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Abstract: The optomechanics shows a great potential in quantum control and precise measurement
due to appropriate mechanical control. Here we theoretically study the quantum phase transition in a
hybrid atom-optomechanical cavity with an external force. Our study shows, in the thermodynamic
limit, the critical value of quantum phase transition between the normal phase and super-radiant
phase can be controlled and modified by the external force via the tunable frequency of optomechan-
ics, then a force dependent quantum phase transition can be achieved in our system. Moreover, this
force dependent quantum phase transition can be employed to detect the external force variation. In
addition, our numerical simulations illustrate the sensitivity of the external force measurement can
be improved by the squeezing properties of the quantum phase transition.
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1. Introduction

Optomechanical cavity works as an ideal platform to study the quantum properties of
macroscopic mechanical systems. It has attracted great attentions to explore many inter-
esting quantum properties, such as squeezing and entanglement [1–5], optomechanically
induced transparency [6–10] and chaos [11,12], which are associated with potential appli-
cations in quantum information processing [13,14], ground state cooling of the mechanical
modes [15–22] and precision measurement [10,23,24].

On the other hand, the Dicke model, constituted of an atomic ensemble and a
single-mode cavity, is one of essential model describing the collective effects in quantum
optics [25,26]. With the increase of the atom-cavity coupling, the Dicke model undergoes a
quantum phase transition (QPT) from the normal phase to the super-radiant one [27,28].
The QPT is first predicted at weak coupling in the thermodynamic limit [29], and then it is
used to explore chaotic signatures [30–34], entanglement properties of the single mode of
super-radiance [35], and scaled physical quantities [36,37]. Simultaneously, a theoretical
proposal predicts it is possible to get an effective Dicke model with multilevel atoms and
cavity-mediated Raman transitions [38], and this effective Dicke model has been observed
in the superconducting qubits system [39].

Recently, there exists a growing interest in the QPT of hybrid atom-optomechanical
system [40–50], which are motivated by the need to understand the interplay between
QPT and optomechanical properties [51–53] as well as by the applications of precision
measurements [54,55]. However, limited by the certain frequencies of qubit and cavity
mode, it remains a challenge to construct the QPT taking the critical value with a feature
of tunability.
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In this scheme, we illustrate it is possible to control the critical value of QPT in a hybrid
atom-optomechanical system via an external force. The critical value of the QPT between
the normal phase and the super-radiant phase can be shifted by adjusting the external
force, which can modify the frequency of the optomechanical cavity via its effective length.
Therefore, there exists a force dependent QPT in our hybrid atom-optomechanical system.
Moreover, this force dependent QPT can also be applied to precisely detect the external
force via the critical value of the QPT. In addition, our numerical calculations show there
would be slight squeezing of the quadrature variances of atoms and cavity field in the
thermodynamic limit. Specially, the squeezing degree of cavity field can be enhanced by
increasing the external force, and the best squeezing degree occurs around the critical value
of QPT, which can be selected by the external force.

Compared to the previous works for QPT, our scheme takes some significant differ-
ences. First of all, our study shows the critical value of the QPT can be controlled by the
external force, which can be employed to realize a force dependent QPT. Therefore, our pro-
posal overcomes the limitation of the critical value of the QPT without tunability [51–54] by
introducing an external force. Secondly, our work focuses on the tunability of critical value
of the QPT from normal phase to super-radiant phase without dissipations, and squeezing
properties are considered to realize the precision measurement. By contrast, tunable critical
atom-photon coupling strength in the previous work [56] is for a bifurcation point result-
ing from dissipations, and no squeezing properties is involved in precision measurement.
Finally, our precise measurement is based on squeezing properties of QPT rather than the
input squeezed field. Without the driven field, the squeezing properties in super-radiant
phase not only ensures the force measurement in the hybrid atom-optomechanical system
is out of reach for the traditional optomechanics without squeezing properties [10,23,24],
but also paves a way to enhance the sensitivity with the squeezing properties of QPT.

2. Model and Hamiltonian

As it is depicted in Figure 1, the whole Hamiltonian can be written as a sum of two
parts as

H = HD + Hm. (1)

The first part HD is the Hamiltonian of Dicke model, where an ensemble of N two-
level atoms taking a transition frequency ω0 is trapped in a single-mode cavity at frequency
ωa. It can be presented as

HD = h̄ωaa†a + h̄ω0 Jz +
h̄χ√

N
(a† + a)(J+ + J−), (2)

where the first two items are the free Hamiltonians of the single-mode cavity field and
atomic ensemble. a† and a denote creation and annihilation operators of the single-mode
cavity field, respectively. The last term shows the interaction between the atomic ensemble
and cavity mode with a coupling strength χ. J+, J−, and Jz are the collective atomic
operators following the commutation relations as [J+, J−] = 2Jz and [Jz, J±] = ±J±. χ is
the coupling strength between the atomic ensemble and the cavity field.

The second part Hm is the Hamiltonian of optomechanical cavity [57], where the cavity
mode couples to the mechanical mode with frequency ωm and mass m via a radiation
pressure interaction. The mechanical mode is forced by an external force f . It can be
described by

Hm =
P2

m
2m

+
1
2

mω2
mQ2

m − h̄g0a†aQm + f Qm. (3)

where Qm and Pm are position and momentum operators of the mechanical mode, re-
spectively. The first two items are the free energy of the mechanical mode, the third item
describes the radiation pressure coupling taking a strength g0, and the last item shows the
mechanical mode is driven by an external force f .
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Atomic ensemble

Movable mirror

f

Fixed mirror

Figure 1. The hybrid atom-optomechanical cavity with an external force. Here an ensemble of N
two-level atoms is trapped in the cavity optomechanics, the left cavity mirror is fixed and the right
mirror can be moved, and the movable mirror is driven by an external force f .

Define Q̃m = Qm + f
mω2

m
= (c + c†)/

√
2mωm and Pm = i(c† − c)/

√
2mωm, the Hamil-

tonian (1) can be rewritten as [54]

H = ω̃aa†a + ωmc†c + ω0 Jz − g
N a†a(c† + c) + χ√

N
(a† + a)(J+ + J−), (4)

where the effective radiation pressure coupling is g = Ng0/
√

2mωm, and the effective
frequency of optomechanical cavity

ω̃a = ωa +
f g0

mω2
m

, (5)

is linear to the external force f . Note that the constant items have been ignored from
Hamiltonian (4).

3. Normal Phase and Super-Radiant Phase

As the critical value for Dicke Hamiltonian is determined by the frequencies of sin-
gle mode cavity field and atomic ensemble [58], the tunable effective frequency of the
optomechanicial cavity (5) reminds us that it is possible to modify the critical value with
the external force, and achieve a force dependent QPT between normal phase and super-
radiant phase. To illustrate this force dependent QPT in theory, we need to derive the
equations about QPT as follows.

With the employment of the Holstein-Primakoff transformation, we can define
J+ = b†

√
N − b†b,

J− =
√

N − b†b b,
Jz = b†b− N

2 ,
(6)

where b† and b are bosonic operators satisfying the communication relation [b, b†] = 1.
Then, the Hamiltonian (4) can be rewritten as

H = ω̃aa†a + ωmc†c + ω0b†b− g
N a†a(c† + c)

+χ(a† + a)(b†
√

1− b†b
N +

√
1− b†b

N b),
(7)

its parity operator can be given as

Ξ = exp{i[a†a + b†b + c†c]}. (8)

According to the method in Ref. [58], we can describe the QPT between the normal
phase and super-radiant phase with two different mathematical methods.
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3.1. Normal Phase

To calculate the eigenenergy of the normal phase, we assume the system works in the
thermodynamic limit, where the number of atoms approaches an infinite value (N → ∞).
In this situation, both the numbers of excited atoms and photons are too small to be ignored

( lim
N→∞

√
1− b†b

N = 1 and lim
N→∞

g
N a†a = 0). Then the Hamiltonian (7) can be reduced to the

normal phase Hamiltonian as

HNP = ωmc†c + ω̃aa†a + ω0b†b + χ(a† + a)(b† + b), (9)

after the constant item is ignored. The above Hamiltonian shows the mechanical mode
is almost decoupled from the single-mode cavity field, while there is a bilinear coupling
between the atomic ensemble and cavity mode. Therefore, the above normal phase Hamil-
tonian (9) can be diagonalized in the following.

Define the position and momentum operators of the two bosonic modes (a and b) as qa =
1√
2ω̃a

(a† + a) , pa = i
√

ω̃a
2 (a† − a),

qb = 1√
2ω0

(b† + b) , pb = i
√

ω0
2 (b† − b),

(10)

the Hamiltonian (9) can be rewritten as

HNP = ωmc†c + 1
2 (ω̃

2
aq2

a + p2
a −ω0) +

1
2 (ω

2
0q2

b + p2
b − ω̃a) + 4χ

√
ω̃aω0qaqb, (11)

which can be diagonalized with the collective coordinate operators as{
qa = x1 cos θ1 + x2 sin θ1,
qb = −x1 sin θ1 + x2 cos θ1.

(12)

with the angle θ1 satisfying

tan(2θ1) =
4χ
√

ω̃aω0

ω2
0 − ω̃2

a
. (13)

When the atomic ensemble is in resonance with the effective frequency of cavity mode
(ω̃a = ω0 and θ1 = π

4 ), the coordinate operators can be written as qa = (x1 + x2)/
√

2
and qb = (−x1 + x2)/

√
2, and the interaction term qaqb in the Hamiltonian (11) can be

eliminated. Then, the normal phase Hamiltonian (9) can be rewritten as

HNP = ωmc†c + 1
2 [(λ

N
−)

2x2
1 + y2

1 −ω0]

+ 1
2 [(λ

N
+)

2x2
2 + y2

2 − ω̃a],
(14)

where λN
± are the energies of two hybrid bosonic modes for the atomic ensemble and

cavity mode.
With the employment of definitions as

x1 = 1√
2λN
−
(d†

1 + d1) , y1 = i
√

λN
−
2 (d†

1 − d1),

x2 = 1√
2λN

+

(d†
2 + d2) , y2 = i

√
λN
+
2 (d†

2 − d2),
(15)

the Hamiltonian (14) can be expressed with three decoupled bosonic modes as

HNP = ωmc†c + λN
−d†

1d1 + λN
+d†

2d2 +
1
2
(λN

+ + λN
− −ω0 − ω̃a). (16)
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Here the bosonic operators {d†
1, d1, d†

2, d2} are the linear combinations of the original
operators {a†, a, b†, b} (see Appendix A). The energies of two bosonic modes λN

± can be
presented as

(λN
±)

2 =
1
2
{ω̃2

a + ω2
0 ±

√
(ω2

0 − ω̃2
a)

2 + 16χ2ω̃aω0}. (17)

Specially, to ensure the excited energy λN
− is real, it is necessary to satisfy√

(ω2
0 − ω̃2

a)
2 + 16χ2ω̃aω0 6 ω̃2

a + ω2
0, (18)

which is corresponding to χ 6
√

ω̃aω0/2 = χc. Here the atom-field coupling strength χc
is the critical value of QPT between the normal phase and super-radiant phase. For this
reason, the normal phase Hamiltonian HNP remains valid when the coupling strength
is not larger than the critical value (χ 6 χc). Noted that Hamiltonian HNP commutes
with the parity operator Ξ, and thus the eigenstates of HNP have a definite parity in the
normal phase.

3.2. Super-Radiant Phase

On the other hand, with the increase of the coupling strength χ, when this coupling
strength is large enough, the system will take a QPT from the normal phase (χ < χc) to the
super-radiant phase (χ > χc). In the super-radiant phase, both the atomic ensemble and
the single mode cavity field acquire macroscopic occupations.

Define displacements of the bosonic modes as [58]:

a† → A† +
√

α (α 6= 0), b† → B† −
√

β (β 6= 0) , (19)

with the assistance of displacement transformation of Equation (19), the Hamiltonian (7)
can be rewritten as

H = ω̃a(A† +
√

α)(A +
√

α) + ωmc†c + ω0(B† −
√

β)(B−
√

β)
+χ(A† + A + 2

√
α)(B†√ξ +

√
ξB− 2

√
ξ
√

β)
− g

N (A† +
√

α)(A +
√

α)(c† + c),
(20)

with √
ξ =

√
1−

(B† −
√

β)(B−
√

β)

N
.

Setting the terms with overall powers of N in the denominator to zero, and defining

√
α =

χ

ω̃a

√
N(1− µ2),

√
β =

√
N
2
(1− µ), µ =

ω̃aω0

4χ2 =
χ2

c
χ2 , (21)

we can rewrite the Hamiltonian (20) in a bilinear form as [54]

HSP = HSP
D + ωmc†c−Ω(c† + c), (22)

where
HSP

D = ω̃a A† A + ω̃0B†B + ω0(1−µ)(3+µ)
8µ(1+µ)

(B† + B)2

+χµ
√

2
1+µ (A† + A)(B† + B),

(23)

ω̃0 = ω0
2µ (1 + µ) and Ω = gχ2(1−µ2)

ω̃2
a

. The Hamiltonian (22) shows, in the super-radiant
phase, although the moving mirror effectively decouples from the Dicke Hamiltonian part
(23), it still suffers an effective classical driving force for the macroscopically excited field
and atoms. Moreover, as the critical value χc of QPT depends on the effective frequency
ω̃a, which is linear to the external force for Equation (5), it is possible to control this
super-radiant phase with the external force.
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To diagonalize the bilinear Hamiltonian (23), we move HSP into the position-momentum
representation with the following definitions

Xa =
1√
2ω̃a

(A† + A) , Pa = i
√

ω̃a
2 (A† − A),

Xb = 1√
2ω̃0

(B† + B) , Pb = i
√

ω̃0
2 (B† − B),

Xc =
1√

2ωm
(c† + c) , Pc = i

√
ωm
2 (c† − c),

(24)

and assumptions {
Xa = Q1 cos θ2 + Q2 sin θ2,
Xb = −Q1 sin θ2 + Q2 cos θ2,

(25)

here the angle θ2 follows

tan(2θ2) =
2ω̃aω0µ2

ω2
0 − µ2ω̃2

a
.

Then the Hamiltonian (23) can be reduced to

HSP = 1
2{(λS

−)
2Q2

1 + P2
1 + (λS

+)
2Q2

2 + P2
2 − ω̃0

−ω̃a}+ 1
2 (ω

2
mX̃2

c + P2
c )− Ω2

2ω2
m

,
(26)

with X̃c = Xc − Ω
ω2

m
.

After three new bosonic modes e1,2,3 as Equation (15) is introduced, the above Hamil-
tonian be rewritten as

HSP = λS
−e†

1e1 + λS
+e†

2e2 + λS
0 e†

3e3

+ 1
2{λS

− + λS
+ − ω̃0 − ω̃a − Ω2

ω2
m
}, (27)

where energies of three bosonic modes are (λS
±)

2 = 1
2{ω̃2

a +
ω2

0
µ2 ±

√
(

ω2
0

µ2 − ω̃2
a)

2 + 4ω̃2
aω2

0},
λS

0 = ωm,
(28)

new bosonic modes e1,2 can be in terms of the original operators {A†, A, B†, B} as Appendix A,
and e3 is the mechanical mode with a shifted steady position, which is caused by the excited
cavity mode in the super-radiant phase via the radiation pressure interaction.

Specially, when ω̃2
a +

ω2
0

µ2 >

√
(

ω2
0

µ2 − ω̃2
a)

2 + 4ω̃2
aω2

0 , or equivalently, χ >
√

ω̃aω0/2 =

χc, the excitation energy λS
− in Equation (27) can be kept in real. Hence, the Hamiltonian

HSP (27) can only be employed to describe the system in the super-radiant phase (χ > χc).
In this situation, the global symmetry Ξ would be broken at the QPT, while two new

local symmetries for traditional super-radiant phase [58] still be achieved. These local
symmetries are corresponding to the parity operator

ΞSP = exp{iπ[A† A + B†B + c†c]},

for the mean-field displacements. This operator would commute with the appropriate
super-radiant Hamiltonian ([ΞSP, HSP] = 0). Moreover, although the external force cannot
change the symmetry of the system, the critical value of the QPT can be shifted by the
external force.

4. Simulations and Discussion

In this section, we would like to give some simulations to demonstrate the force de-
pendent quantum phase transition, and its applications on the external force measurement
taking squeezing properties.
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4.1. Force Dependent Quantum Phase Transition

The above two effective Hamiltonians describe the hybrid atom-optomechanical
system versus the atom-cavity coupling χ in the thermodynamic limit (N → ∞). Now, we
would like to illustrate physical properties of these two effective Hamiltonians in different
phases and show how to control the QPT via the external force. As the energy of mechanical
mode (λ0 = ωm) is very trivial, we don’t present its calculations in the following.

When there is no external force ( f = 0), as it is plotted in Figure 2, fundamental
excitations energies of the system λ± are the functions of coupling strength χ. According
to the nature of the excitation for χ = 0, the energies λ− (black solid curve) and λ+ (red
dashed curve) can be named as photonic and atomic branches, respectively. Moreover,
Figure 2 also shows, when the coupling strength approaches the critical value χc for QPT,
the excitation energy of the photonic mode will vanish (λ− → 0), which implies the

existence of the QPT. On the contrary, the trend of λ+ approaches to the value
√

ω2
a + ω2

0
when χ → χc. In addition, in the asymptotic limit of χ → ∞, we can find λ− → ωa as
Equation (28), which means the energy will return to its initial value at χ = 0, whereas
λ+ → 4χ2/ωa. The critical exponents for this QPT are manifested in the behavior of the
excitation energies [59].

0
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���
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2.01.51.00.50.0
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�������
�����
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Figure 2. The excitation energies of the hybrid optomechanical system λ = λN,S
± is plotted as the

coupling strength χ for no external force ( f = 0) by using Equations (17) and (28). The behavior of
energy λ− can be seen as “photonic” branch, denoted by black line and that of energy λ+ can be seen
as “atomic” branch, denoted by red line. Here we assume ω0 = ωa = 1, and then the value of λ−
vanishes at critical value χ = χc = 0.5, which denotes the occurrence of the QPT.

Next, we will show there exists the force dependent QPT in our system. Figure 3a
presents the critical value of QPT for the different external force. It results from the fact
that the external force works as the function of the critical value of QPT for

χc =
√

ω̃aω0/2 =

√
(ωa +

f g0

mω2
m
)ω0/2. (29)

The external force f can be rewritten as a force ratio η = f / f0 = 4χ2
c /(ωaω0)− 1 with

f0 = mωaω2
m/g0, then the force dependent frequency of the optomechanical cavity (5) can

be rewritten as
ω̃a = ωa +

f g0

mω2
m

= ωa(1 + f / f0) = ωa(1 + η). (30)

Therefore, the critical value of the QPT can be modified by the external force. To
illustrate this point for further, the force ratio η versus the critical value of QPT χc is plotted
in Figure 3b. It presents that each critical values of QPT corresponds to one external force,
which is linear to the force ratio ( f ∝ η = f / f0). In detail, when f > 0, the external force
will increase the frequency of optomechanics cavity, otherwise, the external force will
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decrease the frequency of optomechanics cavity. As a result, there is a force dependent
QPT in our system.

Figure 3. (a) The excitation energies of the hybrid atom−optomechanical system λ = λN,S
± are plotted

as functions of coupling strength χ by using Equations (17) and (28). The left (right) QPT is for the
external force f = 0.5 f0 ( f = f0) with f0 = mωaω2

m/g0. (b) The force ratio η = f / f0 is plotted as the
function of the critical value of QPT χc with Equations (29) and (30). The other parameters are same
as Figure 2.

4.2. Force Measurement Based on Squeezed Field

Now, we would like to illustrate the squeezing properties of our system and their
application in the force measurement.

When the system is only microscopically excited, two quadrature variances of the
cavity mode a can be defined by (∆qa)2 = 〈q2

a〉 − 〈qa〉2 and (∆pa)2 = 〈p2
a〉 − 〈pa〉2, which

take the forms as{
(∆qa)2 = 1

2ω̃a
{1 + 〈a†2〉+ 〈a2〉+ 2〈a†a〉 − (〈a†〉+ 〈a〉)2},

(∆pa)2 = ω̃a
2 {1− 〈a†2〉 − 〈a2〉+ 2〈a†a〉 − (〈a†〉+ 〈a〉)2}.

(31)

Similarly, with the employment of the bosonic operator definitions for the collective
atomic operators, the quadrature variances of the atomic ensemble can be given as{

(∆qb)
2 = 1

2ω0
{1 + 〈b†2〉+ 〈b2〉+ 2〈b†b〉 − (〈b†〉+ 〈b〉)2},

(∆pb)
2 = ω0

2 {1− 〈b†2〉 − 〈b2〉+ 2〈b†b〉 − (〈b†〉+ 〈b〉)2}.
(32)

It is well known that a bosonic mode would be squeezed when one of its quadrature
variances is less than the uncertainty [60]. That is to say, the cavity field and atomic
ensemble would be squeezed when the one value of (∆qj=a,b)

2 and (∆pj=a,b)
2 is less than

1/2 (uncertainty in coherent state). In the normal phase, the variances can be written
by the linear combinations of the bosonic operators {d†

1, d1, d†
2, d2} (see Appendix A). By

taking the ground-state expectation value, we can obtain the expressions of the variances
as Appendix B. In the super-radiant phase, we can apply the displacement transformation
on bosonic modes, then quadrature variances of the cavity mode and atomic ensemble in
the super-radiant phase can be given as

(∆qa)2 = (∆Xa)2,
(∆qb)

2 = ω̃0/ω0(∆Xb)
2,

(∆pa)2 = (∆Pa)2,
(∆pb)

2 = ω̃0/ω0(∆Pb)
2.

(33)

The analytic solutions of these variances in the ground states, which are shown in
Appendix B, are plotted in Figure 4 by using Equations (31) and (32). First of all, we
consider the case for f = 0 in Figure 4a. In the normal phase, (∆pa)2 and (∆pb)

2 are
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coincident with each other, and it is the same for (∆qa)2 and (∆qb)
2. Moreover, when χ

approaches χc, the variances (∆qa)2 and (∆qb)
2 increase, but there is a slight squeezing in

the momentum variances. In the super-radiant phase, the position variances (∆qa)2 and
(∆qb)

2 reduce rapidly, while the momentum variances (∆pa)2 and (∆pb)
2 increase slowly

for the increase of the coupling strength. The best squeezing of the momentum variances
occurs at the point for QPT (χ = 0.5). The above squeezing results from that our system is
a specific example of the Bogoliubov transformation with squeezing properties, which are
the same as the ones in Refs. [58,61].

�������������������

������������

Figure 4. (a) The quadrature variances for cavity mode and atoms in the ground state of our system in
the thermodynamic limit. (b) The momentum variances of cavity mode versus the coupling strength
χ with the different force ratio η. The other parameters are same as Figure 2.

To explore the relation between the squeezed field and the external force ( f 6= 0), it
is necessary to simulate the critical values of QPT with different force ratios η. Here we
only consider the momentum variance of cavity mode (∆pa)2 in Figure 4b. It shows, with
the increase of the external force, the squeezing degree of cavity mode will be enhanced.
The best squeezing degree occurs at the critical values of QPT, which are determined by
the external force. Thus it is possible to detect the external force through the ground-state
squeezing variances in the thermodynamic limit.

The smallest momentum variance of cavity mode versus the force ratio η with different
χ are simulated in Figure 5. It illustrates the squeezing external force f = η f0 can enhance
the squeezing degree of cavity mode. Simultaneously, the sensitivity of the external force
can also be improved by the squeezing degree of cavity mode, and the largest sensitivity
for χ = χc in Figure 5 is ∂ f /∂(∆pa)2 = 1.54 f0/ωa, while the one for χ = 0 is zero.
These phenomena indicate, without a driven field, it is impossible to achieve the precision
measurement by using optomechanics, whereas the hybrid atom-optomechanical system
can be employed to realize a precision measurement for squeezing properties. These
results can be understood as follows. The QPT, caused by quantum fluctuation in the
thermodynamic limit via the interaction between atomic ensemble and cavity mode [28],
is be irrelevant to the driven field. When the atomic ensemble is decoupled to the cavity
mode (χ = 0), our system will work in the normal phase as Figure 2 and behavior as a
single optomechanics without driven field, no squeezing properties and output field can
be employed to detect the external force. On the other hand, when the coupling strength χ
is large enough, the quantum fluctuation will cause the super-radiant transition, then the
squeezing properties can be measured and used to detect the external force. In other words,
the quantum fluctuation in super-radiant phase ensures the hybrid atom-optomechanical
system can realize the precision measurement without driven field. It is out of reach by
using a single optomechanical cavity [10,23,24].
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c

Figure 5. The smallest momentum variance of cavity mode versus the force ratio η = f / f0 at the
point of QPT by using Equations (31) and (32). All the rest parameters are the same as Figure 2.

5. Conclusions

In conclusion, we have studied and explored the relation between the super-radiant
phase transition and external force in the hybrid optomechanical system. The special
characters of the hybrid optomechanical cavity, e.g., force dependent quantum phase
transition, can be fully controlled by the external force as the critical value of QPT can be
modified by the external force. Specially, we illustrate that the squeezing properties of
QPT can be employed to improve the sensitivity of the force measurement. We believe
that our proposal provides a new way to realize the precise measurement with squeezing
properties around QPT, which would show the great potential applications for the hybrid
atom-optomechanical system.
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Appendix A. The Mode Transformation

Appendix A.1. Normal Phase

The set of bosons {a, b} can be expressed in terms of bosons {d1, d2} as

a† = 1
2{

cos θ1√
ω̃aλN

−
[(ω̃a + λN

−)d
†
1 + (ω̃a − λN

−)d1]

+ sin θ1√
ω̃aλN

+

[(ω̃a + λN
+)d

†
2 + (ω̃a − λN

+)d2]},
(A1)

a = 1
2{

cos θ1√
ω̃aλN

−
[(ω̃a + λN

−)d1 + (ω̃a − λN
−)d

†
1]

+ sin θ1√
ω̃aλN

+

[(ω̃a + λN
+)d2 + (ω̃a − λN

+)d
†
2]},

(A2)

b† = 1
2{
− sin θ1√

ω0λN
−
[(ω0 + λN

−)d
†
1 + (ω0 − λN

−)d1]

+ cos θ1√
ω0λN

+

[(ω0 + λN
+)d

†
2 + (ω0 − λN

+)d2]},
(A3)
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b = 1
2{
− sin θ1√

ω0λN
−
[(ω0 + λN

−)d1 + (ω0 − λN
−)d

†
1]

+ cos θ1√
ω0λN

+

[(ω0 + λN
+)d2 + (ω0 − λN

+)d
†
2]},

(A4)

The angle θ1 is the rotation angle of the coordinate system, which eliminates the
interaction in the position representation.

Appendix A.2. Super-Radiant Phase

The analogous Bogoliubov transfomations in the super-radiant phase are

A† = 1
2{

cos θ2√
ω̃aλS

−
[(ω̃a + λS

−)e
†
1 + (ω̃a − λS

−)e1]

+ sin θ2√
ω̃aλS

+

[(ω̃a + λS
+)e

†
2 + (ω̃a − λS

+)e2]},
(A5)

A = 1
2{

cos θ2√
ω̃aλS

−
[(ω̃a + λS

−)e1 + (ω̃a − λS
−)e

†
1]

+ sin θ2√
ω̃aλS

+

[(ω̃a + λS
+)e2 + (ω̃a − λS

+)e
†
2]},

(A6)

B† = 1
2{
− sin θ2√

ω̃0λS
−
[(ω̃0 + λS

−)e
†
1 + (ω̃0 − λS

−)e1]

+ cos θ2√
ω̃0λS

+

[(ω̃0 + λS
+)e

†
2 + (ω̃0 − λS

+)e2]},
(A7)

B = 1
2{
− sin θ2√

ω̃0λS
−
[(ω̃0 + λS

−)e1 + (ω̃0 − λS
−)e

†
1]

+ cos θ2√
ω̃0λS

+

[(ω̃0 + λS
+)e2 + (ω̃0 − λS

+)e
†
2]}.

(A8)

Appendix B. Variance

In the thermodynamic limit, Bogoliubov transformations would be applied to derive
exact expressions for the squeezing variances of the ground state. In the normal phase, we
can rewritten Equations (31) and (32) as

(∆qa)
2 =

1
2ω̃a

(1 +
λN
+(ω̃a − λN

−) cos2 θ1 + λN
−(ω̃a − λN

+) sin2 θ1

λN
−λN

+

), (A9)

(∆pa)
2 =

ω̃a

2
(1 +

(λN
− − ω̃a) cos2 θ1 + (λN

+ − ω̃a) sin2 θ1

ω̃a
), (A10)

(∆qb)
2 =

1
2ω0

(1 +
λN
+(ω0 − λN

−) sin2 θ1 + λN
−(ω0 − λN

+) cos2 θ1

λN
−λN

+

), (A11)

(∆pb)
2 =

ω0

2
(1 +

(λN
− −ω0) sin2 θ1 + (λN

+ −ω0) cos2 θ1

ω0
). (A12)

In the super-radiant phase, we can rewrite Equation (32) as

(∆qa)
2 =

1
2ω̃a

(1 +
λS
+(ω̃a − λS

−) cos2 θ2 + λS
−(ω̃a − λS

+) sin2 θ2

λSP
− λS

+

), (A13)

(∆pa)
2 =

ω̃a

2
(1 +

(λS
− − ω̃a) cos2 θ2 + (λS

+ − ω̃a) sin2 θ2

ω̃a
), (A14)

(∆qb)
2 =

1
2ω0

(1 +
λS
+(ω̃0 − λS

−) sin2 θ2 + λS
−(ω̃0 − λS

+) cos2 θ2

λS
−λS

+

), (A15)

(∆pb)
2 =

ω0

2
(1 +

(λS
− − ω̃0) sin2 θ2 + (λS

+ − ω̃0) cos2 θ2

ω̃0
). (A16)
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These results are plotted in Figure 4.
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