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Abstract: Phase retrieval utilizing Fourier amplitudes plays a significant role in image recovery.
Iterative phase retrieval algorithms have been developed to retrieve phase information that cannot
be recorded by detectors directly. However, iterative algorithms face the problem of being trapped in
local minima due to the nonconvexity of phase retrieval, and most existing works addressed this
by optimizing in multiple runs parallelly to improve the possibility that one of these could reach
the global minimum. Alternatively, we propose in this work to increase the probability of reaching
the global minimum with one arbitrary initial distribution by adapting simulated annealing in the
standard hybrid input-output (HIO) algorithm. Numerical and experimental results demonstrate
that the proposed method reconstructs images with mean square errors 50.12% smaller than those
reconstructed by HIO. More importantly, the proposed method can be applied to any HIO-based
algorithm with multiple runs to further improve the performance.
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1. Introduction

The phase retrieval technique plays a crucial part in image recording and reconstruc-
tion. Due to the nature of the high oscillation frequency of light, optoelectronic detector
arrays cannot follow and record only the magnitude of the light field, i.e., average light
intensity over time. In this process, phase, being an essential parameter of the light field and
providing significant information of the object, is lost during the measurements. Therefore,
efforts have been made for decades to explore different methods for phase retrieval in
applications such as holographic imaging [1–3], astronomical imaging [4–6], and X-ray
crystallography [7].

Classic approaches to phase retrieval rely on iterations between Fourier and object
domains. The Gerchberg–Saxton (GS) algorithm [8], being one of the earliest successful
attempts, performs an iterative procedure to obtain an estimation of the phase. Fienup
modified the Gerchberg–Saxton algorithm with a new set of object constraints and an error
function, and named the algorithm the hybrid input-output (HIO) algorithm [9]. The HIO
method improves converging speed significantly but yields varying results depending on
different initials, most of which lead to local minima of the optimization. Therefore, multi-
ple runs need to be performed in HIO parallelly and the operation of getting the average
results of those with small errors is essential. To increase the consistency of the results,
the geometric average was introduced to the iterations of the HIO algorithm, creating the
guided hybrid input-output (GHIO) algorithm [10]. The GHIO method manages to jump
out of local minima by running multiple initials parallelly and making good use of a better
one between all intermediate results during iterations to guide the direction. However,
the success of GHIO depends strongly on multiple runs just like HIO, which come at the
cost of more computation. Another multiple initials algorithm utilized particle swarm opti-
mization (PSO) in HIO, which makes random initial particles learn and renew each other,
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and therefore increases the possibility of reaching the global minimum [11,12]. However,
the random nature of stochastic perturbations jeopardized the efficiency of the algorithm.

In the past decade, there have been some new attempts on phase retrieval. Inspired
by the idea of compressed sensing [13], Moravec et al. put forward compressive phase
retrieval, in which the signal’s sparsity was used as additional prior information to help
phase recovery [14]. Different measuring methods, such as tilt illumination [15,16] and
optical gratings [17], were introduced to acquire more information for phase retrieval [18].

The emergence of novel methods has significant impacts on the development of phase
retrieval, and in the meantime there is still room for improvements of classic algorithms,
especially when being combined with modern intelligent optimization algorithms. Here in
this work, we propose applying the concept of simulated annealing [19] to HIO to tune the
iteration parameter adaptively during the optimization in order to address the problem that
many runs need to be performed parallelly in HIO to yield good phase retrieval results. In
the process of the algorithm combining HIO and simulated annealing, the present iteration
results that own smaller errors in the Fourier domain (ERF) than the previous will be
accepted unconditionally; those owning larger errors in the Fourier domain (ERF) than the
previous will be accepted according to a simulated annealing probability. Performances of
different phase retrieval algorithms are compared quantitatively by numerical simulations
and practical experiments. The comparison demonstrates that the proposed method is
superior in the converging speed and degree during iterations.

2. Hybrid Input-Output (HIO) Algorithm

In Fienup’s HIO algorithm, phase retrieval is performed by the following steps:

(1) Generate a random distribution p0(x, y) in the object domain as an initial distribution.
By performing Fourier transform on p0(x, y), a complex distribution P0(u, v) is yielded
in Fourier domain,

P0(u, v) = F{p0(x, y)} =|P0(u, v)|exp[iψ0(u, v)] (1)

where |P0(u, v)| is the magnitude, and ψ0(u, v) is the phase;
(2) Replace the modulus |P0(u, v)|with the measured magnitudes experimentally known

as A(u, v) and keep its original phases to get a combinatorial P′0(u, v), i.e.,

P′0(u, v) = A(u, v) exp[iψ0(u, v)], (2)

(3) Generate an estimation p′0(x, y) in the object domain by inverse Fourier
transformation as

p′0(x, y) = F−1{P′0(u, v)
}
= F−1{A(u, v) exp[iψ0(u, v)]}, (3)

(4) For the (k + 1)th iteration, i.e., the next iteration, the estimation of the object is
determined as

pk+1(x, y) =
{

p′k(x, y), (x, y) /∈ S
pk(x, y)− βp′k(x, y), (x, y) ∈ S

, (4)

where β is a constant and S are the regions at which p′k(x, y) breaches the object-
domain constraints, i.e., wherever p′k(x, y) is negative or it goes beyond the known
area of the object [20]. A brief procedure of the HIO method is shown in Figure 1a.

In this way, the image is reconstructed iteratively and its quality is judged by the
mean-square errors (MSE) [11], i.e.,

MSE =
1

M× N

M

∑
x=1

N

∑
y=1

[prec(x, y)− pori(x, y)]2 (5)
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where prec(x, y) and pori(x, y) mean the reconstructed and original images, respectively; M
and N represent the two-dimensional size of the image.

Photonics 2021, 8, x FOR PEER REVIEW 3 of 12 
 

 

[ ]2

1 1

1 ( , ) ( , )
M N

rec ori
x y

MSE p x y p x y
M N = =

= −
×   (5)

where ( , )recp x y  and ( , )orip x y  mean the reconstructed and original images, respec-
tively; M  and N  represent the two-dimensional size of the image. 

 
Figure 1. (a) A brief procedure of the HIO method. (b) The basic process of the SAHIO method. 

The parameter β  in Equation (4) has a crucial impact on the results of the HIO al-
gorithm. The impact could be embodied as the fact that the same initial distribution with 
different choices of β leads to dramatically different reconstructions, and there is no 
guarantee that the best β  can be found to run the HIO algorithm due to the nonconvex-
ity of phase retrieval. Therefore, most of the time, a better result is obtained by performing 
many runs of HIO with different initial distributions or different β  and averaging their 
results, which requires large computational time. 

However, HIO does not have to run alone because it can be looked on as a suboptimal 
version of a more general approach [20]. This implies that the HIO method could be com-
bined with other methods and be regarded as a part of a more universal method. There-
fore, we expect to propose a more general approach, in which the rule of utilizing fixed 
β  in a single run of HIO is changed by introducing other algorithms. In this way, a better 
result could be brought about with fewer runs and less computational time. In other 
words, a better reconstruction could be realized by the modified method in a single run. 

3. Simulated Annealing Hybrid Input-Output 
Inspired by some existing algorithms that apply simulated annealing for phase re-

trieval [21–23], in this work we use the concept of simulated annealing in HIO to address 
the problem of fixed β  during the iterations. 

As an effective probabilistic technique, simulated annealing plays an important role 
in approximating the global optimum of a given function. It derives from the physical 
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The parameter β in Equation (4) has a crucial impact on the results of the HIO algo-
rithm. The impact could be embodied as the fact that the same initial distribution with
different choices of β leads to dramatically different reconstructions, and there is no guar-
antee that the best β can be found to run the HIO algorithm due to the nonconvexity of
phase retrieval. Therefore, most of the time, a better result is obtained by performing many
runs of HIO with different initial distributions or different β and averaging their results,
which requires large computational time.

However, HIO does not have to run alone because it can be looked on as a suboptimal
version of a more general approach [20]. This implies that the HIO method could be
combined with other methods and be regarded as a part of a more universal method.
Therefore, we expect to propose a more general approach, in which the rule of utilizing
fixed β in a single run of HIO is changed by introducing other algorithms. In this way, a
better result could be brought about with fewer runs and less computational time. In other
words, a better reconstruction could be realized by the modified method in a single run.

3. Simulated Annealing Hybrid Input-Output

Inspired by some existing algorithms that apply simulated annealing for phase re-
trieval [21–23], in this work we use the concept of simulated annealing in HIO to address
the problem of fixed β during the iterations.

As an effective probabilistic technique, simulated annealing plays an important role in
approximating the global optimum of a given function. It derives from the physical process
of annealing in metallurgy, to make perfect crystals by heating and controlled cooling.
In this way, particles in crystals can be arranged in a state with minimal possible energy,
provided that the beginning temperature is sufficiently high and the cooling is sufficiently
slow [24].

There are usually four steps in simulated annealing.

(1) Start with an appropriate annealing temperature T;
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(2) Give a perturbation to get a random state close to the current one and calculate the
cost function F of the new one corresponding to the energy physically;

(3) Accept the new state if ∆F < 0 where ∆F = Fnew − Fold, and otherwise accept it on a
probabilistic basis under the Metropolis criterion [25]. The annealing probability is
given by

p = exp(−∆F/kBT), (6)

where kB is the Boltzmann constant;
(4) Decrease the temperature and start the next iteration from (2).

Equation (6) demonstrates that the probability p increases with T and decreases with
∆F, which means that particles still tend to accept the new state if it is a bit worse than
before in a high temperature.

The proposed simulated annealing hybrid input-output algorithm hereafter referred
to as SAHIO, is divided into five steps:

(1) Generate a random initial distribution p0(x, y) in the object domain and give an initial
temperature T and a value of β. In our experiment, the initial temperature T could be
set as

T =||A(u, v)||2 (7)

(2) Get the Fourier transformation P0(u, v) just like Equation (1). Then substitute the
modulus of P0(u, v), namely |P0(u, v)|, with the measured data experimentally re-
ferred to as A(u, v) and keep its original phase angles to get integrated P′0(u, v). Next,
perform inverse Fourier transformation to acquire an estimate p′0(x, y) in the object
domain, which is described in Equation (3);

(3) For the (k + 1)th iteration, i.e., the next iteration, calculate p′′k (x, y) according to
Equation (4) and then evaluate the errors of pk(x, y) and p′′k (x, y) respectively using
an error function, i.e.,

ERF(p) = ∑
u,v

∣∣∣∣∣∣A(u, v)− P(u, v)‖2 (8)

Furthermore, ∆ERFk, regarded as an analogy with ∆F, is obtained by

∆ERFk = ERF
(

p′′k
)
− ERF(pk) (9)

(4) Accept p′′k (x, y) as pk+1(x, y) at the beginning of the next iteration if ∆ERFk < 0 or
∆ERFk > 0 but it satisfies

p = exp
[
−∆ERFk

T

]
≥ rand(1) (10)

where rand(1) is a random number generated by the computer, which satisfies uni-
form distribution between 0 and 1. In this way, we could simulate the annealing
event according to probability p because of Pr[rand(1) ≤ p] = p. In other words,
p ≥ rand(1) means accepting p′′k (x, y) as pk+1(x, y) according to the simulated an-
nealing probability p. Otherwise, reject p′′k (x, y) and make pk(x, y) as pk+1(x, y) to
start the next iteration;

(5) Change the value of β randomly between 0 and 1 for the next iteration. Moreover,
decrease the temperature according to some criteria.

The whole process of the SAHIO method is displayed in Figure 1b. As for the criteria
of cooling, there are two points to be noted:

(6) Lowering temperature too often and fast is not advised sometimes; that is to say, it
is better to drop T during every N iteration, where N is often greater than 1 and it
could be set empirically;
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(7) The strategy of reducing T is various and in this work, it decreases exponentially, i.e.,

Tk+1 = γTk (11)

where γ is a constant between 0 and 1 and in this work it is set as 0.8.

To show the operability of the algorithm, a piece of pseudo-code of SAHIO is given in
Algorithm 1: The pseudo-code of SAHIO.

Algorithm 1: SAHIO (Simulated Annealing Hybrid Input-Output)

1: Generate a random initial distribution p0 and give the constraint regions S;
2: Set the initial temperature T =||A||2 and set β = 0.5;
3: Give the number of internal and external iterations, e.g., Gen and Iter;
4: Caculate ERF(p0) according to Equation (8);
5: for gen = 0, 1, 2, · · ·Gen do
6: for iter = 0, 1, 2, · · · Iter do
7: set k = Gen× Iter + iter;
8: set Pk = F{pk} =|Pk|exp[iψk] , P′k(u, v) = A exp[iψk] and
p′k = F−1{P′k} = F−1{A exp[iψk]};
9: caculate pk+1 according to Equation (4);
10: caculate ERF(pk+1) according to Equation (8) and ∆ERFk = ERF(pk+1)− ERF(pk);
11: if ∆ERFk < 0 then
12: set pk+1 = pk+1;
13: else then
14: generate a random number rand(1);
15: if p = exp

[
−∆ERFk

T

]
≥ rand(1) then

16: pk+1 = pk+1;
17: else then
18: set pk+1 = pk and ERF(pk+1) = ERF(pk);
19: end if
20: end if
21: change the value of β randomly;
22: end for
23: set T = γT;
24: end for

In the above algorithm proposed, temperature T and simulated annealing probability
p are both crucial parameters. Due to the fact of the different magnitude of ∆ERFk for
different objects, an appropriate initial temperature T =||A(u, v)||2 is chosen at the begin-
ning of the algorithm to constrain the ratio of ∆ERFk to T in Equation (10) to guarantee the
probability p of not more than 1 during iterations. Changing β randomly between 0 and 1
could give a different step or direction for the HIO method to improve the performance
while fixed beta is easier to lead to local minima.

Although it is an effective indicator for ∆ERFk to judge the quality of the HIO’s current
iterative result, greed and myopia are hidden in it meanwhile. A “temporarily worse”
intermediate result ∆ERFk ≥ 0 could lead to a “finally better” result. Therefore, we
decrease the temperature according to some criteria such as Equation (11) to increase the
probability of accepting the “temporarily worse” results in the later stage of iterations,
which helps jump out the local minima and reach the global minimum.

4. Results

To compare the performance of different algorithms, a series of numerical simulations
were implemented as follows.

First, a comparison between HIO and SAHIO methods was given. We performed
the phase retrieval simulation with the same two original images and an identical initial
distribution for different methods to guarantee uniqueness. It is worth mentioning that
there exists a best initial temperature for the SAHIO, but how to find it is not in the scope
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of this work and we used Equation (7) to generate our initial temperature. Figure 2 shows
the two original pictures; Figures 3 and 4 demonstrate the reconstructed images and their
MSEs after 200 iterations by HIO and SAHIO methods, respectively; Figure 5 displays the
average MSEs during iterations.
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From Figures 3 and 4, it is obvious that the images reconstructed by the SAHIO
method, with smaller MSEs, were clearer than the others. On average, the MSE yielded by
the SAHIO methods was 64.42% lower than that of the HIO method for 2 images.

However, it is hard to reflect the advantages of the SAHIO algorithm, generally due
to the small sample size (only two original images and one initial distribution). Therefore,
to verify the universality of the SAHIO method, a large numerical simulation was carried
out with 35 general images, in which 10 generated initial distributions are used to start
up 2 algorithms, respectively (i.e., 10 runs are performed parallelly for each image of 35,
and their results are averaged at last). The average MSEs during iterations are shown in
Figure 5 as well.

Some observations and deductions could be made from Figure 5:

(1) Overall, the MSEs yielded by two algorithms decreased with increasing numbers of
iterations with different speeds and results, which means that both methods have
dissimilar degrees of the ability to reconstruct images.

(2) Generally speaking, the SAHIO method declined faster than HIO. However, it is worth
noting that in the early iterations, SAHIO, at a slight disadvantage for decreasing
the MSE, showed a bit greater fluctuation owing to randomly changing. It was the
random process of the exploration that delayed the time in the former steps but gave
more chances to avoid the local minima in the latter stage.

(3) At the end of 200 iterations, for 35 images the average MSE yielded by the SAHIO
method converged at the lowest value, i.e., 0.00745, while the HIO method ended up
with 0.01493; that is to say, the MSE generated by the SAHIO method was 50.12%
smaller than the HIO method, demonstrating its strength of jumping out of the local
minima and searching for the global optimum.

We concluded that the SAHIO algorithm is better than the HIO algorithm both on
speed and degree of convergence. Furthermore, theoretically, all algorithms based on HIO
but replacing HIO with SAHIO are expected to get better results. Therefore, a second
simulation was carried out to investigate the effect of the method combining the SAHIO
and GHIO algorithms, termed as SAGHIO. The same 35 images with 6 initial distributions
were used in this experiment, and GHIO was regarded as a baseline to be compared
with SAGHIO. The average MSEs during 200 iterations are shown in Figure 6, and some
inferences can be drawn:
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(1) The MSEs curve of SAGHIO converged faster than that of GHIO. In the beginning,
SAGHIO performed a little worse; SAGHIO caught up quickly, but the speed advan-
tage seemed less obvious with iterations going on;

(2) At the end of 200 iterations, the MSEs of SAGHIO converged to a lower number, i.e.,
0.00152, while GHIO was 0.00266. Due to the restriction of the axis scale, the difference
of final MSEs between SAGHIO and GHIO was inapparent, but SAGHIO’s result was
42.857% better than GHIO’s indeed, which means SAGHIO could reconstruct images
clearer in general.

Moreover, the physical experiment for testing the effect of the SAHIO method was
designed. A simple imaging system shown in Figure 7 was set up. The light emitted by
the laser (λ = 532 nm) passed through the beam expander and got collimated into parallel
light by the convex lens group ( f1 = 40 mm, f2 = 50.8 mm) and then illuminated the object,
i.e., a 1 mm triangle aperture. The Fourier magnitude of the triangle aperture was recorded
on the focal plane of the third convex lens ( f3 = 100 mm) by a CCD (Daheng Optics, Beijing,
China, MER-030-120UM). Phase retrieval was performed by HIO (β = 0.9) and SAHIO
respectively in three runs, and the reconstructed objects, Fourier amplitudes and phases
distributions are shown in Figure 8. Figure 9 shows their ERFs during 200 iterations, which
are used to judge the quality of reconstructed objects.

Similar observations and deductions could be made from Figure 9. The ERFs of
iterative results from SAHIO could get a lower level than those from HIO, which means
that the quality of reconstructed images by SAHIO is better than that by HIO. Therefore, it
can be concluded that SAHIO is more capable of reaching the global minima than HIO.
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5. Discussion

Although the SAHIO method could address the plight of getting trapped in local
minima to some extent, there still exists some room for improvement.

First, methods of generating and updating temperature could be explored much more.
We introduced temperature T to regulate the process of annealing in the hybrid modified
algorithm, and the choice of initial temperature and the criteria of decreasing temperature
are both of great importance. An appropriate initial temperature could not only ensure
the probability p is not more than 1 during iterations but also stimulate the potential of
searching for the global minimum for the SAHIO algorithm. Proper criteria of cooling could
control the process of the whole algorithm to speed it up or deepen it. In the experiments
of this article, we used Equations (7) and (11) to generate and update the temperature, but
there may be other better methods to do the same job. Therefore, it deserves more effort to
explore better methods for all kinds of applications.

Second, not only MSE and ERF but also other ways to judge the quality of recon-
structed images should be considered. The features of a reconstructed image could be
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reflected from many aspects and multiple methods could be integrated to evaluate the
quality of the phase retrieval results comprehensively.

Last, changing β randomly in the SAHIO algorithm of this article was a bit ineffi-
cient sometimes; a more appropriate and directional change is expected to replace the
random one. All in all, more efforts on phase retrieval should be made for improvement in
the future.

6. Conclusions

In this work, we incorporated simulated annealing into the HIO method to propose
a combined phase retrieval scheme, namely the SAHIO algorithm. By the benefit of the
SA method, the SAHIO algorithm lessens the possibility of locking into the local minima
compared with the HIO method. A series of ideal universal pictures were used as the
original images for different algorithms to compare their results and test the feasibility
and superiority of the SAHIO scheme. It was concluded in the numerical simulations that
the SAHIO method has more potential to deal with the nonconvex optimization, with the
MSE 50.12% smaller than the HIO method when 35 original images were used in 10 runs.
Although the SAHIO scheme lagged in speed at the beginning, it surpassed HIO gradually.
Furthermore, SAHIO was applied in the interaction process like SAGHIO and it still led to
better results compared with basic GHIO. Moreover, a physical experiment of retrieving
phases of a triangle aperture was carried out to compare SAHIO with HIO, and the similar
superiority of SAHIO was exhibited.

Both numerical and physical experiments indicate that SAHIO can be utilized in the
Fourier spectrum based on image recovery techniques to reconstruct images better. The
problem of introducing additional parameters was analyzed qualitatively, and a direction
of improvement was given meanwhile. More efforts on phase retrieval algorithms need to
be made in the future.
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