of the field implies that our ψ = 0
design is chirp-free.

The DD PAM4 power constellation (105) at ψ = 0⇒ cos ψ = 1 reproduces our earlier
result (80).

7.6. Review of Verbist et al. MPoDAC PAM4 DD Design and Its Comparison with Our Schemes

In terms of earlier works for 1D MPoDACs (optical PAM4 generators arraying MZMs
in parallel), we mentioned the scheme of Verbist et al. [17–19] for PAM4 DD generation
(henceforth referred to as the [V]-design), which we model here and compare with our
two PAM4 DD variants (as well as introduce a new variant of ours which is akin to the
[V]-design but slightly better in its NFOM). The earlier work [V] is based on a similar
photonic layout as we used here for our DD PAM4 MPMZM, namely the 1:2_splitter→2-
parallel_paths→2:1_combiner structure, it differs from our proposed MPMZM schemes in
the three main respects: (i) The differential phase between the two paths in [V] is ψ[V] = π

2
(which was seen to structurally induce chirp, causing an ISI impairment), whereas we use
the phase setting ψours = 0, which ensures chirp-free operation, per last subsection. (ii)
[V] implements the IGs in the two paths, as EAM modulators (EAM OOK modulation is
typically accompanied by chirp–further to the structural chirp of point (i) above), whereas
we use unipolar-driven MZMs (which are chirp-free when push-pull driven) to implement
the path IGs. From these two aspects we conclude that [V] is affected by the chirp-induced
ISI impairment, while our contending PAM4 DD scheme is inherently chirp-free. (iii)
The [V]-scheme, which sums up the two paths on a power-basis (since ψ[V] = π

2 ) is not
scalable to more than 2-paths, i.e., is not supportive of higher order constellations, whereas
our MPMZM scheme was introduced for an arbitrary number of paths, S. Nor does the
[V]-scheme generalize to coherent detection constellation generation, whereas our scheme
generates COH|DD 1D constellations of any order.

We have seen that the ISI performance of the [V] scheme is impaired, but let us now
assess the noise-immunity performance of that scheme, by evaluating its constellation
quality (min-distance and NFOM). To this end, the model of the last subsection is applicable.
The tap values used in the [V]-design are given by W [V] = 1

2 , U[V] = 1
3 and the differential

phase used there is ψ[V] = π
2 . Substituting these values into our distance vector expression,

(106), yields:

{d[V]
1 , d[V]

2 , d[V]
3 } = {UW, 1−W −U, WU + 2 cos ψ

√
UW(1−U)(1−W)} W = 1

2 , U = 1
3

ψ = π/2
= { 1

6 , 1
6 , 1

6} = {0.167, 0.167, 0.167} ⇒ MSB[V] = d[V]
1 + d[V]

2 + d[V]
3 = 1

6 + 1
6 + 1

6 = 1
2

(107)

Therefore, [V] generates an equi-spaced constellation, with min distance d̂[V] = 1
6

(coinciding with the fixed NN-distance spacing). The regularity of having an equi-spaced
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constellation points superficially appears intellectually pleasing, but this is not a max-full-
scale constellation, but rather the full scale is squeezed down to half of max-full-scale:

FS = MSB[V] − LSB[V] =
1
2
− 0 =

1
2

(108)

Generally, comparing two constellations having identical min-distances, the first one
being equi-spaced, the second one having the non-minimal distances strictly larger than
the min-dist, the second one is better, given that the additional increase in distance may
contribute some BER relief.

We may also use our result (105) to directly evaluate the four power constellation
levels,

P[V] = {0, WU, 1−W −U + WU, 1−W −U + 2WU + 2 cos ψ
√

WU(1−W)(1−U)} W = 1
2 , U = 1

3
ψ = π/2

= {0, 1
6 , 2

6 , 1
2}

(109)

seen to be an equi-spaced PAM4 power constellation with increment 1
6 . The NFOM

performance (27) for this C = 4 levels DD constellation with min-distance d[V]
min-dist =

1
6 is

readily obtained:

NFOM[V] = d[V]
min-dist/

1
C− 1

=
1
6

/
1
3
= 0.5 = −3 dB (110)

We now demonstrate that within the rules of the game set in [V], namely generating
an equi-spaced constellation by adding up two OOK modulated paths on an optical power
basis, it is possible to attain slightly better optimization of the constellation. We propose
a modification of the tap values of [V], which retains the property of generating an equi-
spaced constellation just as [V] does, but yields a slight improvement in NFOM, relative
to the [V] scheme (though our proposed modification is still affected by chirp, just as the
[V] scheme is). To this end, we freeze the phase difference at ψ[V] = π

2 , just as in [V], but
adopt our concept of matched split-combine taps, setting the LSB-tap of the combiner (the
one corresponding to the LSB path) to be equal to (matched to) that of the splitter: U = W.
Substituting W for U in (106) then yields

{d1, d2, d3} = {WU, 1−W −U, WU + 2 cos ψ
√

WU(1−W)(1−U)} U = W
ψ = π

2

= {W2, 1− 2W, W2} (111)

The constellation min-distance equals,

dmin-dist = min{d1, d2, d3} = min{W2, 1− 2W} (112)

Over the domain 0 < W < 1, the monotonically increasing parabola W2 and the
affine 1− 2W line intersect at the root of the quadratic equation, W2 = 1− 2W, namely
Ŵ =

√
2− 1. This tipping point realizes the largest minimal distance as may be seen from

graphical inspection of the two functions. Thus, the maximin realizing tap is Ŵequi =√
2− 1, at which optimal value, the distance vector and the min-distance become:

{d1, d2, d3} = {W2, 1− 2W, W2}W=Ŵequi=
√

2−1 = {3− 2
√

2, 3− 2
√

2, 3− 2
√

2} (113)

d̂maximin-dist = 3− 2
√

2 = 0.172, which exceeds the value of d[V]
min-dist =

1
6 = 0.166 by 3%.
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7.7. Comparison of Contending PAM4 DD MPoDAC Schemes

Figure 9 compares four PAM4 DD oDAC schemes in terms of their constellation qual-
ity: The perfect (max-full scale) constellation as baseline for reference, earlier-work SEMZM,
earlier-work MPoDAC [V] and our three proposed designs for PAM4 DD MPMZM: equi,
fixed 50–50, pref matched. These comparisons do not account for chirp-induced ISI, which
is present in the [V] scheme but also in our equi design, while our favourite pref matched
and fixed 50–50 are designed with null differential phase to be chirp-free. The BER compo-
nent predicted solely on the basis of constellation NN-distances alone is just one of two
components of overall BER (or EVM) performance. The elimination of chirp mitigates ISI
and significantly improves optical link transmission quality. However, quantification of the
improvement requires modeling specifically engineered MPoDAC transmission scenarios.

The constellations compared in Figure 9 should be assessed both in terms of their
minimal distance and accompanying chirp or lack thereof. Note, that given a certain
min-distance, ‘no extra credit’ is given for having the other points at the same distance (i.e.,
equi-spaced)–on the contrary, increasing the other distances beyond the specified minimal
distance slightly improves BER performance.
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8. Optical Programmability for Reconfigurable Photonic Interconnects

A key advantage of our proposed COH|DD MPMZM oDAC structures is their
amenability to agile optical programmability with little extra conditioning, in support
of next-gen reconfigurable photonic interconnects. It is feasible to arbitrarily (re)configure,
on-the-fly, not just of the shape of the oDAC staircase transfer function (positions of the
constellation points along the optical field axis), but also constellation size (number of steps
in the staircase) and to enable switching between COH and DD constellation generator
functionalities. We distinguish between several reconfigurability modalities:

• Mode-I: modification of the oDAC levels (for a fixed number of constellation levels
C = 2B).

• Mode-II: agile reprogramming of the PAM constellation size, C = 2B, i.e., agilely
switching the constellation order: in the field optical domain for COH, in the field
optical power for DD.

• Mode-III: agile switching between the COH and DD target optical domains.
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Mode-I is enabled by having the variable splitter and/or combiner, the taps of which
may be adjusted under C&C control.

Mode-II programmability is evidently constrained by the initially invested opto-
electronic resource–the number of built-in parallel paths. An MPMZM photonic circuit
nominally designed for B-bits, may then be reconfigured to operate as a b-bits MPMZM,
for any integer b ≤ B. Therefore, the MPMZM is reprogrammable, on-the-fly, to switch
between multiple constellations of different orders, provided they be larger than 2B, with
B the number of parallel optical paths provided in the MPMZM optical layout. Thus, all
PAM-2b formats for b = 1, 2, . . . , B-1 may be switched among.

As particular examples, a PAM16 (COH or DD) MPMZM may also generate (COH or
DD) PAM8, PAM4, and PAM2. A PAM8 (COH|DD) MPMZM may also generate (COH
|DD respectively) PAM4 or PAM2. (note: COH PAM2 = BPSK; DD PAM2 = OOK).

For illustration we elaborate on mode-II optical programmability for a BiWgt MP-
MZM oDAC initially designed as a COH PAM8 generator. Starting with a 3-way MPMZM,
nominally used as 3-bit (COH PAM8) BiWgt MPoDAC, constellation order may be recon-
figured from PAM8 (B = 3) down to PAM4 (b = 2) or even BPSK (b = 1), by setting new
appropriate values for the split & combine taps of the three-path MPoDAC, adjusting the
taps to extinguish light via some of the three MZMs. For example, to switch from PAM8
to PAM4, we turn off the top MZM, nulling out the upper tap W2 = 0, in both the splitter
and the combiner, while light power is distributed in a 2:1 ratio to the remaining two paths,
setting (W2, W1, W0) = (U2, U1, U0) = (0, 2

3 , 1
3 ). This taps-reconfigured 3-way system is

ideally indistinguishable from a 2-way system with just two paths and with its 1:2 splitter
and 2:1 combiner set to (W1, W0) = ( 2

3 , 1
3 ) (note that in both cases the taps vector satisfies

the unitarity condition). This establishes that the 3-way system, having its matched taps
values reset from ( 4

7 , 2
7 , 1

7 ) to (0, 2
3 , 1

3 ), will accordingly switch from COH PAM8 to COH
PAM4 operation.

If we wish to have this MPMZM switch to PAM2 COH, i.e., to BPSK 2-point con-
stellation transmission, we simply reconfigure the tunable splitter and combiner taps to
the values (W2, W1, W0) = (U2, U1, U0) = (0, 0, 1), i.e., in effect we turn-off the upper two
MZMs, having all the light traverse the bottom MZM which acts as a phase-gate, i.e., a
BPSK modulator.

Thus, the 3-bit MPMZM optical layout of Figure 4a or Figure 6b, nominally designed
as a 3-bit MPMZM, is programmable, by means of adopting electronics with muxes, to
switch to any of the following COH constellations, compactly written COH PAM-8|4|2
(here | denotes “or”):

PAM-8COH = {−1,−5
7

,−3
7

,−1
7

,
1
7

,
3
7

,
5
7

, 1}, PAM-4COH = {−1,−1
3

,
1
3

, 1}, PAM-2COH = {−1, 1} = BPSK

One impairment especially degrading the quality of higher-order constellations is
having an insufficiently low extinction ratio at the upper port. Therefore, residual low-
level modulated light may leak from the upper path (which was supposed to be cut off)
into the desired PAM4 signal generated at the mid-port and upper-port. This extinction
ratio leakage is modelled as non-ideally having the three taps equal to (W2, W1, W0) =(

χ, 2
3 (1− χ), 1

3 (1− χ)
)

rather than the nominal (0, 2
3 , 1

3 ), with χ a measure of extinction
(given by the actual residual power ratio at the upper port of the 1:3 when W2 = 0 is
commanded at that port). The imperfect extinction impairment, degrading the switched
lower-order constellation, is alleviated by: (i): Detuning the phase bias(es) of the MZM
PG(s) (nominally supposed to be turned-off) to have null output, i.e., steering the residual
light (leaking from the upper port of the 1:3 splitter) to the unused port of the MZM used
as the PG of the upper path; (ii): turning off the bipolar signal voltage driving the MZM
used as the PG of the upper path.

Such reconfigurability capabilities are unavailable with the SEMZM serial oDACs.
The discussion heretofore pertained to 1D (PAM DD|COH) constellations. As a pair

of PAM COH MPMZMs may be IQ-nested to generate QAM, it is evident that the reconfig-
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urability extends to 2D QAM constellations. E.g., a 64-QAM generator IQ-multiplexing
a pair of PAM8 COH MPMZM, may be reconfigured on the fly (just by reconfiguring its
IQ tributaries to lower order PAM) to agilely switch to either 16QAM or QPSK, without
requiring any modification in the high-speed digital and RF data paths. For further support
of switching to 32QAM and 8QAM, then a digital encoder banning certain symbols must
be provided in the electronic high-speed data path.

9. Concluding Remarks

Segmented MZMs have been considered for optical constellation generation within
serial type of optical DAC configurations. Here, we developed a unified methodology
for assessing and optimizing all types of oDACs and developed a rigorous model for the
serial oDACs, enabling new insights re SEMZM operation and optimal utilization. We
then proceeded to explore the benefits of fundamentally changing the oDAC architecture
from serial to parallel optical modulation units, introducing, modelling and competitively
assessing an alternative optical DAC architecture (MPoDAC and in particular MPMZM),
based on multi-parallel MZMs, with coherent fan-out/fan-in, robustly controlled by slow
phaseshifters.

Once the ‘rules of the game’ were set as meeting the constraint of energy-efficient
generation of high-speed multi-level optical signals directly from binary electrical drive
signals, based on encoder-free drivers IC based on state-of-the-art CMOS low voltage
swings, then under this proviso, the SEMZM oDAC architecture no longer appeared
adequate. A triumph of this work is the introduction of a Binary-Weighted (BiWgt) sub-
class of COH MPMZM using Direct Binary Drives for their 1-bit MZMs gates generating
perfect COH constellations, encoder-free, at ultra-low power. As for DD MPMZMs, the
trade-offs between performance/nonlinearity/energy-efficiency were shown to no longer
be intrinsically perfect (unlike their COH MPMZM counterparts), but were seen to yield
reasonable performance, starting with PAM4 DD generation.

An essential technology is already available to enable the proposed MPMZM: Control
& Calibration of slow optical coherent fan-out/fan-in [39–47], since the onus of optimizing
the oDAC D/A conversion ‘staircase’, reconfiguring the oDAC to lower-order constellations
and switching between DD and COH operational modes is now assigned to the slow-rate
(~kHz) control plane, mainly tuning the splitter and combiner taps and the phaseshifters
in the parallel paths. More work is needed in this field, to work out off-line and on-line
calibration procedures for the new MPMZM oDACs.

While, this paper was mainly devoted to introducing the principles of operation,
mathematically modeling the contending oDAC subsystems, deriving fundamental limits
of performance and benchmarking the various contending options, future work will ad-
dress implementations over integrated photonic platforms (e.g., Silicon/Silicon-Nitride
photonics, InP). To fully exploit the topology of the multi-parallel configuration, we con-
jecture that it would be particularly beneficial to adopt plasmonic-based modulation at
the individual 1-bit gate level within the multi-parallel paths, optionally coupled with
intra-path SOA-based optical amplification. Even without SOAs, the net loss will be that of
a single plasmonic MZM, whereas in a contending plasmonic-based SEMZM configuration
the serial compounding of the multi-serial-segment optical losses would be prohibitive
(especially since there is need for optical tapering between the wide waveguides and the
narrow plasmonic active regions, in every segment). It is also likely that the high-speed
RF cross-talk would be much reduced in a plasmonic-based MPMZM, with respect to that
of an SEMZM (for the same PAM or QAM order). To put these points in perspective, the
“wedding” of the multi-parallel architecture with plasmonic modulation device technolo-
gies bears significant promise to enable transitioning to a new generation of ultra-fastest
and utmost-energy-efficient and photonically-efficient optical transmitters that can scale-up
efficiently beyond the Tbps limit, to be further explored. In particular the superior (inher-
ently ‘perfect’) performance of COH MPMZMs will be leveraged to enable the upcoming
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generation of low-power, low-cost coherent intra-datacenter photonic interconnects at 800G
and multiples thereof.
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Appendix A. Quadrature (Asymmetric) Bias vs. Symmetric-Bias MZM IG Gates and
DD SEMZM

In the context of our remarks in the text, right under Equation (7), on the suitability of
Quadrature Bias (QB) for IM-DD, i.e., for IGs, based on, it is our aim to compare here two
alternative phase bias&drive realizations for the IG-MZMs:

(i) QB-based, (more generally characterized as ‘Asymmetric’ (ASYM) when modulation
backoff is employed), based on having extra phase bias in one MZM arm, breaking
the symmetry (in the QB case the one-sided phase bias is π

2 ).
(ii) Our ‘adopted push-pull’, to be referred to as ‘symmetric bias’ (SB), since we have seen

that the condition of Equation (2) excludes asymmetric bias in one arms but requires
the two arms to be symmetric in their optical length, in the absence of RF drive signal.

In Appendix A.1 we compare the two QB vs. SB phase-bias&drive schemes for 1-bit
DD gates (IG MZMs). In Appendix A.2 we adapt the QB vs. SB schemes for realizing DD
SEMZMs. To the best of our knowledge, such analysis has not yet been conducted in the
literature for DD SEMZMs.

Appendix A.1. Comparison of QB and SB Phase-Bias&Drive Alternative Schemes for 1-Bit Gates:
IG and PG MZMs

Let us derive the transfer factor of the QB-based IM-DD MZM, contrasting its deriva-
tion with that of the contending SB-based scheme in (7). Let us consider a QB scheme with
φb = π

2 bias in the top MZM arm and push-pull drives inducing in the top arm bipolar
±π

4 phase swings upon ON-OFF transitions, while the push-push drive induces antipodal
(opposite sign) phase in the lower arm:

φtop =

φQB
b︷︸︸︷
π

2
± π

4 , φbot = ∓π
4 ⇒ φtop − φbot = (π

2 ±
π
4 )− (∓π

4 ) =
π
2 ±

π
2 = π|0

⇒ φ∆ ≡ 1
2 (φtop − φbot) =

π
2 |0⇒ FQB

IG = sin 1
2 (φtop − φbot) = sin π

2 | sin 0 = 1|0

(A1)

Here and throughout this appendix, q1|q2 denotes a pair of quantities (voltages,
phases, fields) before and after the bit transition. Thus, for IGs, q1(q2) corresponds to the
ON (OFF) value. Moreover, we assume in the appendix no backoff, i.e., max-full-scale
OOK, unless stated otherwise.

Now to the SB case-our ‘adopted push-pull’ scheme (7) for MZM-IGs, generating
IM-DD (OOK) using push-pull drives and identical optical lengths for the MZM arms
when at zero drive voltages
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φtop =

φSB
b︷︸︸︷
0 + π

2 |0, φbot = −π
2 |0 ⇒ φtop − φbot = (+π

2 )− (−π
2 )|0− 0 = π|0

⇒ φ∆ ≡ 1
2 (φtop − φbot) =

π
2 |0⇒ FSYM

IG = sin 1
2 (φtop − φbot) = sin π

2 | sin 0 = 1|0
(A2)

Viewed as black boxes, both schemes generate identical ON|OFF fields: FQB
IG = FSB

IG =
1|0 (cf.(6)). It follows that two S-way DD MPMZMs, parallelizing S IGs, driven according
to the two respective QB and SB schemes, would ideally be indistinguishable in terms of
their optical generation functionalities, as their IG constituents generate the same optical
fields, not accounting for non-ideal impairments and electrical power consumption penal-
ties which may be specific to one or the other of the two schemes. However, additional
engineering considerations may favor one or the other scheme. Electrically, the SB scheme
applies, onto the capacitive structure wrapped around the top and bot waveguides, unipo-
lar voltage drops Vπ

2

∣∣∣0 at top (over the ON|OFF transition), and −Vπ
2

∣∣∣0 at bot (over the

ON|OFF transition). Here the peak voltage (absolute value of signed voltage) is Vπ
2 and

the peak voltage change on the capacitor over the ON-OFF transitions is also Vπ
2 .

In contrast, the QB scheme applies bipolar voltage drops +Vπ
4

∣∣∣−Vπ
4 at top (over

the ON|OFF transition), and −Vπ
4

∣∣∣+Vπ
4 at bot (over the ON|OFF transition). Here the

peak voltage is just Vπ
4 ; but the peak voltage change on the capacitor over the ON-OFF

transitions is also Vπ
2 .(just as in the QB scheme) We conclude that while the ON-OFF voltage

swing across each of the top and bot capacitors is the same, Vπ
2 , for both schemes, the

conventional QB scheme operates at just half the peak voltage, Vπ
4 relative to our SB scheme,

which operates at Vπ
4 peak. Thus, from the viewpoint of peak voltage QB implementation

for realizing the IG is preferred over the SB scheme. The peak voltage is an important
consideration for ultra-high-speed oDACs. Low peak voltage is likely to enable efficient
CMOS implementations of the driver electronics.

Now, if backoff is required (to reduce power consumption), we have already worked
that out for the SB-based IG (see (5)). Implicit in that equation is that symmetric bias
is maintained upon transitioning from no-back-off to back-off or varying the degree of
backoff. As for the QB scheme, the differential phase bias between the two arms must be
reduced from from φb = π

2 down to φQB
b = kbkoff

π
2 , thus is now backoff-dependent while

the push-pull voltage swing on each of the top|bot electrodes is reduced from π
4 down to

kbkoff
π
4 . In effect all phase values mentioned anywhere in (114) and (115) are to be scaled

down by kbkoff. The resulting output field factors are now: FSB
IG = FQB

IG = sin kbkoff
π
2

∣∣∣0 . In
contrast, for the backed-off SB scheme, there is no change in the (null) differential bias,
φSB

b = 0, between the two arms, whereas for the ASYM scheme (a generation of QB in
the case of backoff) we have just seen that the ASYM bias phase φASYM

b = kbkoff
π
2 , must

be retuned, dependent on kbkoff value. Thus, in this respect, for applying backoff the QB
scheme may be less convenient. However, the tuning of kbkoff value may be performed by
a control system, ensuring maximal extinction for the OFF state.

We now take the opportunity to consider another relevant aspect of the electrical
drives of MZM-based 1-bit gates, bringing into consideration the impact of two alternative
unbalanced vs balanced methodologies to driving the three plates (electrodes) of the MZM.

(i) the conventional SGS electrodes drive scheme, may be characterized as ‘unbalanced’
since just mid-electrode between the two WGs is ‘hot’ (driven) while the outer elec-
trodes are grounded.

(ii) an improved drive scheme [48] was recently proposed and demonstrated or plasmonic
MZMs: the SSS electrodes drive scheme, enabling a new factor-of-two saving in the
peak voltages, while continuing to enjoy the push-pull advantage (moreover, for
plasmonic MZMs which are very tiny, there is an additional factor-of-two advantage
relative to using an impedance matched transmission line, but this advantage is
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derived independent of the SSS configuration advantages considered here). In the
SSS balanced MZM + driver structure, the two outer plates are no longer grounded
but electrically connected in parallel, to be at the same potential, driven by a signal
denoted S which is instantaneously antipodal to the S signal of the mid-plate. Having
considered the QB vs SB alternatives for the IG, and having exclusively considered
SB for the PG, there are then three configurations. Once we bring the two driver
(un)balancing options into the fray, each of the three aforementioned configurations
splits into a pair of variants: conventional SGS or the recent [48] SSS. There are now
six variants to consider for the phase-bias&drivers as depicted in Figure A1.

 Figure A1. This figure should be viewed as a pictorial table, comprising alternative phase-bias&driver schemes of MZM
1-bit gates (DD IGs in the left and mid columns, COH PGs in the right column) vs. the two rows comprising alternative
driver schemes: GSG drives (first row) use the mid-plate as a hot electrode, and we have SSS drives in second row. For
example, sub-figure (f) refers to COH (third column) SSS drives (second row). This specifies the six subfigures (a–f). The
annotations of the form V1|V2 (inscribed in the light-shaded rectangles depicting the three conductive plates) denote the
respective potentials applied to each plate during successive ON|OFF or +|− symbol periods. To keep the illustrations
uncluttered, driver schematics and connecting electrical bonds between the drivers and MZMs electrodes, were omitted
from the drawings. The little rectangles straddling the WGs denote bias electrodes. Note that [48] just dealt with IM-DD
MZMs, depicted in the second row of sub-figures, having top and bottom plates (labeled S) both at antipodal potential
relative to the mid-plate (labeled S), at any instant. The voltage drop across the capacitor wrapped around the top waveguide
(WG), is twice the potential of S (while the voltage drop across the bottom capacitor is twice the potential of S).

For the QB scheme (left column), the top-minus-bottom bias phase difference is π/2,
split between the two WGs as π/4 on the top WG and as −π/4 on the bottom WG (it is
also possible to have it lumped one-sided, by elongating or shorting one of the WGs by a
quarter-λ, but even in this case it is still useful to have single-ended or push-pull tunable
electrodes on the two WGs, in order to track slow environmental fluctuations). The mid
and right columns comprise Symmetric-Bias (SB) schemes, for DD and COH respectively,
as described in our paper body, having equal optical paths over the two WGs in the
absence of applied RF drive signals. For each of the six MZM schemes, we annotate, on the
slanted WG segments entering the combiner, the top and bot WG accrued phases, φtop, φbot
(including bias phases). On each combiner output, we annotate the half-differential phase
φ∆ = 1

2 (φtop + φbot).
The field transfer factor of these MZMs is essentially F = sin φ∆. It comes out as

F = 1|0 , as expected of an IG gate, for the four DD cases in the left and mid columns (all four
having common φ∆ = π

2

∣∣0), which are functionally equivalent; and F = sin φ∆ = 1|−1 ,
F = 1|0, as expected of a PG gate, for the two COH cases in the right column (having
common φ∆ = π

2

∣∣−π
2 ), which are functionally equivalent. Despite functional equivalences,

there are engineering differences between the alternative schemes in each IG subclass or
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PG subclass. In particular, the peak voltage of the QB SSS IG scheme (d) is 1
8 Vπ , which is

the least of all four DD IG schemes (having peak voltages ranging over { 1
2 Vπ , 1

4 Vπ , 1
8 Vπ}).

Likewise, between the two COH PG schemes in the right column, the least voltage, 1
4 Vπ , is

attained by the SSS PG (f). We conclude that:

(i) SSS drivers should invariably be favored as they reduce the peak plate voltages by a
factor-of-two relative to GSG drivers (for either DD IGs or COH PGs).

(ii) Within the DD IG family, QB biasing reduces the peak-plate voltage by a factor-of-two
symmetric biasing scheme (for any given drive method, either GSG or SSS).

Nevertheless, working out the voltage drops Vtop, Vbot across each of the two WG
capacitors )with Vtop the difference of the upper plate and mid plate potentials, while Vtop
is the difference of the mid plate and lower plate potential), and the corresponding ON-OFF
voltage transitions, VON-OFF ≡ VON −VOFF and the peak ON-OFF voltages and absolute
values thereof, are listed in Table A1 below.

Table A1. Characteristic voltages for the two capacitors wrapped around the top and bot WGs of various IG bias&drive
schemes. The table rows correspond to the six configurations of Figure A1.

Configuration Vtop Vbot VON-OFF
top VON-OFF

bot |VON-OFF
top|bot |

(a) 1
4 Vπ

∣∣∣− 1
4 Vπ − 1

4 Vπ

∣∣∣ 1
4 V 1

2 Vπ − 1
2 Vπ

1
2 Vπ

(b) 1
2 Vπ

∣∣∣0 − 1
2 Vπ

∣∣∣0 1
2 Vπ − 1

2 Vπ
1
2 Vπ

(c) 1
4 Vπ

∣∣∣− 1
4 Vπ − 1

2 Vπ

∣∣∣ 1
2 Vπ Vπ −Vπ Vπ

(d) 1
4 Vπ

∣∣∣− 1
4 V − 1

4 Vπ

∣∣∣ 1
4 Vπ

1
2 Vπ

1
2 Vπ

1
2 Vπ

(e) 1
2 Vπ

∣∣∣0 − 1
2 Vπ

∣∣∣0 1
2 Vπ − 1

2 Vπ
1
2 Vπ

(f) 1
2 Vπ

∣∣∣− 1
2 Vπ − 1

2 Vπ

∣∣∣ 1
2 Vπ Vπ −Vπ Vπ

From the viewpoint of energy-efficiency, it is the table last column,
∣∣∣ VON-OFF

top|bot

∣∣∣, the
absolute value of voltage swing, that is the relevant figure of merit for energy efficiency
assessment, since power consumption is proportional to its square. All four DD configura-
tions ((a),(b),(d),(e)) share the 1

2 Vπ figure of merit. whereas the two COH configurations
((c),(f)) share the Vπ figure of merit, which is double, since COH 1-bit gates (PGs) generate
a BPSK 2-point constellation with twice the full-scale of that of DD 1-bit gates (IGs):

cols I, II : DD (IGs) :
∣∣∣VON-OFF

top|bot

∣∣∣
(a),(b),(d),(e)

= 1
2 Vπ

col III : COH (PGs) :
∣∣∣VON-OFF

top|bot

∣∣∣
(c),(f)

= Vπ

(A3)

Thus, all four of DD 1-bit gates yield the same energy efficiency, nominally, despite
differences in their electrical drive structures and despite the peak voltages on the three
MZM electrodes being different (a lower peak voltage does not directly translate into a
power consumption advantage. Energy efficiency will be treated in a followup publication.
We reiterate here that minimizing peak voltages is still an important engineering considera-
tion, especially at ultra-high-speed (even if not reflected in higher ON-OFF voltage swings),
since lower peak voltages may indirectly positively impact energy efficiency by enabling
CMOS ASICs for the drivers, also enabling improved bandwidth for the drivers–which
are nonlinear electronic devices. Thus, practically, it is recommended that IGs be realized
using the QB bias&drive scheme, while PGs are to be SB-based.
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Appendix A.2. Comparison of the QB and SB Phase-Bias&Drive Alternative Schemes for the DD
SEMZM oDAC

Next, let us consider the potential adoption of the QB scheme for max-full-scale
SEMZMs used in DD mode, to be referred to as QB DD SEMZMs (in contrast with SB
DD SEMZMs as introduced in the body of our paper). Recall that the QB scheme for an
MZM IG applies, a φb = π

2 static phase bias in the top arm and drives push-pull bipolar
phase modulations: ±π

4 (∓π
4 ) on the top (bot) WG. In analogy, between the MZM-based

DD IG and the DD SEMZM, let’s retain for the QB variant, φb = π
2 phase bias, while

conceptually dividing the MZM electrode of the IG into S segments, such that in order to
generate a power (and field) constellation over (0,1), just apply positive (negative) voltages
across the top (bot) capacitors wrapped around the two waveguides. This implies that in
order to generate the MSB level the accrued phase over all segment electrodes at the top or
bottom waveguide should also be π

4 . To get interim levels between the LSB and the MSB
we would invert the polarities of some of the segments. To, recap, this intuitive argument
suggests that for QB DD operation of the SEMZM, the quadrature bias φb = π

2 is induced,
e.g., over the WG section following all segments. The segments are driven by voltages
such that the s-th segment is applied a phaseshift ±φ

pk-QB
s over the top WG section of

the s-th segment, while it induces the phaseshift ∓φ
pk-QB
s over the bot WG section, where

φ
pk-QB
s > 0 relates to the corresponding phase in the QB SEMZM (which was simply

denoted as φ
pk
s in Section 4), as follows: φ

pk-QB
s = 1

2 φ
pk
s , which is good news as we may

reduce the peak drive voltage by a factor-of-two. The sum constraint, which used to be

∑S
s=1 φ

pk-SB
s = π

2 , is now reduced by a factor-of-two, down to ∑S
s=1 φ

pk-QB
s = π

4 .
To generate the c-th output power level of the DD constellation, the polarity of the s-th

segment phase is determined by the s-th bit of the c-th codeword of the code, which for QB
consists of now a strings of ±1 elements rather than 0|1 elements, thus we effectively use
here a COH code, despite the system being a DD one (this corresponds to the bipolar drive
used in QB). Thus, the phaseshift over the s-th segment top (bot) WG is now respectively
written bCOH

s [c]φpk-QB
s

(
−bCOH

s [c]φpk-QB
s

)
. We are now ready to formulate the analysis for

the QB DD SEMZM which generalizes the QB MZM IG one in (A1), while also unfolding
as a variant of the SB DD SEMZM analysis already derived in Section 4:

φtop =

φQB
b︷︸︸︷
π

2
+ ∑S

s=1 bCOH
s [c]φpk-QB

s , φbot = ∑S
s=1 (−bCOH

s [c])φpk-QB
s

⇒ φtop − φbot =
(

π
2 + ∑S

s=1 bCOH
s [c]φpk-QB

s

)
−
(
−∑S

s=1 bCOH
s [c]φpk-QB

s

)
= π

2 + 2∑S
s=1 bCOH

s [c]φpk-QB
s

⇒ φ∆ ≡ 1
2 (φtop − φbot) =

π
4 + ∑S

s=1 bCOH
s [c]φpk-QB

s , φ ≡ 1
2 (φtop + φbot) =

1
2 (

π
2 ) =

π
4

⇒ FDD-QB
c = ejφ sin φ∆ = ej π

4 sin
(

π
4 + ∑S

s=1 bCOH
s [c]φpk-QB

s

)
(A4)

Discarding the common phase factor ejφ = ej π
4 and collecting the field constellation

levels into a constellation vector, FDD = {FDD
c }

C
c=1 =

√
PDD, PDD = {PDD

c }
C
c=1, (A4) is

compactly expressed as:

FDD-QB
c = sin

(
π

4
1all +

S

∑
s=1

(bCOH[c])
T

ΦQB

)
⇔ sin

(π

4
1all + BCOHΦQB

)
= FDD =

√
PDD (A5)

or equivalently

QB-based DD SEMZM equation : BCOHΦQB = asin
√

PDD − π
4 1all ≡ RHS

(
PDD),

with RHS
(
PDD) = asin

√
PDD − π

4 1all
(A6)
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where we introduced the following nonlinear scalar mapping,

RHS(·) ≡ asin
(√
·
)
− π

4
, (A7)

with RHS
(
PDD) constructed by applying the scalar map RHS(·) onto the elements of PDD.

This nonlinear mapping is illustrated in Figure A2. The memoryless nonlinearity (A7)
acts on a perfect max-full-scale PAM8 power constellation (plotted along the horizontal
P-axis), to yield a phase-domain 8-point constellation (plotted along the vertical Ψ phase-
domain axis). The vector Ψ = {Ψc}C

c=1 (with C = 8 for the PAM8 example) corresponding to
the list of phase-domain constellation value must be synthesized is actually the image of the
peak segment phases vector, ΦQB = {φDD

s }
S
c=1 via the linear transformation BCOHΦQB = Ψ.
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the phase-domain (which is the linear image of the linear transformation in the LSH of the QB DD
SEMZM Equation (A9). A perfect PAM4 DD power constellation is overlaid along the horizontal axis
and its phase-domain image through the nonlinear map is plotted along the vertical axis.

Let us now work out the actual solution of (A6) of the QB SEMZM, relating it to the
solution of the SB SEMZM model (38),

SD DD : BDDΦSYM = asin
√

PDD,

QB DD : BCOHΦQB = asin
√

PDD − π
4 1all

(A8)

Let us prove that our QB DD equation in (A8) is solved for a segment-phases vector,
ΦQB, given by half the phase vector ΦSB which solves the SB DD equation (provided a
solution for SB DD exists–when it does, then a solution also exists for the QB DD equation):

ΦQB =
1
2

ΦSB (A9)

To prove that this phase vector indeed solves the second equation in (A8), also requires
the relation between the matrices BDD and BCOH namely

BCOH = 2BDD − 1[S×C]
all (A10)

with 1[S×C]
all denoting an all-ones matrix of the indicated size (with the related 1all previous

notation, corresponding here to the columns of 1[S×C]
all -all-ones vectors of S elements. We
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also have 1[S×C]
all ). Finally, we shall also need the sum constraint for ΦSB, already seen in

the text to be given by

1T
allΦ

SB =
S

∑
s=1

φ
pk-SB
s =

π

2
(A11)

Invoking the last three equations, it is readily shown that the two equations in (A8)
are equivalent.

Thus, we have proven that QB phase-bias&drive option for an SEMZM is a valid one,
alternative to the SB one introduced in the text.

The two alternative bias schemes for the DD SEMZM, with properly designed corre-
sponding phase vectors, (A9) using the BCOH bipolar code for QB, while using the BDD

code for SB, generate, in principle, ideally, identical power constellations. There will always
be ThWgt designs (S = C − 1) for either QB or SB DD SEMZMs, for any given target power
constellation (in particular for ‘perfect’ ones). When using BiWgt designs (S = log2 C),
with either QB or SB bias&drive, perfect solutions will no longer exist, but corresponding
approximate solutions for the two design types will have the same NFOM figures of merit.

A final point pertains to the chirp of the considered DD SEMZM schemes. We have
already shown that the SB-based DD SEMZM is chirp free. The same may be stated for the
QB-based implementation of the DD SEMZM. This is readily verified by working out the
average of the induced phases in the top and bot WGs of the SB DD SEMZM. Using (A7),
we readily verify that

φ(t) =
1
2
(φtop(t) + φbot(t)) =

π

2
= const. (A12)

Thus, the QB DD SEMZM is also chirp-free as the SB DD SEMZM was shown to
be. This conclusion is not to be taken for granted: When approaching the challenge of
designing a DD SEMZM it may be tempting to adopt another drive scheme, namely use
GSG unbalanced electrical connections and just drive the mid electrode between 0 and
Vπ . It may be shown however that this SEMZM scheme is significantly impaired by chirp
distortion, as its common phase varies as a function of the applied codewords. The two
QB and SB schemes are the only ones we found capable of operating chirp-free. In fact,
constellation performance is in principle identical for the QB and SB design options for
DD SEMZM. However, returning to consider engineering considerations, it is preferable
to use the QB-based scheme due to the fact that its peak phases and peak voltage are half
those of the SB-based scheme (for the same total length of all segment electrodes), thus
so is the peak voltage (applied to all the segments) half of that of the SB-based scheme.
Nevertheless, over the ON-OFF transitions, the total voltage swing across the top capacitor
and the bottom capacitor in each segment, is the same in both schemes, and this is what
matters for energy-efficiency purposes. Therefore, the reduced peak voltage of the QB
scheme does not directly translate into an energy efficiency advantage for the QB-based
DD SEMZM, since the voltage swings upon ON-OFF transitions are the same. An analysis
of energy efficiency for MPMZM vs. SEMZM oDACs, and additional optical engineering
comparisons thereof, is deferred to a future publication.
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