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Abstract: Optical gain and optical losses are separately measured in commercial laser diodes by
simple analysis of spectral and electrical characteristics, and with no special specimen preparation or
handling. The aim is to bring device analysis, for characterization and reliability purposes, closer to
the intimate physical processes that rule over laser diode operation. Investigation includes resonating
and non-resonating optical cavities.
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1. Introduction

This paper is primarily addressed to the designers and manufacturers of products that
employ commercial laser diodes. That user is likely to be an expert of laser diode theory and
technology [1–35], but is not usually the manufacturer of lasers themselves. Nevertheless,
users need lasers in their systems; systems for which, in turn, they are responsible to their
own customers. Responsibility is found in several branches such as quality assurance
and reliability, maintenance, and warranty. It is then the responsibility of the product
manufacturer that fields failures return, and it is the same manufacturer that is in charge
of qualifying the incoming lots for production lines. Failures, from field operation and
from qualification tests, focus attention on the link between optoelectronic performance
and laser physics and technology. Degradation itself can be observed, and its evolution
monitored in time, in terms of change of performance, but only its correlation with the
intimate underlying physical mechanism enables any kind of corrective action in the design
and manufacturing process or drives the engineering of de-rating or redundancies. The
lifetime of laser diodes is often the most critical item in reliability evaluation based on
part-stress-analysis or part-count-analysis of complex equipment: it cannot (or should not) be
taken from any database [35–38]. Failure physics should enter into the industrial process.

In this framework, the author has spent several years in reliability analysis in addition
to laser diodes. Laser diodes are devices that have revealed the most surprising, unexpected,
and peculiar failure mechanisms. The focus of this paper is not on those subtle physical
phenomena, but on the bridge that links observation with interpretation. That bridge
consists of the measurement of optical gain and loss, if made separately and experimentally,
by means of simple methods.

More explicitly, optical gain is a cardinal quantity, a sort of primitive of many features
of a laser diode. Its absolute measurement [39–54] would bring our observation close to
the physical heart of the device: the balance between stimulated photon emission and
absorption, which is essentially ruled by the properties of the active material, and their
competition with optical losses, which depend on the design and quality of the optical
cavity. Gain and loss figures then enter, in intermixed and encrypted forms, those familiar
parameters such as threshold current and optical efficiency, whose measurement only gives
an indirect insight of the fundamental phenomena that occur inside a laser diode.

Here we finally reach the initial prompt for this paper: optical gain in commercial
laser diodes is that same optical gain as in any other laser diode; the difference is its mea-
surability. Measuring gain is, indeed, a task that requires either special experimental setups
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or the a priori knowledge of some technological information such as mirror reflectivity,
confinement factor, internal loss coefficient, cavity length, lateral confinement technology,
and spectral optical absorption. The customer of commercial devices has no easy access to
that knowledge and, on the other side, no gain figures appear in the data sheets that come
with the purchased devices.

In this paper, we will show that the standard set of DC measurements (current, voltage,
output power, and spectrally resolved emission) available without modifying the devices
and without special equipment, can provide a large amount of information on, separately,
gain, absorption, and optical losses in commercial laser diodes [55–69].

An important point is that, throughout this paper, we will disregard the high injection
level, keeping our investigation close or below the threshold condition. The final discussion
will clarify a posteriori that this choice, in short, is due to our focus on the link among
optical gain, optical loss, and laser threshold.

The structure of the paper is then as follows:

• Section 2 proposes some considerations about the absorption length for photons as a
function of the level of gain. This will give an unusual derivation of the composition
rule for internal and mirror losses, of the photon density inside a uniformly pumped
optical cavity, and on the “opacity” of that cavity itself at low pumping. Section 2 is a
useful step for Section 5.

• Section 3 summarizes the Hakki–Paoli [39,40] and the Cassidy [43,44] methods for
measuring the difference between losses and gain in Fabry–Perot (FP) cavities, starting
from a set of spectra acquired in the sub-threshold range of the laser. It also introduces
a modified Cassidy method proposed few years ago by the author [60]. A common
notation allows the comparison of the three methods.

• Section 4 introduces a second gain formula [64] and demonstrates its practical mea-
surability, after introducing the concept of junction voltage. Both entries are shown
to derive from papers dating back to the very beginning of laser diode studies. The
combined use of the second gain formula and any of the formulas in Section 3 leads to
the separate measurement of the total loss coefficient, of gain for each frequency in a
spectrum, and also of the upper and lower limits for the gain. The lower limit for gain
gives the optical absorption of the unpumped material.

• Section 5 extends the method of the coupled gain equations to the non-FP cavities [66].
It takes advantage of the results in Section 2, and, referring to one more formulation
from the foundation papers on laser diodes, proposes an alternative formula to re-
place those of Section 2, suitable for gain calculation when spectra do not show any
modulation caused by optical resonances.

• Section 6 summarizes the link between reliability and the proposed data measurement
and interpretation methods.

References have been organized to sort their list in thematic blocks: foundation papers
on laser diodes, cardinal books on laser diodes and electron devices, specific papers on
gain and, finally, the author’s contributions. This has been obtained by forcing somewhat
the first citations from this introduction to the thematic block, in order to keep that order,
and then specifically note each of them where relevant along the text.

2. Gain, Losses, and Gradients

Optical gain g is defined, in analogy and competition with optical loss α, as a spectral
coefficient that, for a given photon energy hν and at a defined level of injection, measures
the percent spatial rate of change of the photon density φν, so that the joint action of g and
α is

1
ϕν

∂ϕν

∂x
= g− α (1)

Based on long teaching experience, this definition is prone to many misunderstandings.
First of all, despite its name, gain g itself can reduce the photon density. It includes

indeed both stimulated emission and absorption, and it can range between positive and
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negative values. It does not include the contribution of spontaneous emission. The concept
of transparency, g = 0, accordingly defines the situation for which stimulated emission
exactly balances absorption, which is different from the balance between gain and losses
that marks the trigger for laser action. This also means that photon losses due to creation
of electron-hole pairs, that is, absorption, do not enter the loss coefficient α.

The loss coefficient α includes other kinds of photon consumption, as from interaction
with lattice defects, phonons, and intra-band transitions, together with all the escape
possibilities from the optical cavity.

The last consideration implies that escape phenomena should not only include, as
usual, photon losses from the mirror facets, but also photon escape towards the confinement
layers and side losses related to the lateral confinement technology of the devices. This
conflicts with the custom of introducing the confinement factor Γ for the losses towards the
surrounding layers and of neglecting the lateral losses. Here we will follow the formulation
proposed in Appendix B of ref. [67], which collects all losses, apart from optical absorption
(that is embedded into gain g), in the unique term α. The same reference indicates how to
recover the usual formulation with the confinement factor.

Moreover, both gain g and loss α are spectral functions, as is the photon density φν.
Equation (1) is not a wave equation. It deals indeed with photons as particles, which can be
created or destroyed and can propagate, but cannot interfere.

This is another crucial point. The origin of the concept of optical gain itself follows
from Einstein’s intuition about the stimulated emission within a framework of quantum
energy exchanges [1,2]. The extension of his considerations to the non-equilibrium steady
state for an infinite uniform domain leads to different forms of rate equations [15,34,67],
which are the foundation for laser diode theory. Despite their different formulations, all
rate equations have a constraint: when calculated at equilibrium, they must lead to a
photon density φ0ν that, multiplied by the photon energy hν, coincides with the black body
distribution of spectral energy density.

In such rate equation approaches, wave aspects do not appear. This has a strong
impact on the concept of losses, which naturally include the concept of reflectivity from
the facets of the optical cavity. Resonant wavelengths are more strongly reflected than any
other wavelength in the emission spectrum, and reflectivity and losses coefficients should
be modulated as well. This is not the custom when dealing with laser diodes, and the paper
by Cassidy published in this same Special Issue [53] becomes a recommended reading for
meditation on this point.

Even accepting the particle nature of Equation (1), another puzzling point is the
hypothesis of uniform photon distribution, which makes the left-hand side null, despite
the right-hand side gain changing with injection. It is not a trivial point, because of its
implications for some gain measurement methods proposed in the literature.

2.1. A Continuity Equation for Photons

In order to comment on this point, an unusual approach [67] can be useful for readers
familiar with solid-state electron devices, and in particular with the continuity equation for
minority carriers [12]. It starts from the consideration that the solution of Equation (1)

ϕν(x) = ϕν(0)e−(α−g)x (2)

identifies the term ` = 1/(α− g) as the characteristic length for an exponential decay, that
is analogous to the diffusion length for minority carriers. It is then possible to continue
with the analogy and build up a continuity equation for photons that describes the time
rate of change of their density. There will be then a photon generation term, identified in
the spontaneous emission rate Rsp, and a net loss rate c(α− g)φν. The last is analogous to
the recombination term, which is proportional to the photon density φν through the time
constant 1/c(α− g) with c the speed of light in the active material (let us here neglect, for
simplicity, the role of the equilibrium photon density that is considered in ref. [67]). No
drift terms will enter this equation.
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The analog of the diffusion term, in turn, can be obtained if we consider that photons
do not survive multiple absorption or loss events before disappearing, and then their mean
free path can be identified with that same characteristic length ` as before. The quantity
`c = c/(α− g) then plays the role of a diffusion coefficient. This leads to

∂ϕν

∂t
=

c
α− g

∂2 ϕν

∂x2 + Rsp − c(α− g)ϕν (3)

Equation (3) is then the continuity equation for photons that includes possible gradi-
ents for the photon density φν.

For the steady state and uniform values of α and g, Equation (3) has the general
solution

ϕν =
Rsp

c(α− g)
+ K1 exp[(α− g)x] + K2 exp[−(α− g)x] (4)

where the constants K1 and K2 must be defined by the boundary conditions. The following
exact solutions for the infinite, semi-infinite, and finite domains progressively approach
the real cases.

2.2. Solution for the Infinite Domain: Emitted Optical Power and Feed Current

The infinite domain has no boundaries, so all losses are internal. For this reason, and
in preparation of the next cases of bounded domains, let us simply add the suffix i to the
loss coefficient.

The solution for the infinite domain, requiring K1 = K2 = 0, then gives a uniform
photon density at any injection level:

ϕν =
Rsp

c(αi − g)
(5)

It states that gain, no matter the range of its potential values, will never exceed losses,
because as g approaches αi, the photon density increases unlimitedly, as well as the energy
required for their creation. It is a dramatically sharp assertion that will find clear evidence
in experiments.

Note 1: the dimensions of Rsp are [cm−3], despite its name of rate. The reason is
that we need to multiply both sides of Equation (5) by some frequency interval dν to
get a density (cm−3) on the left side. On the right side the resulting term dν

c(αi−g) is then
adimensional, and Rsp, which is indeed a time rate per unit frequency, has the dimensions
of a simple density.

Note 2: Equation (5) is in complete agreement with the results of a rate equation for
the uniform infinite domain as given in ref. [67]. In that case, the explicit expression is
given for photon emission and absorption rates in terms of electron-hole recombination or
creation, respectively.

It is interesting to observe that multiplying Equation (5) by cαi and comparing the
result with Equation (3), one gets the total loss rate at optical frequency ν

Rloss = cαi ϕν =
αi

αi − g
Rsp (6)

If then we multiply Equation (6) by the photon energy hν and the volume Vol of the
active region, we have an expression of the emitted optical power at optical frequency ν
per frequency interval of the active region.

Pν = Vol · hν
αi

αi − g
Rsp (7)
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If now we integrate Equation (7) over all frequencies, we get the total optical power
PTOT leaving the device

PTOT =
∫

Pνdν = Vol
∫

hν
αi

αi − g
Rspdν (8)

In the same way, if we multiply Equation (6) by the electron charge q and the volume
Vol, we get the current Iph that is that part of the total current I that is converted into light

Iph = q ·Vol
∫

αi
αi − g

Rspdν (9)

The set of Equation (5) will be decisive for measuring gain in non-resonating cavities,
as reported in the final section of this paper.

2.3. Solution for the Semi-Infinite Domain: Mirror Losses and Gain-Dependent Opacity

For a semi-infinite domain, say x ≥ 0 and then K1 = 0, the solution

ϕν =
Rsp

c(αi − g)
+ K2 exp[−(αi − g)x] (10)

must fulfill a boundary condition that gives accounts for photon loss from the x = 0 bound-
ary. That condition resembles the case of surface recombination for minority carriers in
a semi-infinite semiconductor domain pervaded by a uniform generation rate [29]. It re-
quires that photons leave the boundary with a flux that introduces a concentration gradient
that is in turn proportional to the surface density. Let αm be the proportionality constant
between the surface density and the gradient, which has necessarily the dimensions of a
loss coefficient:

∂ϕν

∂x

∣∣∣∣
x=0

= αm ϕν(0) (11)

We will first focus on the resulting expression for the observable outgoing flux:

∂ϕν

∂x

∣∣∣∣
x=0

= αm ϕν(0) = αm
Rsp

c(αi + αm − g)
(12)

If we multiply Equation (12) by the speed of light c and compare with Equation (6),
we get the loss rate from the unique boundary of the semi-infinite domain

cαm ϕν(0) =
αm

αi + αm − g
Rsp (13)

The emission, observed from outside, looks as a fraction αm of the internal photon
density of an infinite domain (Equation (5)), whose losses are now the sum of internal and
mirror losses

αT = αi + αm (14)

The complete solution tells another story:

ϕν(x) =
Rsp

c(αi − g)

[
1− αm

αi + αm − g
exp[−(αi − g)x]

]
(15)

Equation (15) describes a non-uniform photon distribution that, at a distance larger
than ` = 1

αi−g from the boundary, does no more feel the boundary itself, and behaves as for
the infinite domain, with only internal losses α. This means that the outgoing photons only
come from a surface region with extension `. Photons generated at a larger distance from
the surface will be absorbed before reaching the boundary.

There is nice qualitative evidence of the last conclusion, looking at a couple of sub-
threshold spectra of a DFB laser diode with (nearly) non-reflecting facets (Figure 1). Despite
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the DFB structure that is present, the Bragg grating does not cause the expected resonance
peak at the lowest injection level (curve A). This points out that the measured light emission
comes from a layer close to the emission facet that is too thin for sustaining interference
among the multiple Bragg-scattered optical beams inside it, and that this emitted light has
no awareness of what happens deep inside the optical cavity.
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Figure 1. (a) Power-current curve of a DFB laser emitting at 1300 nm; (b) normalized spectra measured at 3 mA (A) and
9 mA (B) in the sub-threshold range; (c) graphical representation of cases A and B based on a real TEM cross-sectional image
of a MQW DFB laser diode. In case A the inner part of the optical cavity does not contribute to the measured light emission.
In case B the periodic grating is involved enough to cause the interference peak observed in the spectrum.

2.4. Considerations about the Finite Domain

Finally, it is possible to consider also a finite domain, and set different loss rates at
the two boundaries of that domain. The physical meaning of the previous result will
hold: if the domain has a length L, no photons will be able to travel the full length until

1
αi−g ≈ L. In particular, if 1

αi−g << L no reflected flux will interfere with the incoming
one. This should be taken into account when considering non-resonating optical cavities,
as in ref. [54], when the proposed analysis stands on the coherent superposition of waves
travelling the whole length of the optical cavity.

The last consideration shifts the focus to resonating Fabry–Perot cavities, for which
gain measurement methods rely on spectrum modulation by interference of multiplied
reflected beams. Should a situation as case A in Figure 1 hold, none of those methods
would work.

This limits the applicability of the most popular methods for gain measurement
to injection levels high enough to allow resonances to modulate the emission spectrum.
Figure 2 plots, not on the same scale, three sub-threshold spectra from a DFB laser diode
with surviving FP resonances. It results that several parts in each spectrum do not display
any modulation.
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When applicable, however, methods based on interference modulation are quite
effective.

3. Resonating Fabry–Perot Cavity

The leading approach for measurement of gain in a laser diode with a Fabry–Perot
optical cavity is the Hakki–Paoli method [40,41], which considers a plane wave F, with
wavenumber k = 2πν

c , propagating in a lossy medium, and asks its squared modulus to
behave as the photon density in Equation (2):

F(x) = F0e−(
α−g

2 )xeikx

|F|2 = |F0|2e−(α−g)x ≡ ϕν(x)
(16)

It is important to realize that Equation (16) does not come from the solution of a wave
equation, but from the adjustment of a true solution, the plane wave, to the decay rule of
Equation (2).

The superposition of all possible waves after different round cycles of length 2L leads
to the formula for the expected intensity spectrum from a resonating cavity

|F|2 = |F0|2
1+ρ2−2ρ cos(2kL)

ρ = exp(−(αT − g)L)
αT = αi +

1
2L ln

(
1

R1R2

) (17)

where the loss coefficient αT includes all losses (apart, once again, from absorption, which
is embedded in g), that in the third line appear separated in the internal loss coefficient
αi and the loss from the two mirror facets of the optical cavity, whose reflectivities are R1
and R2.

Here the original Hakki–Paoli method measures the envelopes |F|2MAX of maxima and
|F|2min of minima in Equation (17) from real spectra and calculates the quantity ρ from the
ratio |F|2MAX/|F|2min at different injection levels.

Integral methods, on the contrary, follow the roadmap indicated by Cassidy [43] and
numerically calculate the integral of Equation (17) over one spectral range, which means a
moving average over one period of the cosine function. Let us define it |F|2+. The original
method of Cassidy then calculates the ratio |F|2+/|F|2min, and gets the same quantity ρ as
for the Hakki–Paoli method. The advantage in this case is that the smoothing of maxima
introduced by the experimental equipment is no more a concern, so that extreme resolution
is no longer required for gain measurements.

An alternative way, the Vanzi method [65], is to replace |F|2min in the Cassidy method
with the reciprocal of the moving average of 1/|F|2, that is, in turn, the reciprocal of
Equation (17). Indicating this last spectral function with |F|2−, it is now the ratio |F|2+/|F|2−
that leads to ρ.

Figure 3 plots |F|2MAX , |F|2min, |F|2+, |F|2− together with the single-pass spectrum |F0|2
onto an experimental sub-threshold spectrum, and Equation (18) gives the mathematical
form of the first four functions.

|F|2MAX = |F0|2

(1−ρ)2

|F|2min = |F0|2

(1+ρ)2

|F|2+ = |F0|2
1−ρ2

|F|2− = |F0|2
1+ρ2



|F|2MAX
|F|2min

=
(

1+ρ
1−ρ

)2
Hakki-Paoli

|F|2+
|F|2min

= 1+ρ
1−ρ Cassidy

|F|2+
|F|2−

= 1+ρ2

1−ρ2 Vanzi

(18)
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Figure 3. An experimental spectrum from a DFB laser diode with a Fabry–Perot cavity, with the
relevant curves for the Hakki–Paoli, Cassidy, or Vanzi methods. The mathematical expression of
each curve is given in Equation (18), and follows the definition of |F|2 in Equation (17). All curves
are calculated from experimental data. The three methods share the same approach of calculating
the ratio of a pair of those curves, in order to eliminate the |F0|2 term. They differ from each other in
the choice of the specific pair of curves. The benefits of replacing |F|2MAX in the Hakki–Paoli method
with the function |F|2+ is one of the valuable points of the Cassidy method.

In any case, the result is the measurement of ρ = exp(−(αT − g)L) for each available
mode of the optical cavity by simple algebraic manipulation of the values of the measured
ratios.

A by-product of all the above methods is the possibility to reconstruct the single-pass
spectral intensity |F0|2, which will be important for calibrating gain measurement methods
in non-resonating cavities.

It should be kept in mind that all functions F, and then also the function ρ, depend
on the injection level, and then change together with spectra when the laser current is
changed.

One additional positive point is that the Hakki–Paoli method applies to DFB cavities,
provided no FP resonances are present at all or, in mixed cases as in Figures 2 and 3, when
the DFB peak coincides with one of the FP peaks [60].

Two issues, on the contrary, are of relevant concern:

(1) Gain figures can be obtained from spectral measurements only when resonances are
present. This excludes, in any case, low intensity spectra, as for low injection, or
non-modulated sides of spectra as the high-energy tails in Figure 2, or the whole
range of frequencies different from the DFB peak in Figure 1;

(2) Resonance-based gain measurements, when applicable, do not decouple g from aT.
In mathematical terms, solutions for g alone are available only when the single-pass
intensity |F0|2 in Equation (18) can be ignored.

4. Extending the Hakki–Paoli Method

Let us face the second point: decoupling gain from losses.
Two steps lead to the construction of an independent formula for gain that, once

coupled with any other spectral measurement of light emission (even with no resonances),
will lead to absolute gain and loss measurement.

The first step, proposed by Paoli and Barnes in 1976 [39], simply states that the
difference φn − φp between the quasi-Fermi levels inside the active region is measurable by
means of the voltage V and the current I applied to the laser diode.

ϕn − ϕp = qVJ = q(V − RS I) (19)
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Here, apart from the electron charge q, only one parameter enters into play: the series
resistance RS.

Equation (19) assumes that the voltage drops VJ (junction voltage) at the ideal diode
and the external bias only differ by a series ohmic contribution (Figure 4).
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Figure 4. The equivalent circuit for a real laser diode implied by Equation (19).

If such simple representation holds, one expects that, as soon as the device reaches
its threshold for laser emission and the quasi-Fermi levels clamp, the junction voltage VJ
accordingly freezes at a constant value Vth.

The calculation of RS from experimental data is then a simple task. If one, indeed,
evaluates the differential form of Equation (19), one gets an expression, Equation (20), that
directly gives RS when the separation of the quasi-Fermi levels qVJ = φn − φp clamps
and then the derivative is null, that is, when the forward current reaches and exceeds the
threshold for laser action.

dV
dI

= RS +
dVJ

dI
(20)

Clamping of quasi-Fermi levels is one of the most direct proofs of population inversion
in a semiconductor [28], which experiments readily confirm: the plot of dV/dI displays
(Figure 5) a sharp transition when the current I reaches the threshold value Ith and the
curve flattens at a constant value that is the measurement of RS.
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Figure 5. Plot of the dV/dI values for the same laser diode of Figure 2. The coordinates of the
sharp transition individuate the threshold current Ith and the series resistance RS. Note: The small
decrease of the dV/dI curve after the threshold is due to geometric effects (progressive widening,
after threshold, of the area of the inverted region), analyzed and explained in ref. [67]. On a practical
note, it is the RS value measured at threshold to be considered.

From the knowledge of RS one gets the direct plot (Figure 6) of the internal voltage VJ,
by means of Equation (19), that indeed clamps as theoretically expected.
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Figure 6. Plot of the internal voltage VJ as a function of the applied voltage V. Internal voltage
saturates at the threshold voltage Vth.

The second step goes back to 1964, when Lasher and Stern published their formulas
for optical gain in a laser diode [15]. Those formulas have been considered for a long time
a sound theoretical insight into laser physics, not suitable for practical measurement.

It is the statement, expressed by Equation (19), that we can measure the difference
φn − φp between the quasi-Fermi levels that allows us to transform the Lasher and Stern for-
mulas into an extremely simple and manageable relationship [60,67], given in Equation (21):

g
(
hν, qVJ

)
= gm(hν) 1−e

hν−qVJ
2kT

1+e
hν−qVJ

2kT

gm = BN2
ν

c

(21)

In this expression gain g is expressed as a function of the photon energy hν, of the
junction voltage VJ, and of a spectral coefficient gm that also defines the range –gm:gm of
the possible gain values. The coefficient gm collects three more fundamental quantities: the
Einstein coefficient for stimulated transitions B, the joint density of states N2

ν for radiative
transitions at frequency ν, and the speed of light c in the optically active material.

Under the spectral point of view, B and c are both slow functions of the photon fre-
quency, or energy. On the contrary, N2

ν gives account for the absence of possible transitions
at energies lower than the bandgap. For instance, in an ideal quantum well N2

ν should be a
step function centered at the bandgap energy Eg.

Figure 7 assumes, for graphical purposes, a smoothed step function to represent
gm(hν). This corresponds to the introduction of some line shape broadening, as discussed
in Section 4.3.2 of ref. [34]. For our illustrative case, a Lorentzian broadening has been
assumed for plots. In practical cases, we will pretend to also get gm from measurements.
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The surface g
(
hν, qVJ

)
in Figure 7 is worth some consideration. The curves, drawn at

constant qVJ, should be recognized as the familiar gain curves as functions of the frequency
ν (in our plots and formulas, the photon energy hν), as reported even in textbooks (in
particular, in chapter 4.6 of ref. [34], where the abscissa is the photon wavelength instead of
its frequency or energy).

Less usual are the gain curves at constant qVJ, at fixed photon energy hν. They show
how gain ranges between a maximum and minimum, and that the two extremals have the
same absolute value gm and opposite sign.

The minimum-gm corresponds to null bias VJ, which means null injection: the active
material is essentially an absorbing medium and the gain curve becomes the absorption
curve.

The maximum gm is much less intuitive, and can even be misleading. Let us first
point out what the maximum gain is not. It is not the clamp value at which gain exactly
equals losses, which also is the condition for achieving the laser regime. That condition,
that appears from Equation (4) and in all its solutions, states that when g = αT, the photon
density becomes infinite. It is then a physical constraint that prevents g from further
increasing: it would require infinite energy. On the contrary, +gm is the mathematical upper
limit of the function g given in Equation (21). It corresponds to an infinite separation of the
quasi-Fermi levels, that describes a completely inverted semiconductor material (conduction
band totally filled, valence band totally empty). The discriminant between the possibility
or not of achieving the laser regime is the relative values of gm and αT. If total losses αT
were higher than gm, the diode could be biased at any bias value, and any current could be
fed into it, but that diode would never become a laser: gain would never equal losses, and
then the device will remain a light emitting diode. This agrees with experimental evidence
in Section 4.1.

The existence of symmetric ceiling and floor for gain is clearly pointed out also in
ref. [33], Section 11.4.1. The comment to the Lasher and Stern formula (Equation (21) in this
paper) is indeed (after adjusting symbols to this paper): “the format of the gain equation
indicates that the gain coefficient must be between two limits.

If VJ = 0, then g(ν) = −gm(ν) the absorption coefficient without pumping.
If VJ → ∞ , then g(ν) = gm(ν), a completely inverted semiconductor.
What was absorption becomes gain”.
Such a situation is often forgotten in practical applications, mainly because of two

factors: the use of empirical functions for correlating gain with injection, and the custom
to indicate injection by means of the laser current I. As an alternative to current I, carrier
density may be used. This is a slippery point: current I can increase without limits in
a laser diode, whereas carrier density clamps at threshold, as shown in Figure 6 by the
experimental measurement of the separation of the quasi-Fermi levels (Equation (19)). In
the following, it will be shown what that physical clamp will cause on the mathematical
surface of Figure 7). Referring gain g to current I leads to empirical formulas developed for
fitting experimental data close to the g = 0 condition, disregarding a gain ceiling at gm. A
nice summary of the situation is given by Coldren [34] in Chapter 4.6, where various forms
of empirical formulas are proposed for gain as a function or of current or of carrier density.
None of those formulas has a mathematical upper limit. Details have been discussed by the
author in ref. [59], where a new formula is proposed, derived from theory. The intriguing
point is that such formulae and the empirical ones have the same power expansion at g ≈ 0,
which justifies the good fit of experimental data in practical cases. A discussion about the
gain-current different formulas is reported in Appendix A.

The relevance of a ceiling for gain comes into evidence when considering degradations.
Aging of a laser diode often implies an increase in internal or surface losses. This shifts the
condition for lasing at higher and higher injection levels, up until the thresholds disappears,
when αT ≥ gm.

It follows that gm itself becomes an interesting parameter to investigate, together with
the loss coefficient αT and gain g.
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Equation (21) only differs by an approximation in its denominator from the Lasher and
Stern formulas. In practice, Equation (21) assumes symmetric bands, so that the product
fe(1− fh) of the distribution functions for electrons at energy Ee and holes at energy Eh
is itself a simple function of the differences hν = Ee − Eh and φn − φp = qVJ as stated by
Equation (19):

fe(1− fh) =
1

exp
(

Ee−ϕn
kT

)
+ 1

1

exp
(

ϕp−Eh
kT

)
+ 1
≈ 1[

exp
(

hν−qV
2kT

)
+ 1
]2 (22)

Such approximation is of some relevance only at very low injection levels, when the
device essentially behaves as an optical absorber, as discussed in the quoted reference [67].

Going back to the utility of Equation (21), we see that it is not sufficient by itself to
measure gain. It indeed does not decouple gain g from the absorption function gm, as any
form in Equation (18) does not separate g from αT. However, the joint use of the two on
at least two spectra, measured at different injection levels, leads to the relevant result of
separately measuring g for each spectrum together with the common functions gm and αT.

Let us indeed assume that a number n of spectra has been measured at laser currents
Ii, I = 1, 2, . . . n.

By applying any of the methods in Equation (18) we have a corresponding set of
measured functions ρ(ν)i, which we more comfortably transform into the adimensional
spectral functions S(ν)i = ln(1/ρ(ν)i):

S(ν)i = (αT(ν)− g(ν)i)L (23)

At the same time, from the I(V) data and the VJ(V) measurements provided by
Equation (19) after the measurement of RS, we have the corresponding set of VJ1, VJ2, . . .
VJn, values that lead, by means of Equation (21), to the other set of measured adimensional
spectral functions Hi:

H(ν)i =
g(ν)i
gm(ν)

(24)

For each pair Si, Hi, corresponding to the same ith spectrum, we can eliminate gi to get
S(ν)1 = LαT(ν)− Lgm(ν)H(ν)1
S(ν)2 = LαT(ν)− Lgm(ν)H(ν)2
. . . . . . . . .
S(ν)n = LαT(ν)− Lgm(ν)H(ν)n

(25)

Equation (25) is almost pedantic in keeping all indexes and variables explicit. It is
important to realize that each line corresponds to a different injection level (and then a
different value for I, V, VJ), and that the whole system holds for a same frequency ν.

This means that a couple of spectra is sufficient to solve for LαT(ν) and Lgm(ν) and
then to reconstruct g(ν)i, for all spectra i, by Equation (23) or Equation (24). Here we
assume that even the end user of commercial devices may access the value of L by a single
microscopic image of a laser diode out of the purchased lot. For edge emitters, L is simply
the physical extension of the chip along the direction of the optical cavity. This is not
the case for vertical emitters, as VCSELs, where the length of the optically active path is
different from the length of the resonating cavity.

4.1. A Step by Step Example for the Extended Hakki–Paoli Method

Let us apply the method, step by step, to the same device considered in Figure 3.
We start in Figure 8a with six experimental spectra, measured at different currents

(7, 8, 9, 10, 11, and 12 mA) on a device (the same as in Figure 3) whose threshold current
was Ith = 13 mA. We then apply (Figure 8b) the Hakki–Paoli method to calculate the ratio
|F|2MAX/|F|2min of the envelopes of maxima and minima of the FP resonances, whereas the
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enhanced peak due to the DFB grating has been computed separately. In Figure 8c we have
the resulting S curves as given by Equation (23).
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We then calculate, for each spectrum, the corresponding value of VJ (Figure 9a) by
means of Equation (19) and after having calculated the value of RS (7.2 Ω for the given
device). This allows us to plot (Figure 9b) the H curves (Equations (19) and (21)).
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Figure 9. (a) Calculation of the values of VJ for each spectrum in Figure 8a; (b) the corresponding H
functions according to Equations (21) and (24).

We now have a set of spectral values for the S and the H functions for each spectrum i.
This means that, for each frequency in the spectrum, we have a system of n linear equations,
with n the number of acquired spectra. For each equation, S and H are known, whereas
LαT and Lgm, which are assumed independent on the injection level, are unknown.

The linearity of Equation (25) with respect to the unknowns LαT and Lgm makes the
simple least square method well suitable for best fitting experimental data.

Figure 10 displays the six gain curves, one for each spectrum, and the common gm,
−gm boundaries of the general gain function, as well as the spectral loss function αT.
The value of L resulted, after a simple inspection by scanning electron microscopy, to be
L = 258 µm.
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The detail labelled DFB in Figure 10b is the singular point corresponding to the energy
of photons diffracted by the DFB grating. It is interesting that it affects only the loss
function αT. The experimentally calculated absorption curve gm and each gain spectrum
g are not modified by the diffracting structure. This is in agreement with the theoretical
expectations: the DFB grating forces photons of a selected wavelength to stay inside the
optical cavity longer, and then to have a reduced loss rate, than any other photon in the
emission spectrum.

The other relevant detail in Figure 10 is that none of the gain curves is anywhere
higher than the minimum of αT.

This agrees with the results in Equations (5) and (12), where we saw that gain never
can exceed total losses, but tells something more: once one single line in the spectrum first
reaches the condition g(hν) = αT(hν), it forces VJ to clamp, which in turn blocks gain at
any other frequency, no matter if that frequency did not reach the perfect balance between
gain and losses.

This last statement has clear experimental evidence when we plot g(V). Let us first
consider Figure 11a. It plots gain at the frequency of the DFB peak as a function of both the
internal voltage VJ and the external voltage V.
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We can appreciate that the two curves stop at a maximum value because in Equation (21)
we used that same measured VJ that saturates itself, as plotted in Figure 6. Moving to
Figure 11b, we now plot gain at the spectral peak, as before, and also at a different spectral
line, out of the peak, together with the respective calculated value for the loss coefficient αT:
only gain at the DFB peak emission saturates exactly at g = αT. All other lines do saturate
as well, but stay lower than the corresponding loss term.

The red dots aligned along the gain curves in Figure 11a correspond to those same
dots that in Figure 9a indicate the I,V pairs corresponding to each of the six spectra acquired
for gain measurements at six different currents. It is noticeable that all of them belong
to the sub-threshold regime. In other words, gain never did reach αT in any spectrum,
and nevertheless it has been possible to predict it. On the contrary, the internal voltage VJ
spanned the whole sub-threshold and above-threshold ranges, and, when introduced in
Equation (21), caused the saturation of g/gm at exactly the predicted value for the sole peak
emission line.

We can graphically summarize what experiments showed by suitably modifying the
surface plot of Figure 7. Now (Figure 12) we introduce a surface αT that intersects the g
surface.
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The intersection curve represents the value Vclamp of the internal voltage VJ that would
be necessary to lead a specific frequency to reach the laser threshold. We know that, as far
as one spectrum line will reach its threshold, it will cause the clamp of the quasi-Fermi
levels, and then gain g will clamp as well across the whole spectrum.

That curve Vclamp (hν) has then a minimum along the VJ axis, whose coordinates define
both the (internal) threshold voltage Vth and the emission peak hνpeak.

The mathematical representation of Vclamp follows the inversion of Equation (21), after
setting g = αT:

qVclamp(hν) = hν + 2kT ln
(

gm + αT
gm − αT

)
(26)

qVth = qVclamp(hν)
∣∣∣
min

(27)

The experimental Vclamp curve for the set of data that generated Figures 5, 6 and 8–10
is plotted in Figure 13. In addition to the evidence for the peak at the DFB resonance, it is
also possible to appreciate which emission line and the corresponding threshold voltage
would be the laser peak in case of absence of the DFB grating.
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Figure 13. Spectral clamp voltage Vclamp, indicating the threshold voltage Vth and the peak emission
energy hνpeak. The dot labelled FP indicates the values that Vth and hνpeak would acquire in the case
of no DFB grating.

The relationship between gain and voltage has a numerical peculiarity that is worthy
of comment. If we plot the function H at a fixed photon energy as a function of the external
voltage in a narrow range close to transparency, and also plot the laser current I on a
logarithmic axis, we get two nearly parallel straight lines (Figure 14).
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Figure 14. H function at a fixed frequency (left), close to transparency and laser current in logarithmic
scale (right) as functions of the external voltage.

If for the current I this means that the series resistance, in the displayed range, is not
too large, then the function H, despite its mathematical non-linearity, is approximately
linear around transparency. If now we recall the red dots in Figure 11a, and realize that
they represent the standard conditions for gain measurements, we see from Figure 14 that
a g/gm ∝ ln(I) numerical relationship between gain and current can be not only proposed,
but also confirmed by experiments [34]. This is an empirical relationship, that fails when
one explores injection conditions far from transparency, where indeed upper and lower
gain limits –gm, gm cannot be associated with the current range 0,∞.

5. Non FP-Resonating Cavities

None of Equation (18) works on non-FP resonating cavities (null reflectivity at least
on one of the two facets). In such cavities, resonances can be caused by external reflectors,
external cavity tunable devices, or by Bragg structures either internal (DFB) or external
(DBR). In any case, apart from the solitary spectral peak corresponding to the tuning
frequency, most of the spectral emission does not display any modulation caused by
resonance.

We can describe those cavities as infinitely lossy, which means ρ = 0 in Equation (17)
that reduces to |F|2 = |F0|2.

Gain measurement then requires a different equation to be coupled with Equation (21).
In particular, we need an explicit expression for |F0|2, that is, the intensity of the non-
modulated spectrum.

We can start from Equation (6) and look for an explicit expression of the spontaneous
emission rate Rsp as a function of gain parameters. The task requires to first recall a classical
result in laser diode theory [15], in the comfortable form of [33], and then manipulate it
somewhat [66]. We get

Rsp =
8πν2

c2
gm

4

(
1 +

g
gm

)2
(28)

Equations (8) and (9) accordingly become:

PTOT = Vol ·
∫

hν
2πν2

c2

(
1 +

g
gm

)2 gmαT
αT − g

dν (29)

Iph = q ·Vol ·
∫ 2πν2

c2

(
1 +

g
gm

)2 gmαT
αT − g

dν (30)
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If we now consider an experimental power spectrum, measured at a given current I,
and made of a sequence of N discrete values fn, n = 1, 2 . . . . N, we recognize that

N
∑

n=1
fn ∝ PTOT

q
N
∑

n=1

fn
hνn

∝ Iph

(31)

We are close to link experimental spectra, without any resonance, to some measurable
quantities, provided we find the proportionality constants. If, on one side, the experimental
measurement of PTOT requires special instruments as an integrating sphere, the experimen-
tal value of Iph comes straight from the simple analysis of the I(V) characteristics of the
laser diode [58].

In short, the current I-Ith exceeding the threshold Ith identifies with Iph (while under
threshold Iph is hidden by the non-radiative part Inr of the total current I). One then
calculates a constant χ using one or more spectra acquired over the threshold

χ = I−Ith

q
N
∑

n=1

fn
hνn

, I > Ith (32)

The χ, calculated for a restricted range of currents reveals the proportionality relation-
ship that holds between I-Ith and the integrals of the experimental spectra across the whole
range of currents.

Now, if we multiply all spectral values in each spectrum, including the sub-threshold
range, by χ, we get

qχ
N
∑

n=1

fn
hνn

= Iph, ∀I (33)

Figure 15 plots three sets of data from a DFB laser diode with non-reflecting facets.
The first set is the over-threshold current I-Ith that we identify with Iph (the logarithmic
vertical scale cuts off the sub-threshold current range, for which I-Ith < 0). The second set is
the optical emission POUT as measured by a photodiode, upscaled by a suitable multiplier
(whose dimensions are the same as q/hν in Equation (31)) up to overlap with I-Ith. In this
way, the plot of POUT transforms into the plot of Iph across the whole sub-threshold and
over-threshold ranges. The third set of plotted data is a sequence of dots, corresponding to
approximately 30 spectra. Each dot is the sum of all experimental values in the spectrum,
multiplied by the factor χ, (Equation (32)), identical for all dots, which brings the whole
sequence to align along the curve of the upscaled POUT.
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Figure 15. Three curves drawing the current Iph as a function of the external laser voltage V. The first
is the difference I-Ith measured from the DC characteristics. The second (upscaled POUT) is in practice
the photocurrent created in a monitor diode by the laser radiation, suitably upscaled to coincide with
the over-threshold I-Ith. The third is made of the integrals of several spectra, multiplied by a suitable
common constant that brings their value to overlap the upscaled POUT curve.
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If now we compare Equations (33) and (30) we get

qχ
fn

hνn
= q ·Vol · 2πνn

2

c2

(
1 +

g
gm

)2 gmαT
αT − g

∆νn (34)

The term ∆νn replaces the differential element dν in integral forms and represents the
optical frequency sampling step in numerical data.

Rearranging Equation (34) one can write

αT − g
gmαT

=
q ·Vol · 2πνn

2

c2 ∆νn

qχ
fn

hνn

(
1 +

g
gm

)2
(35)

Despite its unfriendly appearance, the right-hand side of Equation (35) is a known
quantity at each frequency of each spectrum. Let us shortly indicate the following spectral
function hi where the suffix i identifies the spectrum (a dot in Figure 15), and the index
n simply recalls that experimental spectra are made of discrete values for the optical
frequency ν and the photon energy hν:

hi =
q ·Vol · 2πνn

2

c2 ∆νn

qχ
fn

hνn

(36)

Recalling then the definition of the function H, Equation (24), we obtain

1
gm
− Hi

αT
= hi(1 + Hi)

2 (37)

This is the relationship that replaces Equation (25). All terms in Equation (37) are
spectral. At a fixed frequency, hi and Hi are different from spectrum to spectrum, whereas
gm and αT are the same for all spectra. As for the resonating cavities, two or more spectra
allow us to solve Equation (37) and get gm and αT. Equation (24) then reconstructs g.

Figure 16 reports the results for the laser diode of Figure 15, removing the DFB
contribution.
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Figure 16. (a) One of the spectra of the DFB laser with a non-resonating cavity; (b) gain curves for
the non-reflecting cavity.

The most challenging step in this case of non-resonating cavities is the need to measure
the volume Vol of the active region that enters calculation through Equations (29) and
(30). This is much more demanding than measuring the sole length L of the optical cavity,
because the thickness of the active layer (or the cumulative thickness in the case of multi
quantum wells (MQW)) is beyond the resolution of the scanning electron microscope
(SEM): determination of the thickness of the active region requires a transmission electron
microscope (TEM). As for the previous methods, it requires the sacrifice of one single
device.

Figure 17 shows the same structure employed in Figure 1c to illustrate graphically the
mean free path for photons inside the optical cavity. It now has the measured dimensions,
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and shows the number and thickness of multi quantum wells that build up the active
region, whose length L and width W result from SEM inspection. It is interesting to observe
that for DFB structures, the physical value of the pitch a leads to the measurement of the
refractive index by means of its ratio with the measured peak wavelength.
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6. Gain and Reliability

The previous sections aimed to extract gain data from experimental measurements,
extending and improving existing procedures. The Introduction linked such measurements
with reliability. This section will then develop that relationship, which is clear within the
community of reliability engineers, but may be worth some recapitulation for a wider
audience of readers.

Reliability mimics several concepts from human life, which helps at an intuitive level,
but sometimes is misleading. In particular, the concept of failure, usually associated with
death, is instead closer to that of attitude to work. A football player, a singer, a pilot can
close their activity and have still a long life to enjoy. The definition itself of reliability is the
“Attitude (probability) of a device to perform assigned operation(s) for a given time under
defined operating conditions” [35]. Such a definition calls for the definition of a failure
criterion that can be different from device to device and even for identical devices differently
employed. For instance, the same detuning ∆ν in the peak frequency of a single-mode laser
diode can flag a failure in WDM applications and yet keep perfect operativity in optical
pumping.

The example also reveals that many different parameters can cause a faulty state: in
the list of specifications of a commercial device, any element that first drifts outside the
accepted tolerances will define the time-to-failure (TTF) of that device. Even in the same lot
of identical devices operating in identical conditions it may happen that the fault condition
occurs because of different failure criteria in different elements of the lot.

Because the mean-time-to-failure (MTTF) is the ultimate prediction sought by reliabil-
ity testing, one can guess the hardness and complexity of the task.

Even more, if one wonders about the physical origin of a failure, the concepts of
failure modes and failure mechanisms enter into play: mechanisms are the physical causes and
modes the observable effects of a degradation phenomenon, and there is not a one-to-one
match. There is a perfect analogy with diseases and symptoms in living beings: a fever can
be caused by several pathologies. It should be clear that failure criteria, and then TTF and
MTTF, rely on failure modes.
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Medical care, or even health statistics, should look to the root causes, and not to the
fever, to be effective. In solid state devices, faulty elements are never treated for recovery.
Nevertheless, the discovery of the failure mechanisms underlying the observed failure
modes is the key for any corrective action (a duty of the device manufacturer) or for the
design of suitable screening of the incoming lots (a task of the customer).

Let us transfer the above concepts to our case.
For laser diodes and light emitters in general, it is common and natural to consider the

reduction of emitted optical power below some specific level as the main failure criterion.
A plot as in Figure 1a or Figure 2a (the so-called LI curves) is the maximum information
usually provided in the datasheets accompanying a commercial device. It essentially
displays only two quantities: the threshold current Ith, corresponding to the abscissa of
the kink at turn-on, and the total efficiency η of the device, given by the slope of the curve
for currents I > Ith. The operating point then corresponds to a specific (I, POUT) pair, and a
power reduction of, say, 20% can represent the failure criterion.

Now, let us focus on Figure 18, from reference [69]. It is just an example of the variety
of ways that a LI curve can change upon the activation of a degradation mechanism. It is
not important here to give details of that case, which was a controlled experiment on the
transitory effects of mid-energy proton irradiation on the performances of two different
commercial lasers. What is relevant for the sake of this paper is the evolution of the curves,
starting from their initial state (the dashed lines). We appreciate both a correlation between
an increase in Ith and the decrease in η, but also a sequence of curves where only the
threshold current increases, and the slope remains the same.
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The variations in Ith, and η are the failure modes. In this case, the failure mechanism
was known: proton irradiation. Any explanation of the observed phenomena requires
one to link proton irradiation with the physics and technology of the specific devices. In
particular, we must assume that protons create enhanced recombination of electron and
holes, and also optical capture centers for photons, which means an increase in the internal
losses αι.

Now, the threshold current may be expressed with excellent approximation [67] by

Ith ≈ Ith0 exp
(

αT
gm/4

)
(38)

Here Ith0 is the ideal threshold current at zero losses. Appendix A recalls that Ith0
corresponds to the value of the non-radiative component Inr of the total current I flowing
across the device at the threshold voltage Vth, Equations (26) and (27). It depends on the
amount of electron-hole recombination, but does not depend on optical losses. In contrast,
total losses αT exponentially influence the threshold current in conjunction with the gain
limit gm.
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Efficiency η, in turn, depends on the ratio αm
αT

η =
hν

q
ηC

αm

αT
(39)

with ηC the coupling efficiency of the light collection apparatus [34]. It does not depend on
gain or electron-hole recombination. For the given case, the hypothesis of diffusing protons
across the two different 3D geometries of the devices allowed us to reconstruct the link
between the time varying proton density and the observed variations in the LI curves, up
to measurement of a diffusion coefficient corresponding to the known value for interstitial
hydrogen diffusing in gallium arsenide and indium phosphide at room temperature.

For devices that failed during operating life or during accelerated life tests, the leading
failure mechanism is not known a priori. The observed failure mode can be any of the
cases in Figure 18, or even something different (increasing threshold current and increasing
efficiency, or changing slope with constant Ith). The role of the methods proposed within
this paper is to allow the separate measurement of gain g, of its boundaries ±gm, and of
the total loss coefficient αT. Recalling that gain depends on the properties of the active
material, Equation (21), and not on the size and shape and boundary reflectivity of the
optical cavity, whereas losses change because of defects inside or at the edges of that cavity,
the separation of gain and loss contribution addresses diagnostics towards material and
cavity.

7. Discussion and Conclusions

Several points in the paper require some discussion because of their apparent dis-
agreement with the standard approaches to laser diode theory.

In Section 2, the introduction of the continuity equation for photons may look weakly
founded and only based on a heuristic comparison with a similar equation for minority
carrier in semiconductors. In particular, the “diffusion coefficient” seems merely built by
analogy. On the contrary, the proposed approach relies on the construction and solution
of a rate equation for the uniform domain, anchored to the balance among electron, hole,
and photon densities and on their interaction probability according with the Einstein
treatment of the black body radiation. Ref. [67] summarizes in detail several papers that
the author published throughout several years on that subject. The results are in perfect
agreement with the foundation papers, in particular with respect to the formulation of
the photon density for the uniform domain (Equation (5)) and then, necessarily, for the
related quantities of gain and emitted optical power. Section 2, then, essentially points out
that optical emission at low current does not involve the whole optical cavity. Figure 1
summarizes that result.

Moving to gain measurements, all of the proposed methods have a common point: the
separate measurement of gain and total losses. All of them work with spectral data in the
sub-threshold range to measure gain and losses. However, gain itself saturates at threshold,
which makes spectra well above threshold simply useless. This helps because we may
neglect the non-idealities observed at high injection, pointed out, for instance, by the range
of high currents for which the LI curve deviates from linearity. For the same reason, also
the calculation of the series resistance RS, so important for our method, can refer to the
I(V) range close to threshold. In practice, the best value of RS is that one that, starting from
the experimental I and V, gives back the largest set of current values for which VJ remains
constant.

In example, Figure 19 plots the laser current I and the photocurrent current IM mea-
sured by a monitor diode (which is proportional to the emitted optical power POUT), as
functions of the internal voltage VJ. The bold lines for both curves represent the range of
validity of the ideality approximation. The thin dashed lines show the range where RS
looks to change, as indicated in the note after Figure 5 [68].
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Data in Figure 19 have been acquired by driving the laser diode with a linear voltage
ramp from 0 to 1.5 V at steps of 2 mV. By measuring VJ with an accuracy of 1 mV, the value
RS = 7.75 Ω generated a set of 83 voltage values fixed at the threshold voltage Vth = 0.978 V.
Any other value of RS reduced the number of elements in that set. As an aside, the measured
value of Vth gives an upper estimate Eg ≈ 0.978 eV of the bandgap of the active material, as
indicated by Equations (26) and (27), which show that qVth is somewhat larger than the
minimum available photon energy hν. This is obviously consistent with the requirement
φn − φp > Eg, which is the fundamental rule for population inversion in semiconductors.

Section 3 is a summary of the gain measurement methods based on the analysis of
spectral data modulated by FP and DFB/DBR resonances. That section summarizes the
current state of the art for gain measurements from spectral analysis. It also points out
the two difficulties of the Hakki–Paoli and the derived methods: a) the measurement
not of gain g but of the difference g-αT and b) the impossibility to measure gain from
non-resonating cavities.

Moreover, a check on the linearity of the spectral response (or even on the perturbation
introduced by some ambient light) becomes available from the reconstruction of maxima
and minima |F|2MAX , |F|2min, as in Figure 3, starting from the |F|2+, |F|2− functions, calculated
by the moving averages methods. If the calculated curves do not run along the top and the
bottom of a spectrum, then that spectrum does not follow the ideal Equation (17) [65].

The key step is Section 4, where Equation (21), recovered from the theoretical founda-
tion of laser diode physics, decouples gain g from losses αT and introduces the upper and
lower gain limits ±gm as measurable quantities as well.

Last, the final section, Section 5, proposes a way for extending gain measurements to
non-resonating cavities. It requires the calculation of the single-trip term of the photon
intensity, that is the term |F0|2 that appears in all lines in Equation (18), and that is duly
removed by the evaluation of ratios.

Here the critical point is the accurate quantification of a multiplier that includes the
volume Vol of the active region, which is not a simple piece of information to get. In ref. [66]
it is shown that gain curves, calculated with the Hakki–Paoli, the Cassidy, or the Vanzi
methods, and the method of Section 5 for the same set of data are consistent.

A byproduct of this last section refers to Figure 15. It is a check of the consistency
of the measured spectral intensities. If it is impossible to find a multiplier common to all
spectra that aligns their integrals (dots) along the plot of the monitor output, then one must
check if the spectrometer has some setup that adjusts gain accordingly with the spectrum
intensity.

The general applicability of the proposed (or recalled) methods stands in Equation (21)
and in its demonstrated measurability. The spectral function g/gm is a universal function of
the junction voltage VJ. This means that, once calculated gm, gain can be calculated at any
injection level. It should be kept in mind, in any case, that gain stops at threshold. The other
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models [34,59] (linear, logarithmic, with or without bias) all work close to transparency,
that is close to threshold, and fail in predicting gain at very low and very high currents.

The overall relevance of the paper, in the author’s belief, is for reliability studies.
During life tests, or after degradation after some operating life, alterations occur inside
the optical cavity that change the initial state of the device. Losses become a monitor
of many degradation kinetics, and then it becomes crucial to measure them and not to
assume their values from databases. However, reliability investigation is mandatory for
the end user of any kind of devices, at both the beginning and the end of their operating
life, that is, for qualification of the incoming purchased lots and for diagnostics of failures
from field operation. Here we close the loop, with a reference to the beginning of this
paper, that is its title: optical gain in commercial laser diodes might be a powerful tool
for characterization and reliability of such devices, but must break free from the need of
external information or excessively demanding procedures and instruments. The paper
proposes a general approach, based on the standard measurement of a number of spectra
and of the DC electrical characteristics, that aims to ease the task.

The paper continuously took care to refer even its most unusual results and interpreta-
tions to the very foundation of the laser diode history. In that spirit, we will then conclude
this paper by also referring to the historical link between gain and reliability. Indeed, the
original paper from Hakki–Paoli [40] that for more than half a century drives the most
part of gain measurements, is titled: “cw degradation at 300 ◦K of GaAs double-heterostructure
junction lasers”. II. Electronic gain”.
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Appendix A. Current and Voltage in a Laser Diode

The physically sound relationship between optical gain and injection level in a laser
diode is given by the Lasher and Stern formula [15] that here appears in the form of Equa-
tion (21) after replacing the quasi-Fermi levels with the internal voltage VJ, Equation (19),
proposed by Barnes and Paoli [39]. The simplifying approximation of Equation (22) has
been proposed and used by the author in all his papers [55–69] for the sake of referring
elusive quantities as the electron and hole energies and densities to the measurable alter-
native quantities hν and qVJ. The result is that Equation (21) becomes a supplementary
independent expression for optical gain that, coupled with any of the other measurement
methods resumed in Sections 3 and 5, leads to the separate measurement of gain and losses.

It is not usual to refer the performances of a laser diode to the applied voltage V;
it is the forward current I that instead plays that role: spectra in Sections 3–5 have been
identified by the corresponding current, and LI curves as in Figures 1a, 2a and 18 have the
current I on their abscissas, and the laser threshold is identified by the threshold current Ith.
It seems then advisable to develop an alternative formulation of the proposed methods
based on the current I instead of the voltage V by means of a suitable I(V) relationship for a
laser diode. This has been one of the main tasks of the laser model developed by the author
in previous years in the reference papers for this appendix.

The kernel is here summarized:
All currents in an ideal laser diode come from recombination of electrons and holes.

Part of such recombinations cause light emission and the remaining part does not. The
two contributions to the total current I have been named, respectively, Iph and Inr. The
two currents share the same junction bias VJ, and they are additive, as for two circuital
elements connected in parallel.

I
(
VJ
)
= Iph

(
VJ
)
+ Inr

(
VJ
)

(A1)
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The non-radiative component Inr does not differ from the standard Shockley current

Inr
(
VJ
)
= Inr0

[
exp

(
qVJ

kT

)
− 1
]

(A2)

where Inr0 is the saturation current.
The radiative current Iph is the kernel of the laser: it corresponds to an ideal device

where all recombination occurs inside the optically active region, is spatially uniform, and is
completely converted into light. Would that device exist, its current-voltage characteristics
should be:

Iph = Iph0
αT + gm

αT

[
1 + exp

( qVJ−hνpeak
2kT

)]2
+ gm

[
1− exp

( qVJ−hνpeak
kT

)][exp
(

qVJ

kT

)
− 1
]

(A3)

where hνpeak is the photon energy at the spectral peak. That peak photon energy is that
value of hν that leads the denominator in Equation (A3) to vanish for the minimum value
of qVJ, which corresponds to the condition for voltage clamp introduced in Equations (26)
and (27).

The peak photon energy is larger than the bandgap Eg of the active material, so that
for any bias qVJ < Eg the exponentials in the denominator are negligible with respect
to unity, and the whole fraction approaches the unity. In that range Iph behaves as a
standard Shockley current, with saturation current Iph0. On the contrary, when the bias qVJ
approaches hνpeak, the current Iph increases without limits.

In a real laser diode, Iph0 is much less than Inr0, so that below the threshold Inr domi-
nates over Iph. Figure A1 plots the three currents of Equation (A1).
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Figure A1. The total current I (red bold line) and its components: the radiative current Iph (dashed
line) and the non-radiative current Inr (thin solid line). The threshold voltage Vth and current Ith are
also indicated as the coordinates of the sharp transition in I.

In a real device, extra currents flow at low bias, mostly due to the lateral sides of the
active region, and become negligible as bias approaches threshold. Additionally, a series
resistance, typically of a few ohms, plays a role, masking the ideal vertical transition shown
in Figure A1 and reconstructed from experimental data in Figure 19.

In any case, the threshold current Ith results as the value of the non-radiative current
Inr at the clamp value of VJ. This conclusion agrees with the considerations in Chapter 2 of
ref. [34].

Substituting Equation (21) in Equation (A2), and neglecting the unity because we are
certainly considering deep positive bias, we get

Ith = Inr(Vth) = Ith0

[
1 + αT

gm

1− αT
gm

]2

(A4)
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with Ith0 = Inr0 exp
(hνpeak

kT

)
(A5)

The quantity Ith0 indicates the theoretical lower limit for Ith in the ideal case of zero
losses. Alternatively, it represents the value of the non-radiative current when qVJ = hνpeak,
which corresponds (see Equation (21)) to g = 0. It is the transparency condition, that is close
to the threshold condition stated by Equations (26) and (27).

We see an explicit link between the measurable Ith, the gain extremal gm, and the total
losses αT. It is a particular case of a more general relationship among current, gain, and
losses that, based on Equations (A1)–(A3), (21) and (22):

I = Ith0

[
1 + g

gm

1− g
gm

]2

+ I0

[
1 + g

gm

]2

1− g
αT

(A6)

where I0 is the value of Iph (Equation (A3)) at transparency (qVJ = hνpeak).
Being Iph0 << Inr0, as stated before, we have also: I0 << Ith0. The second term on

the right-hand side of Equation (A6) remains completely negligible if αT > gm, and the
gain-current relationship reduces to

I = Ith0

[
1+ g

gm
1− g

gm

]2
, αT > gm (A7)

We can see in Equation (A7) the optical gain in a light emitting diode, whose current I
can increase without limits, but gain never exceeds the range −gm,+gm. No laser threshold
will ever be reached.

On the contrary, if αT < gm the first term on the right side of Equation (A6) continues
dominating over the second one, until g = αT . Approaching that point, current rises to
very high values due to the stimulated emission. In practice, the first term stops at g = αT ,
which corresponds to the threshold condition in Equation (A4).

Both Equations (A4) and (A6) conflict with the most popular empirical equations for
the gain-current relationship. It is noticeable that when we consider the power expansion
of Equation (A7) close to transparency (g = 0), we see that it mimics, up to the fourth term,
the power expansion of the function

I = Ith0 exp
(

g
gm/4

)
(A8)

In the same way, the power expansion of Equation (A4) emulates, for small values of
the loss coefficient, the equation

Ith = Ith0 exp
(

αT
gm/4

)
(A9)

Equation (A8) explains why experimental measurements suggested a logarithmic
relationship for g(I), whereas Equation (A9) coincides with Equation (38) and justifies it
under the numerical point of view.

In conclusion of this appendix, one could assume that referring gain to voltage or
current is almost equivalent. It is not so.

The crucial point is the suitability of an ideal Shockley relationship, as in Equation (A2)
and in the sub-threshold behavior of Equation (A3), to represent the I(V) characteristics
of a real device. In particular, experiments almost never show an ideality factor equal to
unity. In other words, the measured currents in the subthreshold range seem to follow the
reduced bias VJ/N, with N > 1.

The explanation is much more complex than a first glance interpretation: voltage drops
in part outside the active region, and then the effective VJ is a fraction of the applied value.
This would simply cause the stretching of the abscissa in theoretical and experimental plots
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as in, respectively, Figures 19 and A1. The experimental evidence adds one disrupting
element: stretching that works well for the sub-threshold regime does not apply to the
threshold voltage Vth, as pointed out, together with a possible explanation, by the author
in [62]. It is that complexity of the I(V) characteristics that blurs the clarity of the gain-
voltage relationship when one attempts to translate it into a functional dependence on the
current I.
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