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Abstract: We demonstrate how machine learning is able to model experiments in quantum physics.
Quantum entanglement is a cornerstone for upcoming quantum technologies, such as quantum
computation and quantum cryptography. Of particular interest are complex quantum states with
more than two particles and a large number of entangled quantum levels. Given such a multiparticle
high-dimensional quantum state, it is usually impossible to reconstruct an experimental setup
that produces it. To search for interesting experiments, one thus has to randomly create millions
of setups on a computer and calculate the respective output states. In this work, we show that
machine learning models can provide significant improvement over random search. We demonstrate
that a long short-term memory (LSTM) neural network can successfully learn to model quantum
experiments by correctly predicting output state characteristics for given setups without the necessity
of computing the states themselves. This approach not only allows for faster search, but is also an
essential step towards the automated design of multiparticle high-dimensional quantum experiments
using generative machine learning models.

Keywords: quantum optics; multipartite high-dimensional entanglement; supervised machine
learning; long short-term memory

1. Introduction

In the past decade, artificial neural networks have been applied to a plethora of
scientific disciplines, commercial applications, and every-day tasks with outstanding
performance in, e.g., medical diagnosis, self-driving, and board games [1,2]. In contrast to
standard feedforward neural networks, long short-term memory (LSTM) [3,4] architectures
have recurrent connections, which allow them to process sequential data such as text
and speech [5].

Such sequence-processing capabilities can be particularly useful for designing complex
quantum experiments, since the final state of quantum particles depends on the sequence
of elements, i.e., the experimental setup, these particles pass through. For instance, in
quantum optical experiments, photons may traverse a sequence of wave plates, beam
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splitters, and holographic plates. High-dimensional quantum states are important for
multiparticle and multisetting violations of local realist models, as well as for applications
in emerging quantum technologies such as quantum communication and error correction
in quantum computers [6,7].

Already for three photons and only a few quantum levels, it becomes, in general,
infeasible for humans to determine the required setup for a desired final quantum state,
which makes automated design procedures for this inverse problem necessary. With the
algorithm MELVIN [8], it was shown how to automate this process. MELVIN uses a
toolbox of optical elements, randomly generates sequences of these elements, calculates the
resulting quantum state, and then checks whether the state is interesting, i.e., maximally
entangled and involving many quantum levels. Furthermore, it has learning capability that
speeds up the discoery of more complex systems. The setups proposed by MELVIN have
been realized in laboratory experiments [9,10]. Numerous variations have been developed
since then. For example, genetic algorithms [11,12] coupled with neural networks [13],
reinforcement-learning-based search [14], gradient-descent of a continuous experimental
space [15,16] or efficient human-interpretable representations [17] and unsupervised deep
generative models [18]. See a recent review about these developments [19].

Inspired by these advances, we investigate how LSTM networks can learn quantum
optical setups and predict the characteristics of the resulting quantum states, a task whose
level of humanly perceived difficulty distinctly goes beyond that of other deep learning
tasks, like object recognition or text generation. We train the neural networks using millions
of setups generated by MELVIN. The huge amount of data make deep learning approaches
the first choice. We use cluster cross validation [20,21] to evaluate the models.

2. Methods
2.1. Target Values

Let us consider a quantum optical experiment using three photons with orbital angular
momentum (OAM) [22,23]. The OAM of a photon is characterized by an integer whose
size and sign represent the shape and handedness of the photon wavefront, respectively.
For instance, after a series of optical elements, a three particle quantum state may have the
following form:

|Ψ〉 = 1
2
(|0, 0, 0〉+ |1, 0, 1〉+ |2, 1, 0〉+ |3, 1, 1〉). (1)

This state represents a physical situation, in which there is a 1/4 chance (modulus
square of the amplitude value 1/2) that all three photons have OAM value 0 (first term),
and a 1/4 chance that photons 1 and 3 have OAM value 1, while photon 2 has OAM value
0 (second term), and so on, for the two remaining terms.

We are generally interested in two main characteristics of the quantum states: (1) Are
they maximally entangled? (2) Are they high-dimensional? The dimensionality of a state
is represented by its Schmidt rank vector (SRV) [24,25]. State |Ψ〉 is indeed maximally
entangled because all terms on the right hand side have the same amplitude value. Its SRV
is (4,2,2), as the first photon is four-dimensionally entangled with the other two photons,
whereas photons two and three are both only two-dimensionally entangled with the rest.

A setup is labeled “positive” (yE = 1) if its output state is maximally entangled and if
the setup obeys some further restrictions, e.g., behaves well under multi-pair emission, and
otherwise labeled “negative” (yE = 0). The target label capturing the state dimensionality
is the SRV ySRV = (n, m, k)>. We train LSTM networks to directly predict these state
characteristics (entanglement and SRV) from a given experimental setup without actually
predicting the quantum state itself.

2.2. Loss Function

For learning classification, we use the binary cross-entropy (BCE) loss function in
combination with logistic sigmoid output activation, which dates back to Good [26] and is
explained, e.g., by Bishop [27], as the negative log-likelihood of a Bernoulli distribution. For
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regression, it is always possible to reorder the photon labels such that the SRV has entries
in non-increasing order. An SRV label is thus represented by 3-tuple ySRV = (n, m, k)>

which satisfies n ≥ m ≥ k. Hence, we will subsequently refer to the SRV’s first entry n as
the “leading Schmidt rank”.

With slight abuse of notation, we model n ∼ P(λ) as a Poisson-distributed ran-
dom variable and m ∼ B(n, p), k ∼ B(m, q) as Binomials with ranges m ∈ {1, . . . n}
and k ∈ {1, . . . , m} and success probabilities p and q, respectively. The resulting log-
likelihood objective (omitting all terms not depending on λ, p, q) for a data point x with
label (n, m, k)> is

`(λ̂, p̂, q̂ | x) = n log λ̂− λ̂ + m log p̂ + (n−m) log(1− p̂)

+ k log q̂ + (m− k) log(1− q̂)
(2)

where λ̂, p̂, q̂ are the network predictions (i.e., functions of x) for the distribution parameters
of n, m, k respectively. The Schmidt rank value predictions are n̂ = λ̂, m̂ = p̂λ̂, k̂ = p̂q̂λ̂. To
see this, we need to consider the marginals of the joint probability mass function

f (n, m, k) =
λne−λ

n!

(
n
m

)
pm(1− p)n−m

(
m
k

)
qk(1− q)m−k. (3)

To obtain the marginal distribution of m, we can first sum over all possible k, which is
easy. To sum out n, we first observe that (n

m) = 0 for n < m, i.e., the first m terms are zero,
and we may write

f (m) =
∞

∑
n=0

f (n, m) =
∞

∑
n=0

f (m + n, m) (4)

capturing only non-zero terms. It follows that

f (m) =
∞

∑
n=0

λn+me−λ

(n + m)!

(
n + m

m

)
pm(1− p)n

= e−λ pmλm
∞

∑
n=0

λn(1− p)n

(n + m)!

(
n + m

m

)
=

e−λ pmλm

m!

∞

∑
n=0

λn(1− p)n

n!
=

e−pλ(pλ)m

m!
,

(5)

which is P(pλ)-distributed. Using the same argument for k, we get that the marginal of
k is P(pqλ)-distributed. The estimates n̂, m̂, k̂ are obtained by taking the means of their
respective marginals.

2.3. Network Architecture

The used sequence processing model is depicted in Figure 1. We train two networks,
one for entanglement classification (target yE), and one for SRV regression (target ySRV).
The reason why we avoid multitask learning in this context is that we do not want to
incorporate correlations between entanglement and SRV into our models. For instance,
the SRV (6,6,6) was only observed in non-maximally entangled samples so far, which is a
perfect correlation. This would cause a multitask network to automatically label such a
sample as negative only because of its SRV. By training separate networks, we lower the
risk of incorporating such correlations.
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x1

LSTM

x2

LSTM

x3

LSTM . . .

xN
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ŷ

Figure 1. Sequence processing model for a many-to-one mapping. The target value ŷ can be either
an estimate for yE (entanglement classification) or ySRV (SRV regression).

A setup of N elements is being fed into a network by its sequence of individual optical
components x = (x1, x2, ..., xN)

>, where, in our data, N ranges from 6 to 15. We use an
LSTM with 2048 hidden units and a component embedding space with 64 dimensions. The
component embedding technique is similar to word embeddings [28].

3. Experiments
3.1. Dataset

The dataset produced by MELVIN consists of 7,853,853 different setups, of which
1,638,233 samples are labeled positive. Each setup consists of a sequence x of optical
elements, and the two target values yE and ySRV. We are interested in whether the trained
model is able to extrapolate to unseen SRVs. Therefore, we cluster the data by leading
Schmidt rank n. Figure 2 shows the the number of positive and negative samples in the
data set for each n.

0 1 2 3 4 5 6 7 8 9 10 11 12
leading Schmidt rank

102

103

104
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m
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r o

f s
am
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negative
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Figure 2. Negative and positive samples in the data set as a function of the leading Schmidt rank n.

3.2. Workflow

All samples with n ≥ 9 are moved to a special extrapolation set consisting of only
1754 setups (gray cell in Table 1). The remainder of the data, i.e., all samples with n < 9,
are then divided into a training set and a conventional test set, with 20 % of the data drawn
at random (iid). This workflow is shown in Figure 3.

Table 1. Cluster cross validation folds (0–8) and extrapolation set (9–12) characterized by leading
Schmidt rank n. Samples with n = 0 and samples with n = 1 are combined and then split into two
folds (0,1) at random.

0,1
0,1 2 3 4 5 6 7 8 9–12
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The test set is used to estimate the conventional generalization error, while the ex-
trapolation set is used to shed light on the ability of the learned model to perform on
higher Schmidt rank numbers. If the model extrapolates successfully, we can hope to find
experimental setups that lead to new interesting quantum states.

Cluster cross validation (CCV) [20,21] is an evaluation method similar to standard
cross validation [29]. Cross validation randomly partitions the training data into several
folds, and then uses all but one fold for training and the remaining fold for validation.
This is done several times such that every fold plays the role of the validation set exactly
once. Instead of partitioning the folds iid, CCV groups them according to a clustering
method. Thus, CCV removes similarities between training and validation set and simulates
situations in which the withheld folds have not been obtained yet, thereby allowing us
to investigate the ability of the network to discover these withheld setups. We use CCV
with nine folds (white cells in Table 1). Seven of these folds correspond to the leading
Schmidt ranks 2, . . . , 8. The samples with n = 1 (not entangled) and n = 0 (not even a
valid three-photon state) are negative by definition. These samples represent special cases
of yE = 0 setups, and it is not necessary to generalize to these cases without training on
them. Therefore, the 4,300,268 samples with n < 2 are divided into two folds at random,
such that the model will always see some of these special samples while training.

entire dataset

n < 9: in distribution

20% test set

generalization error

80% training set

cluster cross validation

n ≥ 9: extrapolation set

out-of-distribution capabilities

Figure 3. Workflow. We split the entire data by their leading Schmidt rank n. All samples with n ≥ 9
constitute the extrapolation set, which we use to explore the out-of-distribution capabilities of our
model. For the remaining samples (i.e., n < 9), we make a random test split at a ratio of 1/4. The test
set is used to estimate the conventional generalization error of our model. We use the training set to
perform cluster cross validation.

3.3. Results

Let us examine if the LSTM network has learned something about quantum physics.
A good model will identify positive setups correctly, while discarding as many negative
setups as possible. This behavior is reflected in the metrics true positive rate TPR =
TP/(TP + FN) and true negative rate TNR = TN/(TN + FP), with TP, TN, FP, FN the
true positives, true negatives, false positives, false negatives, respectively. A metric that
quantifies the success rate within the positive predictions is the precision (or positive
predictive value), defined as PPV = TP/(TP + FP).

For each withheld CCV fold n, we characterize a setup to be “interesting” when it
fulfills the following two criteria: (i) It is classified positive (ŷE > τ) with τ the classification
threshold of the sigmoid output activation. (ii) The SRV prediction ŷSRV = (n̂, m̂, k̂)> is
such that there exists a ySRV = (n, m, k)> with ‖ySRV − ŷSRV‖2 < r. We call r the SRV
radius. We denote samples which are classified as interesting (uninteresting) and indeed
positive (negative) as true positives (negatives). Furthermore, we denote samples which
are classified as interesting (uninteresting) and indeed negative (positive) as false positives
(false negatives).
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We employ stochastic gradient descent for training the LSTM network with momen-
tum 0.5 and batch size 128. We sample mini-batches in such a way that positive and
negative samples appear equally often in training. For balanced SRV regression, the lead-
ing Schmidt rank vector number n is misused as class label. The models were trained
using early stopping after 40,000 weight update steps for the entanglement classification
network and 14,000 update steps for the SRV regression network. Hyperparameter search
was performed in advance on a data set similar to the training set.

Figure 4 shows the TNR, TPR, and rediscovery ratio for sigmoid threshold τ = 0.5 and
SRV radius r = 3. The rediscovery ratio is defined as the number of distinct SRVs, for which
at least 20% of the samples are rediscovered by our method, i.e., identified as interesting,
divided by the number of distinct SRVs in the respective cluster. The TNR for fold (0,1) is
0.9996, and the precision on the extrapolation set 9–12 is 0.659. Error bars in Figure 4 and
later in the text are 95 % binomial proportion confidence intervals. Model performance
depends heavily on parameters τ and r. Figure 5 shows the “beyond distribution” results
for a variety of sigmoid thresholds and SRV radii.

0,1 2 3 4 5 6 7 8 9-12
Cluster

0.0

0.2

0.4

0.6

0.8

1.0

TNR
TPR
Rediscovery Ratio

Figure 4. True negative rate (TNR), true positive rate (TPR), rediscovery ratio of the LSTM network
using cluster cross validation for different folds 0–8. True negative rates are high for all validation
folds. All metrics are good for the extrapolation set 9–12, demonstrating that the models perform
well on data beyond the training set distribution, covering only leading Schmidt rank numbers 0–8.
Error bars represent 95 % binomial proportion confidence intervals.

Table 2. Conventional in-distribution training and test errors. The test set consists of 20 % of the
data. Performance on predicting the entanglement is measured using the BCE loss, TNR, and TPR.
Performance on predicting the SRV is measured using the SRV loss according to Equation (2), SRV
accuracy, and the mean distance between true SRV and predicted SRV.

Training Test

BCE loss 10.2 10.4
TNR 0.9271 ± 2.4 × 10−4 0.9261 ± 3.8 × 10−4

TPR 0.9469 ± 4.1 × 10−4 0.9427 ± 6.5 × 10−4

SRV loss 2.247 2.24
SRV accuracy 0.9382 0.938
SRV mean distance 1.3943 1.4

Finally, we evaluate the conventional in-distribution performance in Table 2. These
figures are consistent with a clean training procedure.
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(c) Rediscovery Ratio
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Figure 5. (a) True negative rate, (b) true positive rate, (c) rediscovery ratio, and (d) precision for
the extrapolation set 9–12 for varying sigmoid threshold τ and SRV radius r. For too restrictive
parameter choices (τ → 1 and r → 0.5), the TNR and precision approach the value 1, while TPR and
rediscovery ratio approach 0, such that no interesting new setups would be identified. For too loose
choices (small τ, large r), too few negative samples would be rejected, such that the advantage over
random search becomes negligible, reflected in smaller precision values. Hence, there is a trade-off
between rediscovery ratio (diversity of discoveries) and precision (speed of discoveries). For a large
variety of τ and r, the models perform satisfyingly well, allowing a decent compromise between
TNR and TPR. This is also reflected by a value of 0.64 for the mean average precision, where the
mean is taken over r = 0.5 to r = 7 with a step size of 0.1, and the average precision is over τ = 1
to τ = 0, with a step size of 0.01 for each value of r.

4. Outlook

Our experiments demonstrate that an LSTM-based neural network can be trained to
model certain properties of complex quantum systems. Our approach is not limited to
entanglement and Schmidt rank, but may be generalized to employ other objective functions,
such as multiparticle transformations, interference and fidelity qualities, and so on.

Another possible next step to expand our approach towards the goal of automated
design of multiparticle high-dimensional quantum experiments is the exploitation of
generative models. Here, we consider generative adversarial networks (GANs) [30] and
beam search [31] as possible approaches.

Generating sequences such as text in adversarial settings has been done using 1D
CNNs [32] and LSTMs [33,34]. The LSTM-based approaches employ ideas from rein-
forcement learning to alleviate the problem of propagating gradients through the softmax
outputs of the network. Since our data are, in structure, similar to text, these approaches
are directly applicable to our setting.

For beam search, there exist two different ideas, namely a discriminative approach
and a generative approach. The discriminative approach incorporates the entire data set
(positive and negative samples). The models trained for this work can be used for the
discriminative approach, in that one constructs new sequences by maximizing the belief of
the network that the outcome will be a positive setup. For the generative approach, the idea
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is to train a model on the positive samples, only to learn their distribution via next element
prediction. On inference, beam search can be used to approximate the most probable
sequence given some initial condition [35]. Another option to generate new sequences is to
sample from the softmax distribution of the network output at each sequence position, as
has been used for text generation models [36,37].

In general, the automated design procedures of experiments have much broader
applications beyond quantum optical setups, and can be of importance for many scientific
disciplines other than physics.

5. Conclusions

We have shown that an LSTM-based neural network can be trained to successfully
predict certain characteristics of high-dimensional multiparticle quantum states from the
experimental setup, without any explicit knowledge of quantum mechanics. For humans,
the difficulty of analyzing quantum optical experiments goes far beyond that of other
deep learning problems like, e.g., image classification. The network performs well even on
unseen data beyond the training distribution, proving its extrapolation capabilities. This
paves the way for the automated design of complex quantum experiments using generative
machine learning models.
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