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Abstract: An Optical Burst Switching (OBS) network is vulnerable to Burst Header Packet (BHP)
flooding attack. In flooding attacks, edge nodes send BHPs at a high rate to reserve bandwidth for
unrealized data bursts, which leads to a waste of bandwidth, a decrease in network performance, and
massive data loss. Machine learning techniques are utilized to detect this attack in the OBS network.
In this paper, we propose a particle swarm optimization–support vector machine (PSO-SVM) model
for detecting BHP flooding attacks, in which the PSO is used to optimize the parameters of the SVM.
We use the dataset provided by the UCI warehouse to train and test the model. The experimental
results show that the detection accuracy of the PSO-SVM model reaches 95.0%, which is 9.4%, 9.6%,
20.7%, 8% higher than naïve Bayes, SVM, k-nearest neighbor, and decision tree. Although DCNN
outperforms our model, it requires more processing and training time. Collectively, our approach is
effective and high-efficiency in detecting flooding attacks in optical burst switching networks and
maintaining network stability and security.

Keywords: Burst Header Packet (BHP) flooding attack; particle swarm optimization (PSO); support
vector machine (SVM)

1. Introduction

In an optical network, there are three main optical switching technologies, namely, Op-
tical Circuit Switching (OCS), Optical Packet Switching (OPS), and Optical Burst Switching
(OBS), which OBS is the next generation of Internet infrastructure [1–3]. OBS overcomes
the shortcomings of OCS and OPS. It does not need to establish an optical channel like OCS
during transmission, does not occupy channel resources all the time, and does not require
optical–electronic–optical switching conversion at each intermediate node like OPS. Data
Burst (DB) is the basic switching unit of the OBS network, including Burst Data Packet
(BDP) carrying data and its corresponding Burst Header Packet (BHP) carrying control
information [4]. The intermediate node judges the route based on the information carried
by the BHP and correctly forwards the BDP to the next-hop node. Since the physical
transmission channel used for BHP and BDP are separated during data transmission, BHP
occupies the control channel and BDP occupies the data channel. OBS technique realizes
the independent transmission of time and channel in the all-optical Internet by data packets
and control packets, but independent transmission may cause BHP flooding attacks on the
network. BHP flooding attacks are similar to the possible SYN attacks in TCP protocol [5,6].

In the BHP flooding attack, malicious nodes send a large number of BHPs to the
network which affect the bandwidth utilization [7,8]. These BHPs take over the core switch
and maliciously occupy the idle wavelength division multiplexing channels, making it
impossible for normal BHPs to transmit. Figure 1 demonstrates that when a hacker attacks
an edge node, the target node receives a large number of malicious BHPs and reserves
new free channels. As a result, this target node is unable to transmit legitimate BHPs and
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discards the upcoming legitimate BHPs, in which reserved channel resources are wasted.
In extreme cases, these attacks can also lead to a serious denial of service [7].

Figure 1. BHP flooding attacks in an OBS network.

As OBS networks have been intensively studied, their network security has also
received much attention. There are also more and more intrusion detection methods for
networks. However, the effectiveness of intrusion detection algorithms directly affects
the performance of intrusion detection systems. Traditional machine learning can learn
the “knowledge” easily limited, resulting in models with low prediction accuracy. In
this paper, we propose a BHP flooding attacks detection method based on support vector
machine (SVM), and use particle swarm optimization (PSO) algorithm to find the optimal
parameters of SVM. In addition to that, the specific work includes the following. First,
the OBS network dataset is first preprocessed to ensure that the model can “learn” well.
Then we use the recursive feature elimination (RFE) method to find the optimal feature
subset in the dataset, removing too many of the less relevant features. The results show
that the proposed PSO-SVM model can effectively identify the flooding attack in the optical
burst switching network while also ensuring the stability and security of the network.
More importantly, our model, compared with other machine learning methods, has higher
detection accuracy; more training time saving and more efficient compared with deep
learning methods.

2. Background
2.1. Related Work

A series of methods have been utilized to deal with and detect intrusion problems
in OBS networks. Rajab et al. [9] proposed a security model embedded in the OBS core
switch, which could effectively resist flooding attacks and provide network resources for
legitimate nodes, but it still had a high loss rate. Coulibaly et al. [10] used a public key
encryption algorithm based on Rivest-Shamir-Adleman to solve the problem of data burst
redirection in the OBS network, which not only avoided data burst redirection attacks on
OBS networks but also reduced the attack times of BHP. In addition, Rajab et al. [11] used
a decision tree algorithm to extract If-Then rules, which can accurately classify 93% of BHP
flooding attacks into behavioral and misbehavioral categories. Many artificial intelligence
algorithms were also applied to predict similar attack types, greatly improving the efficiency
of flooding detection [12,13]. Ibrahim [14] used the layered off-line abnormal network in
the distributed delay artificial neural network to detect the attack of the intrusion network,
which solved the problem of attack type detection of the dynamic neural network well,
and the classification accuracy reached 97.24%. A deep learning model was used to classify
flooding attack types of OBS and improved the classification accuracy of the flooding attack
to 99% [15].
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2.2. Problem Definition

When a malicious ingress node sends a large number of BHPs to the network, these
BHPs occupy the core switch and take up the channel resources of the next DB. However,
if the malicious node does not continue to send DB, then this will cause a large amount of
reserved channel resources to be wasted, so that the normal BHP request has no available
remaining channels, and the arriving DB afterward will also be discarded by the core switch.
In this paper, our approach classifies the nodes based on the DB. We define three types of
node status behaving, not behaving, and potentially not behaving, and four categories of
nodes Block, No Block (NB), NB-No Block, NB-Wait. The semantics of the four categories
are as follows: Block indicates that the node is in a blocking state due to improper traffic
behavior. No Block indicates that the node is in a normal state. The remaining two values
indicate that the node is in an intermediate state between Block and No Block, where
the node is misbehaving but is below the threshold of Block. NB-No Block indicates that
the node may be blocked soon. NB Wait indicates that the priority of node traffic and
reservation is lower than other requests.

The definition of the classification problem is as following: The initial data is labelled
as (X, Y), where X represents the attribute set of each sample data, Y represents the class
variable. A vector xi ∈ Rm can be assigned one of four disjoint point sets y1, y2, y3 or
y4 within an m-dimensional feature space. xi ∈ Rm is the ith training data row and
yi ∈ {0, 1, 2, 3} represents the ith class value. The aim is to derive a function, F, that
maximizes the chance that F(x) = yi for each test data, yi can be 0 (NB-No Block), 1 (Block),
2 (No Block), 3 (NB-Wait). The function F(x) can be defined as:

F(x) = yi =


0, if x ∈ C0
1, if x ∈ C1
2, if x ∈ C2
3, if x ∈ C3

(1)

2.3. Packet Data

The lack of data makes the detection of machine learning in the OBS network difficult.
We perform a number of simulations to collect a relevant credible dataset, so that construct
an effective classification model to block the BHP flooding attack. We randomly select 22
attributes of the data and have a brief description, as shown in Table 1. We followed the
feature selection process of Reference [9] (the source of this public dataset). The selection
of features in the realm of interaction between optical networks and machine learning may
also be found in Reference [16–18].

Table 1. Packet data attributes.

Label Attribute Description

D1 Node The label of the sending node.
D2 Utilized Bandwidth Rate Normalize the bandwidth rate that can be reserved.
D3 Packet Drop Rate The ratio of the number of lost packets per node to the data sent.
D4 Full Bandwidth This is the initially reserved bandwidth allocated by the user to each node.
D5 Average Delay Time Per Sec This is the average delay of each node per second.
D6 Percentage Of Lost Packet Rate Percentage of packet loss per node.
D7 Percentage Of Lost Byte Rate Byte loss rate per node.
D8 Packet Received Rate The number of data packets received by each node per second

on the reserved bandwidth.
D9 Used Bandwidth The amount of bandwidth that each node can use in the allocated

bandwidth (D4).
D10 Lost Bandwidth The amount of bandwidth lost by each node in the allocated

bandwidth (D4).
D11 Packet Size Byte The byte packet size allocated for each node.
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Table 1. Cont.

Label Attribute Description

D12 Packet Transmitted The total number of data packets transmitted by each node per
second in the allocated bandwidth (D4).

D13 Packet Received The total number of packets received by each node per second
in the allocated bandwidth (D4).

D14 Packet Lost The total number of packets lost per second per node in the
lost bandwidth (D10).

D15 Transmitted Byte Bytes transferred per second per node.
D16 Received Byte Number of bytes received by each node per second in the reserved bandwidth.
D17 10-Run-AVG-Drop-Rate The average value of the packet loss rate (D3) obtained after

10 simulation runs.
D18 10-Run-AVG-Bandwidth-Use The average value of used bandwidth (D9) obtained after

10 simulation runs.
D19 10-Run-Delay The average delay time obtained after 10 simulation runs.

D20 Node Status Divide node status into behaving, not behaving, and potentially
not behaving.

D21 Flood Status Flood rate of each node.
D22 Class Four categories of nodes, Block, No Block (NB), NB-No Block, NB-Wait.

3. The Proposed PSO-SVM Model for the BHP Flooding Attack

We propose a BHP flooding attack detection framework based on PSO-SVM algorithm,
which is divided into four modules, the brief description is as follows. Figure 2 represents
the general architecture of PSO-SVM.

a. Data preprocessing. The data is preprocessed accordingly so that our model can
recognize it.

b. Feature selection. Feature selection is performed on the data using RFECV-RF to
find the most suitable subset of data for model classification based on classification
accuracy values and cross-validation. The optimal feature set is segmented for model
training and testing.

c. Parameter tuning. PSO is introduced to find the two parameters of the given SVM
model by finding the optimal combination of parameters.

d. The OBS network intrusion detection model. The best combination of parameters
is input to train the data, the trained model is tested against the test set, output the
predicted result, and use the evaluation indexes, confusion matrix, etc. to evaluate the
PSO-SVM model.

Figure 2. Architecture of the proposed PSO-SVM model.
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3.1. Data Preprocessing

To make the data more conducive to the analysis and learning of the model, we first
perform the data processing procedure. In the real world, the initial data is generally
incomplete, which is called “dirty data”. Learning directly from these data may lead to
some errors. Data preprocessing is to convert “dirty data” into a form that can be “learned”
by machine language. In particular, we perform the following data processing procedure:

Data cleaning: The data contains a small number of missing values and we re-
move the missing values, but this does not affect the model results. We also remove
the Packet Size Byte (D11), because this attribute value is constant and does not provide
any useful information.

Data transformation: To better process the attribute data, we convert the four cate-
gories NB NoBlock, Block, No Block, NB Wait and the node status behaving, not behaving,
potentially not behaving into one-hot encoding, which makes the classifier more efficient
in processing attribute data, and also expands the attribute characteristics in a certain
function. The N-bit status register corresponds to N states, and each state is controlled by
its independent register bit, and at any time, only one of the encoding is valid. For example,
one-hot encoding of the ‘Node Status’ such as ‘NB, B, P NB’ are {1,0,0}, {0,1,0}, {0,0,1}.

After the above category transformation, all our data are converted into numeric.
To eliminate the dimensional influence between data features, we need to normalize the
features so that different indicators are comparable. We adopt the min-max normalization
for data standardization processing, which can not only eliminate the influence of different
attributes of samples with different orders of magnitude but also accelerate the search
speed of the optimal solution of gradient descent and improve the classification accuracy.

Xnorm =
X− Xmin

Xmax − Xmin
(2)

Equation (2) is the min-max normalized solution method, where Xnorm is the normal-
ized value, and Xmax and Xmin are the maximum and minimum values of the data before
normalization. This approach compresses the data to the interval [0, 1] and outputs a value
that is equal in proportion to the original value.

Data noise addition: To increase the statistical significance of the variables and
smooth their values, Gaussian distribution is used to add noise to the data. It is also
to prevent overfitting during model training.

ρ(z) =
1√
2πσ

exp
{
−(z− µ)2/2σ2

}
(3)

Equation (3) is the formula for the normal distribution, where π, σ are the expectation
and variance of the Gaussian distribution, respectively.

3.2. Feature Selection

As can be seen from Section 3.1, we have already preprocessed the data, but it is not
at all sufficient to do this alone. The training results of the model will also be affected by
the amount of data, the number of features, etc. For example, if all the features of the data
are input into the model when training the model, there is a possibility that the model will
be overfed. The feature values of some data do not affect the computational results of the
model and may add some unnecessary computation. From the above, we should eliminate
irrelevant features in the data as much as possible to ensure that the model training can get
better results.

In this paper, we choose the RFE with K-fold Cross-Validation based on Random
Forest (RFECV-RF) for feature selection [19]. The purpose of RFECV is to judge the optimal
number of feature selections through a certain evaluation parameter. The steps of selection
consist of two main phases: RFE and cross-validation, shown as Supplementary Materials
Algorithm S1.
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The external estimator uses the RF to obtain the corresponding feature importance
order, i.e., the weight values [20]. Simply explained, feature importance is the average over
the entire forest after counting the ‘contribution’ made by each feature on each tree. It is
evaluated to find the features that are highly correlated with the targeted node state. In
this paper, we use the Gini index to evaluate it, which is calculated as

GIa =
4

∑
y=0

∑
y′ 6=k

pya py′a = 1−
4

∑
y=0

p2
ya (4)

where pya represents the proportion of class y in the node a. The Gini index measures the
probability that two samples are randomly selected from node a with different class. We
will discuss the feature importance in Section 4.3.1.

The RFECV-RF algorithm performs feature selection on OBS network data by assigning
a weight value to each feature. The features with the fewest absolute values are then deleted,
and the remaining features are cycled through again. Adjusting the score of each feature
during the iterative process to finally obtain the optimal feature subset. The time complexity
of feature selection (RFECV-RF) is O(mn log n) + O

(
n2) in the training phase.

3.3. Support Vector Machine

In this part, we introduce the Support Vector Machine (SVM) used for classification.
Then, the optimization method of SVM, i.e., particle swarm optimization (PSO) algorithm,
is proposed in Section 3.4.

SVM is a linear two-class classifier whose purpose is to find the maximum distance
between categories and construct a classification hyperplane at the center of the maximum
distance [21,22]. These two categories are labeled +1 (positive example) for the case
above the hyperplane, and −1 (negative example) for the case below the hyperplane. The
hyperplane can be expressed as:

y(x) = αT ∗ x + β (5)

where β denotes the deviation, α denotes the weight vector. α and β can be estimated by
minimizing the error function:

min
w,b,ξ>0

1
2

αTα + C∑
i

ξi

s.t. yi

(
αTxi + β

)
≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0

(6)

where α is the slack variable and C is penalty parameter.
To predict to which classification the new records should be classified, the features of

the new data are subsequently used. Once the decision-making surface is reached, the new
data can be classified. Since there are four types of centralized attacks on OBS network
data, we use One-Versus-Other (OVR) to create a multi-classified SVM. OVR employs four
SVMs, each of which determines if a sample belongs to a specific category.

To solve linearly indivisible data, SVM transfers data that cannot be partitioned in
low-dimensional feature space into higher-dimensional space for partitioning and employs
kernel functions to calculate the inner product. The commonly used kernel functions are
linear kernel, polynomial kernel, Radial Basis Function (RBF) kernel, and sigmoid kernel.
Each kernel function has its own set of circumstances that is used. The majority of users
base their decisions on previous experience. In this paper, we choose to use the RBF kernel
with a short running time and the highest classificationaccuracy. The formula for RBF is:

K(x1, x2) = exp

(
−‖x1 − x2‖2

2σ2

)
(7)
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where σ is the width of RBF. The hyperplane is updated as:

y(x) = αT ∗ K(x1, x2) + β

x ∈ Dxi
(8)

where β denotes the deviation, α denotes the weight vector, and Dxi is the optimal fea-
ture subset.

3.4. Optimization of the SVM by PSO

From above, we selected the RBF kernel function. The RBF parameter σ and the
penalty parameter C, among the many parameters of SVM, plays a critical role in the
quality of the classification results. As the width value of the RBF, σ directly determines
the radial range of action of the kernel function, and the generalization ability of the model
increases as σ becomes larger, but declines after a certain value. The penalty factor is
used to control the minimum risk and confidence level. Similarly, a smaller C reduces the
model’s complexity, implying a smaller penalty for incorrect samples, while a larger C
leads to overfitting.

We introduce the PSO algorithm to adjust the parameters of SVM [21,22]. Each member
of the group is regarded by PSO as a “particle”, which moves at a set speed within its
search range. All particles have the attributes of position, speed, and memory function. The
fitness function is used to calculate the fitness value to judge the particle’s current position.
Through the individual “notification” function, the particles follow the optimal particle
within the scope of the search until the set number of iterations is reached or the optimal
solution of the group no longer changes. The most common particles are known as the best
position experienced by the individual particle (pbest) and the best position experienced
by the population (gbest). The structure of PSO is given in Supplementary Materials
Algorithm S2. The time complexity of PSO-SVM is O

(
n2)× [O

(
m2 × n

)
, O
(
m3 × n

)
] in the

training phase. After being well-trained, only the classifier SVM is working, reducing the
time complexity.

4. Experiments and Results
4.1. Experimental Settings
4.1.1. Dataset

We perform a number of simulations to collect a relevant credible dataset, so that
construct an effective classification model to block the BHP flooding attack. We have
obtained a relevant credible dataset in the UCI database [23]. There are 1075 sample data
and each sample data contains 22 attributes. Our training dataset accounts for 80%, and
the test dataset accounts for 20%.

The simulated OBS network constructs of one legitimate sender, one receiver, one
attacker, eight core switches, two ingress edge routers, one egress edge router. This attacker
is deployed close to this receiver in addition to the possibility of not being discovered.
Every four core switches form a ring topology and are then connected in series. This
dataset was obtained by running the NSFNET network structure over 100 simulations
on NCENTs simulation platform, randomly selecting the locations of edge routers and
varying the bandwidth capacity of the edge nodes (the network bandwidth takes values
between (100–1000 Mbps)) to ensure that there is normal, contention and congestion in the
network [24] (please see paper [9] for more details).

For illustration purposes, Tables 2 and 3 list just three iterations for two of the
edge nodes.

4.1.2. PSO Experimental Setting

In the experiments, we considered a SVM based on the RBF kernel. Finding the
optimal σ and C for the SVM model to classify the OBS network dataset is a crucial step.
The parameter tuning module consists of 100 particles and optimizes in 10 iterations. The
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related parameters σ and C range randomly in [0.01, 10], [0.01, 100], respectively. Table 4
shows the parameters empirically set by the PSO algorithm for SVM optimization search.

Table 2. Partial dataset (Part I).

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

3 0.623081 0.387489 200 0.000426 38.715738 38.748895 0.612511 124.61625 75.38375 1440
9 0.861525 0.151567 500 0.000961 15.152253 15.156679 0.848433 430.7625 69.2375 1440
3 0.559238 0.450597 100 0.000704 44.993369 45.059682 0.549403 55.92375 44.07625 1440
9 0.867038 0.146063 1000 0.000633 14.598556 14.606306 0.853937 867.0375 132.9625 1440
3 0.262688 0.741437 300 0.000473 74.103056 74.143659 0.258563 78.80625 221.19375 1440
9 0.542763 0.465611 900 0.000406 46.55864 46.5611 0.534389 488.48625 411.51375 1440

Table 3. Partial dataset (Part II).

D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22

18,096 11,084 7012 2.605824× 107 1.59096× 107 0.290617 0.560773 0.000422 P NB 0.063936 NB-No Block
45,188 38,339 6849 6.507072× 107 5.520816× 107 0.103065 0.85291 0.000913 B 0 No Block
9048 4971 4077 1.302912× 107 7,158,240 0.3019 0.492129 0.000683 P NB 0.06038 NB-No Block

90,324 77,131 13,193 1.3006656× 108 1.1106864× 108 0.091862 0.841026 0.000627 B 0 No Block
27,092 7005 20,087 3.901248× 107 1.00872× 107 0.533834 0.225911 0.001336 NB 0.400376 Block
81,276 43,433 37,843 1.1703744× 108 6.254352× 107 0.35852 0.466776 0.00656 P NB 0.136238 NB-Wait

Table 4. SVM optimization parameters.

Parameters Values

Population iterations 10
Population size 100

Local learning factor 0.2
Global learning factor 0.5

Inertia weight 0.5
Penalty factor 0.01 < C <100

Kernel function parameter 0.01 < σ <10

4.1.3. Evaluation Indexes

The confusion matrix, also known as the error matrix, is mostly used to judge the
pros and cons of a classifier, which is suitable for a classified data model. The four
basic indicators are obtained: True Positive (TP)—correct identification, False Positive
(FP)—misidentification, True Negative (TN)—correct rejection, False Negative (FN)—false
rejection. Furthermore, we extend the basic statistical results of the confusion matrix to the
following four indexes: Accuracy, Precision, Recall, F1 score. The four evaluation indexes
are defined in Table 5.

Table 5. Four classification evaluation indexes.

Evaluation Index Format

Accuracy (TP + TN)/(TP + FN + FP + TN)
Precision TP/(TP + FP)

Recall (TPR) TP/(TP + FN)
F1 score 2 × (Precision × Recall)/(Precision + Recall)

The Receiver Operating Characteristic (ROC) curve and Precision-Recall (PR) curve
are also used in this paper to evaluate the classification effect of intrusion detection [25,26].
The ROC curve is a representation of the relationship between True Positive Rate (TPR)
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and False Positive Rate (FPR). The PR curve is a representation of the relationship between
the accuracy rate and the recall rate. The formula for FPR are defined as

FPR = FP/(FP + TN) (9)

4.2. Experimental Results

The proposed PSO-SVM model is compared with the commonly used Naïve Bayes
(NB), SVM, and k-Nearest Neighbor (KNN) models to detect the detection efficiency of
BHP flooding attacks in the OBS network. Figure 3 shows the confusion matrix of the
four algorithms. The PSO-SVM model has an accuracy of 100% for the second and third
categories, and more than 90% for the two outer categories. The other three algorithms
also have high accuracy for the second and third categories, but are not as effective for
the other two categories. Among them, the NB algorithm has the worst effect, and the
recognition accuracy of the fourth classification is only 60%. In a comprehensive view, the
PSO-SVM algorithm has a strong advantage for detecting the BHP flooding attack in OBS
networks. For comparison, we also present the specific values of the confusion matrix
(Supplementary Materials Figure S1).

We also list the classification performance metrics of these four models, and two
additional models, i.e., deep convolutional neural network (DCNN) [15] and decision
tree (DT) [11], as shown in Table 6. These two models used the same dataset as in this
paper. Since PSO is introduced in this paper to find the optimal parameters of the SVM
model (σ = 3.14, C = 2.69), all the performance metrics of PSO-SVM are superior than those
of the SVM model. Additionally, the accuracy of PSO-SVM is improved by about 9.4%,
9.6%, 20.7%, 8% compared with SVM, KNN, NB, and DT, respectively, which has a better
classification effect and improves the precision to 96.3%.

Figure 3. Comparison of the confusion matrix (scale) of the four algorithms. 0∼3 indicate the 4 labels,
respectively, 0: NB-No BlOCK, 1: BlOCK, 2: No BlOCK, and 3: NB WAIT.
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Table 6. Performance index results of four models.

Models Accuracy Precision Recall F1 Score

PSO-SVM (our) 0.950 0.963 0.966 0.965
SVM 0.854 0.882 0.881 0.878
KNN 0.845 0.886 0.868 0.875
NB 0.743 0.748 0.800 0.763

DT [11] 0.87 0.593 0.574 0.583
DCNN [15] 0.99 0.99 0.99 0.99

The NB algorithm predicts the predicted samples in a straightforward and quick
manner. However, since the NB model assumes that the attributes are independent of one
another, this assumption is difficult to verify in our data set. When the number of attributes
is great or the correlation between attributes is large, this results in a higher categorization
of the NB model. When the KNN algorithm encounters sample imbalance, the prediction
deviation is relatively substantial. For example, there are fewer samples in one category,
whereas there are more samples in others. SVM algorithm’s low prediction accuracy is due
to its sensitivity to missing data, the selections of parameters and kernel function, and lack
of accuracy for multi-class prediction. Rajab et al. [11] chose only two features that were
highly significant to the category in the decision tree, leaving out some information. In
addition, the decision tree model does not train well enough for the categories with less
samples in the dataset (NB-No Block and NB-Wait).

The convolutional layer in DCNN retrieves data features, which decreases the em-
pirical error of manually extracting features. Compared with others, DCNN has a better
classification effect including our model. However, the number of features obtained by
DCNN is large, the processing time is long, and the training time is greatly increased.

The PR curve and the ROC curve are utilized in this paper to evaluate the classification
effectiveness of our model. Figure 4a shows the ROC curves for each of the four categories,
as well as the two calculation methods of micro-averaging (micro) and macro-averaging
(macro). Our PSO-SVM model has a better classification impact, as the ROC regions
of the four categories are infinitely close to 1. The PR curves for all four categories, as
shown in Figure 4b, maintain a steady convexity to the right, indicating that the PSO-SVM
model can maintain a very high prediction accuracy as the recall rate steadily increases. In
conclusion, our PSO-SVM model provides a more accurate and efficient flooding attack
detection approach.

(a) ROC curves of PSO-SVM model. (b) PR curves of PSO-SVM model.

Figure 4. Comparison of different kernel function models for SVM in optical interconnect data.
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4.3. Discussion

In this part, we consider the feature importance magnitude, the effect of two variables,
the number of selected features in Section 3.2 and kernel function in Section 3.3, on our
PSO-SVM detection model.

4.3.1. The Feature Selection

In REFCV, we employed a RF as an external estimator for feature selection. The impor-
tance of features computed with the Gini index in random forest is displayed in Figure 5a.
We graded the feature importance from left to right in descending order. The differences
in terms of values are not significant. ‘Flood Status’ has a greater impact on identifying
flooding attacks than other aspects. ‘10-Run-AVG-Drop-Rate’ is the second most important.
‘10_Run_AVG_Bandwidth_Use’, ‘Percentage_Of_Lost_Byte_Rate’, ‘Packet_Drop_Rate’ and
other values are roughly equal and are third important. The values of ‘10-Run-Delay’,
‘Used_Bandwidth’, and ‘Packet_Received’ are approximately equal, and again of. The
remaining five are roughly equal and have very little impact. ‘Node status’ such as ‘NB, B,
P NB’, on the other hand, has almost no influence.

We perform several experiments with the number of features ranging from 1 to 20 and
compare their model accuracy. Figure 5b shows the variation of the accuracy of RFECV-
RF in finding the optimal subset of features for the OBS network. It can be seen that as
RFE repeatedly constructs the random forest model and uses 5-fold cross-validation for
selection, the highest result score is achieved when the number of features is 15, and the
best classification is achieved.

Meanwhile, Tables 7 and 8 displays the 15 features that were picked. ‘True’ indicates
that the corresponding feature is selected, whereas ‘False’ indicates that it is not. Meanwhile,
the 15 features that were selected are shown in the table. The five eliminated features are
‘Node’, ‘Full Bandwidth’, ‘Packet Transmitted’, ‘Transmitted Byte’, and ‘Node Status’,
corresponding to the five features with the lowest importance in Figure 5a.

(a) (b)

Figure 5. (a) Feature importance values in descending order, from left to right. (b) Schematic diagram of optimal feature
subset selection.

Table 7. Selected features I.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

False True True False True True True True True True
“True” under a certain feature represents this feature is selected, “False” represents it’s not.
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Table 8. Selected features II.

D12 D13 D14 D15 D16 D17 D18 D19 D20 D21

False True True False True True True True False True
“True” under a certain feature represents this feature is selected, “False” represents it’s not.

4.3.2. Kernel Function Selection

In this paper, we experimentally compare the effects of these four kernel functions
linear kernel, polynomial kernel, Radial Basis Function (RBF) kernel, sigmoid kernel on the
classification of the dataset in order to find the best kernel function for the classification of
OBS network data. As shown in Figure 6, the choice of kernel function has a significant
impact on the accuracy and training time of the model. The Sigmoid-SVM has the longest
running time and the worst results, while Poly-SVM has a shorter time, but its classification
accuracy is not high. Considering comprehensively, we choose to use the RBF kernel with
a short running time and the highest classification accuracy.

(a) Accuracy rate of four models (b) Runtime of four models

Figure 6. Comparison of different kernel function models for SVM in optical interconnect data.

5. Conclusions

With the increasing complexity of network data and the environment, the concealment
and complexity of network intrusion have become stronger and stronger. Moreover, since
network intrusion is not limited by time and space, once the attack occurs, it will cause
great harm to network security. Therefore, it is very important to accurately detect intrusion
data. In this paper, we propose an RFE-PSO-SVM model for intrusion detection in OBS
networks, where RFE for feature extraction, PSO for finding the optimal combination
parameters of SVM. Then, we test the model through the data obtained from the NCENTs
simulation platform. The experimental results show that NB, SVM, and KNN all have
overfitting problems, so the traditional machine learning model is difficult to classify the
problems under different network attacks. The prediction accuracy of the PSO-SVM model
is 9.4%, 9.6%, 20.7%, 8% higher than that of SVM, KNN, NB and DT. Although DCNN has
a good effect, it takes a long time to train, and adding more network layers causes gradient
dispersion and explosion. Overall, our method considerably enhances BHP flooding attack
detection in OBS networks, with significant and high-efficiency classification.
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