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Abstract: The high security of optical phased array (OPA) signals is an important requirement
for OPA-based optical wireless communication (OWC). We propose a method for improving the
security of OPA-based OWC systems using optically injection-locked (OIL) semiconductor lasers. We
theoretically demonstrate the amplitude and phase modulation of OIL-OPA elements by controlling
the injection-locking parameters of the OIL lasers. When a Taylor window function is applied as the
amplitude profile of the OPA transmitter, the sidelobe level decreases by 22 dB and the unsecured
distance reduces 10 times compared to the case without the Taylor window function. In addition, the
unsecured area factor becomes 0.8%.

Keywords: optically injection-locked laser; optical phased array; optical wireless communication;
security improvement; sidelobe level; unsecured distance

1. Introduction

Optical wireless communication (OWC) in the optical wavelength range is an emerg-
ing technology in the field of wireless communication. It provides the advantages of free
license, wide bandwidth, immunity to radio frequency interference, high data rate, and
high energy efficiency for fidelity fields such as military, medical, and next-generation
wireless communication applications [1–6]. In addition, OWC has attracted significant
attention owing to its unique property of high security, which is a crucial performance
indicator in wireless communication. For example, it may be easy for attackers to obtain
information from a signal if the signal power is sufficiently high in undesired directions.
Semiconductor laser diodes play a significant role as OWC transmitters, owing to their
highly directional beam property, which results in a reduction in beam interference between
diverging signals and a reduction in the unsecured distance [1,3,7–9].

Owing to the rapid increase in the number of mobile users, high-capacity OWC is
required to prevent data congestion. Therefore, a steerable and directional beam that
carries information signals is required to ensure high capacity and security in OWC sys-
tems [10]. Among the transmitters used to generate steerable beams, optical phased
arrays (OPAs) have attracted significant attention owing to their advantages, such as low
weight, non-mechanical steering ability [11–13], high steering speed [14,15], large steering
range [12,16], and high output power [17–19]. Beam steering and shaping are essential
functions of OPAs [11,20]. Two major approaches have been proposed to achieve beam
steering, i.e., the phase control of array elements [21–23] and the wavelength control of
optical sources [24,25]. Beam shaping can be achieved by adjusting the amplitude of array
elements [21,23]. Therefore, the efficient, simple, and precise control of the phase and
amplitude of array elements is critical for achieving high-performance OPA-based OWC.
In previous research, the transmitters of OPA-based OWC systems are typically config-
ured by grating couplers or edge couplers. The phase and amplitude of array elements
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are controlled by external optical modulators, which cause complexity and high-power
consumption [11,21,23]. The key performance indicators of the array elements that com-
prise OWC transmitters in OPA-based OWC systems are output power, steering angle,
beamwidth, and sidelobe level (SLL). High output power compensates the power loss in
the transmission range to ensure the high performance of long-haul communication [17–19].
A large steering angle provides a wide coverage. A narrow beamwidth ensures the concen-
tration of energy, anti-interference capability, and avoidance of network attacks [8–10]. The
transmitter elements in OPAs produce a far-field radiation pattern, which includes a main
beam in the desired direction and sidelobes in undesired directions. The SLL is defined
as the power ratio between the main beam and peak sidelobe. A low SLL reduces infor-
mation leakage and improves the beam power efficiency in the desired direction [26–28].
A relatively high SLL level of ~12 dB has been reported [12]. Achieving a low SLL is a criti-
cal issue for ensuring the high security and power efficiency of OPA-based OWC systems.
The sidelobes degrade the OPA performances because it is a noise for the OPA system.
Furthermore, it may transmit information signals in unwanted directions in OPA-based
OWC, which degrades the security performance. To suppress SLL, various approaches
have been proposed including non-uniform spacing between the array elements [22,29],
two-dimensional apodized phase arrays [30], and a decrease in the OPA footprint using
nano-antennas [31,32]. However, the large number of emitters results in the large size, high
power consumption, and complexity in configuration. The small footprints also burden
the fabrication and increase the complexity.

Herein, we demonstrate an OPA-based OWC system that uses optically injection-
locked (OIL) semiconductor lasers to achieve low SLL, high security, and frequency sta-
bility. The OIL-OPA elements consist of a master laser (ML) and an array of slave lasers
(SLs). Simultaneous optical amplitude modulation (AM) and phase modulation (PM) are
achieved in addition to frequency stability by controlling injection-locking parameters
without any external element. The injection locking parameters are the detuning frequency
(=frequency difference) and power injection ratio between the ML and SLs. Typically, the
injection ratio can be controlled using an optical attenuator, amplifier, or optical intensity
modulator in front of the SL. The detuning frequency can be controlled using tunable ML or
by adjusting temperature of the SL. The two injection-locking parameters can be controlled
simultaneously based on the SL’s bias current modulation [33]. The OIL semiconductor
laser exhibits several advantages over the free-running laser such as enhanced modulation
performance, modulation bandwidth, high data transmission, and frequency stability [34].
The advantages can be widely applied to various photonics applications such as optical
fiber/wireless communication applications [35,36], optical signal processing [37], and mi-
crowave photonics [38]. Therefore, the OPA-based OWC system using OIL lasers provides
a compact transmitter, modulation control, low power consumption, and improved security
performance. The rest of this paper is organized as follows: First, we introduce the trans-
mission model of an OWC system. The requirements for successful network transmission
are also presented. Subsequently, we derive the unsecured distance and unsecured area
factor to evaluate the security performance of the OWC system. Simultaneous AM and
PM is demonstrated by independently controlling the injection-locking parameters for
each SL. Next, we demonstrate the data transmission capability and simulate the security
performance of the OIL-OPA transmitter. When a Taylor window function is used as the
amplitude profile of the transmitter, the unsecured distance reduces by ten times compared
to the case without the Taylor window function profile and the unsecured area factor
becomes 0.8%. The OPA-based OWC system with compact and low-power-consumption
OIL lasers exhibits improved security performance, and it can be widely applied in fidelity
fields such as military and medical applications.
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2. Security Model of OPA-Based OWC System

Figure 1 shows the elements and transmission beam shape of the OPA-based OWC
system. The elements include a transmitter (Tx) and receiver (Rx). The Tx is an OPA that
can produce a far-field radiation pattern, including one main beam and several sidelobes.
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Figure 1. Elements and transmission beam shape of optical wireless communication system based
on optical phased array; Tx: transmitter, Rx: receiver.

The main beam can be electrically steered and transmitted to the Rx, which is the target
of the communication system. In contrast, the sidelobes radiate signals in undesired directions,
hence, the information signal might be easily attacked. A photodiode (PD) is generally used
as an Rx element, which converts an optical wireless signal to an electrical current.

The bit error rate (BER) performance of the OWC system can be evaluated as [27]

BER =
1
2

er f c

√√√√ i2Rx
2i2Rx,noise

, (1)

where iRx and iRx,noise are the photocurrent and noise current of the PD generated by the
optical signal in the Rx, respectively. They are given by Equations (2) and (3) [27]:

iRx = M<Pt
ARx

π
(

L tan ϕ
2
)2 TRx, (2)

i2Rx,noise ≈ 2qBRx

(
M1.7iRx + idark

)
+

4kBTBRxF
Rload

. (3)

The photocurrent and noise current depend on transmission range L, signal param-
eters, and PD parameters. The signal parameters include emitting power Pt and main
beamwidth ϕ. The PD parameters include amplification factor M, responsivity <, band-
width BRx, noise factor F, receiving area ARx, beam collecting efficiency TRx, load resistance
Rload, and dark current Idark. kB is the Boltzmann constant, and T is the temperature. Pt and
ϕ are the key performance indicators of the Tx, and they are configured by the OPA. We set
a BER performance of 10−12 as a criterion for achieving high-quality communication [39].

We evaluate the security of the OWC system by considering a “passive” attack, which
detects information without any “active” attack on the Tx [40]. The signal of the OPA
directionally propagates to the Rx owing to its narrow and steerable beam property, which
inhibits signal leakage from the main beam. However, the far-field radiation pattern in-
evitably consists of sidelobes that radiate optical signals in undesired directions. Therefore,
signal information can be leaked from the sidelobes. We consider that an information signal
is attacked if the BER measured by PDs at the attack positions is ≤ 10−12. By combining
Equations (1)–(3) and the requirement of BER ≤ 10−12, the criteria for the unsecured
distance (from the Tx to the detection position) is presented as

Run ≤ Run,max, (4)

where Run is the distance from the Tx to the detection position. Run,max is the maximum
distance between the Tx and the detection position, within which the information signal
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can be detected from sidelobes. The concept of possible unsecured area, Sun, is shown
in Figure 2. The unsecured area is determined by the unsecured distance, Run, and the
sidelobe beamwidth, ϕSL, which is the full width at half maximum of the sidelobes. The
maximum unsecured area, Sun,max, is shown in Figure 2. The maximum unsecured area
Sun,max is expressed as follows:

Sun,max =
1
2

R2
un,max ϕSL. (5)
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The security of the OWC system is evaluated based on the unsecured area factor,
which is defined as the ratio between the unsecured areas caused by the sidelobes. This is
discussed in Section 4.

3. OPA Based on OIL Lasers

Figure 3 shows the schematic of the OPA with OIL semiconductor lasers and the
radiation pattern of the OPA. An OIL semiconductor laser array is constructed using an ML
and SLs. The far-field radiation pattern is formed by combining the array outputs radiated
from the OPA elements.
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Electrical beam steering and shaping can be achieved by the PM and AM of the OPA
elements [41]. The optical signal of the ML with amplitude AML, phase φML, and frequency
fML is injected into the SLs to achieve injection locking between the ML and each SL. When
the optical injection-locking conditions are met, the optical outputs of the SLs are frequency
locked to fML. The optical injection-locking condition can be achieved by controlling
two injection-locking parameters, i.e., the detuning frequency (∆ f = fML − f f ree,SL) and
injection power ratio (R = AML

2/A f ree,SL
2 = SML/S f ree,SL). f f ree,SL, A f ree,SL, and S f ree,SL

denote the frequency, field amplitude, and photon number of a free-running SL, respec-
tively, and SML is the photon number of the ML. The amplitude and phase of an SL can be
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modulated by controlling the injection-locking parameters when the SL operates within
a stable locking range. AM and PM can be achieved by adjusting the bias current of the
SL [33,41].

4. Simulation Results

Figure 4 depicts the injection-locking map, which shows the dependence of the ampli-
tude and phase of the OIL lasers on the injection-locking parameters.
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The colored areas depict the stable locking regions. Figure 4a,b show the output
amplitude and phase of the OIL lasers as functions of the injection-locking parameters,
respectively. When an OIL laser is operated with two specific injection-locking parameters
(e.g., ∆ f = 0 GHz, R = −20 dB), it provides an optical output signal with a corresponding
pair of the amplitude and phase (e.g., An = 10AML, φn = −63

◦
). Consequently, we

can achieve the target AM and PM of the OIL laser by controlling the injection-locking
parameters. This is realized by modulating the bias current of the SL array. In real
application, the look-up tables for each OIL-OPA element, which determine the relationship
between the injection locking parameters and the amount of PM/AM of the injection-locked
SL, should be experimentally obtained [33,41]. When the OIL laser array is used as the
OPA elements, the beam shaping and steering of the OPA signal are realized by the AM
and PM of the optical signal. The optical field of the OIL-based OPA Tx of the OWC system
can be expressed as [41]

Etot(θ, t) =

(
N

∑
n=1

m(t)An exp[j(n− 1)(kd sin θ − ∆φ)]

)
exp(jωt), (6)

where m(t) is the message signal, An is the optical amplitude weight of the nth SL, k is
the wave number, d is the distance between adjacent SLs, θ is the steering angle, ∆φ is the
phase difference between adjacent SLs, and ω is the optical angular frequency. The phase
difference ∆φ between adjacent SLs is achieved by varying the phase of OPA element. The
beam steering angle θ can be achieved by controlling ∆φ. A specific distribution of An
changes the shape of the far-field radiation pattern, as given by Equation (6). Hence, the
SLL can be reduced by obtaining an appropriate amplitude distribution in the SL array. In
this study, we bias the currents in the SL array to achieve a Taylor window distribution
because we recently demonstrated that the OPA emitters with Taylor window distribution
exhibit low SLL in the OPA far-field radiation pattern [41]. For communication purposes,
we apply non-return-to-zero (NRZ) on–off keying (OOK) modulation to the OIL-based
OPA. m(t) is added to the amplitude of each SL to modulate the optical signal. Therefore,
we can achieve a low SLL and information modulation owing to the AM of the SL array.
The PM of the SLs for beam steering can be achieved by selecting a suitable injection-
locking condition and bias current. Finally, the simultaneous AM and PM of the OIL laser
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array (21 SLs) can be implemented to achieve beam steering and data transmission based
on the OIL OPA with a high SLL reduction.

Figure 5 presents the injection-locking parameters for 21 SLs to achieve NRZ OOK
modulation. First, we calculate the required AM and PM of 21 SLs to obtain the Taylor
window function of amplitude profile and 6◦ of phase difference between adjacent SLs.
Then we obtain the injection-locking parameters to achieve the required AM and PM.
When the 21 SLs are operated under these parameters, we can simultaneously achieve
NRZ OOK modulation, a low SLL, and beam steering (2◦ in this case). The beam steering
range is controlled and enhanced by using an SL with low linewidth enhancement factor
and/or cascaded OIL configuration [22,33,42]. The red and blue crosses correspond to
the parameters calculated for high-level and low-level message signals, respectively. The
steered beam can be modulated by switching the red and blue conditions. The OIL-OPA
Tx is simulated with the ML operating at a frequency ( fML) of 1550 nm. The 21 SLs are
located with a spacing of 775 nm between adjacent SLs.
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Figure 6a shows the modulated far-field radiation pattern of the Tx with a uniform
amplitude distribution. The data rate is 10 Gbps. The SLL is relatively high at ~−13 dB.
This might result in the transmission of the information signal in undesired directions
because the sidelobe power is sufficiently high. Information may be detected from the
sidelobes. The power of the sidelobes is reduced by applying the Tx with the Taylor
window function as the amplitude distribution. The far-field radiation pattern achieved
using the Taylor window function is shown in Figure 6b. The SLL is reduced by 22 dB
compared to the case with the uniform amplitude distribution.
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We steer the beam by 2◦ during transmission. The significant suppression of the
sidelobe power in the far-field radiation pattern reduces the unsecured distance.

Based on the improved beam performance in terms of the SLL reduction, we evaluate
the beam security performance as a function of the SLL. Figure 7a shows the unsecured
distance calculated using Equations (1)–(4). The unsecured distance obtained with the
Taylor window function is reduced by more than 10 times compared to the case without
the Taylor window function. The inset of Figure 7a shows the BER dependence on SLL
for the fixed transmission length of 60 cm. The BER for the data transmission via sidelobe
increases when SLL is low, which confirms the improved security performance. We define
the unsecured area factor as follows:

Unsecured area factor (%) =
Sun,max,Taylor

Sun,max,uni f orm
× 100%, (7)

where Sun,max,uni f orm and Sun,max,Taylor are the maximum unsecured areas for the uniform
amplitude and Taylor window function profiles, respectively. The reduction in the unse-
cured area factor represents the improvement of the OWC system security by the Taylor
window function profile. The relationship between the parameters of the sidelobes and
the unsecured area can be derived from Equations (1)–(5). We can conclude that the
OWC system security can be improved by suppressing the OPA sidelobes in the far-field
radiation pattern. Figure 7b shows the unsecured area factor (circle) calculated using
Equations (1)–(5) and (7) to demonstrate the improvement of the OWC system security. The
unsecured area factor is significantly reduced when the SLL is suppressed by the Taylor
window function. It is 0.8% when the Taylor window function is used. The right-hand
y-axis exhibits dependence of the sidelobe beamwidth ϕSL (square dots) on the SLL. We
found that the sidelobe beamwidth ϕSL reduces with increasing sidelobe intensity. We
confirm that the security performance represented by Equation (5) improves owing to the
application of Taylor window function and the resultant SLL reduction. Therefore, we can
improve the OWC system security using the proposed OIL-OPA Tx owing to the reduction
in the SLL. In addition, we achieve a simple configuration and low power consumption of
the OWC system.

Photonics 2021, 8, x FOR PEER REVIEW 8 of 10 
 

 

in the SLL. In addition, we achieve a simple configuration and low power consumption 
of the OWC system. 

  

(a) (b) 

Figure 7. (a) Unsecured distance as a function of the sidelobe level (SLL) and inset: BER as a function 
of SLL for a transmission length of 60 cm; (b) Unsecured area factor (circle) and sidelobe beamwidth 

SL  (square dots) as a function of the SLL. 

5. Conclusions 
We proposed an OWC system with an OIL-OPA transmitter and analyzed its secu-

rity performance. The AM and PM of the OIL-OPA transmitter could be simultaneously 
achieved by controlling the bias current of OIL semiconductor lasers. The SLL was signif-
icantly suppressed by applying a Taylor window function as the amplitude profile of the 
OIL-OPA transmitter. Furthermore, the unsecured area was reduced. We calculated the 
injection-locking parameters for the desired AM/PM to simultaneously achieve a low SLL, 
beam steering, and data modulation. We achieved a high SLL reduction of 35 dB at a beam 
steering of 2° and a data transmission rate of 10 Gbps using suitable injection-locking pa-
rameters, the Taylor window function, and a phase difference of 6° between adjacent SLs. 
Furthermore, when the Taylor window function was used, the unsecured distance de-
creased by ten times compared to the case without the Taylor window function. In addition, 
the unsecured area factor was 0.8%. The OIL-OPA transmitters with improved security per-
formance, a simple configuration, and low power consumption can be widely used in vari-
ous photonic applications, including military and medical optical/wireless applications. 

Author Contributions: All authors contributed considerably to this study. Conceptualization, H.-
K.S., J.-H.C. and A.H.N.; simulation and analysis, J.-H.C. and A.H.N.; writing—original draft prep-
aration, J.-H.C. and A.H.N.; writing—review and editing, H.-K.S.; visualization, H.-K.S.; supervi-
sion, H.-K.S. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Research Foundation of Korea (NRF) under the 
Basic Science Research Program (NRF-2019R1F1A1040959 and NRF-2021R1F1A104591911). 

Institutional Review Board Statement: Not applicable 

Informed Consent Statement:  Not applicable 

Data Availability Statement:  Not applicable 

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the 
study design; in the collection, analyses, or interpretation of data; in the writing of the manuscript; 
or in the decision to publish the results. 

  

Figure 7. (a) Unsecured distance as a function of the sidelobe level (SLL) and inset: BER as a function
of SLL for a transmission length of 60 cm; (b) Unsecured area factor (circle) and sidelobe beamwidth
ϕSL (square dots) as a function of the SLL.

5. Conclusions

We proposed an OWC system with an OIL-OPA transmitter and analyzed its secu-
rity performance. The AM and PM of the OIL-OPA transmitter could be simultaneously
achieved by controlling the bias current of OIL semiconductor lasers. The SLL was sig-
nificantly suppressed by applying a Taylor window function as the amplitude profile
of the OIL-OPA transmitter. Furthermore, the unsecured area was reduced. We calcu-
lated the injection-locking parameters for the desired AM/PM to simultaneously achieve
a low SLL, beam steering, and data modulation. We achieved a high SLL reduction of
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35 dB at a beam steering of 2◦ and a data transmission rate of 10 Gbps using suitable
injection-locking parameters, the Taylor window function, and a phase difference of 6◦

between adjacent SLs. Furthermore, when the Taylor window function was used, the unse-
cured distance decreased by ten times compared to the case without the Taylor window
function. In addition, the unsecured area factor was 0.8%. The OIL-OPA transmitters
with improved security performance, a simple configuration, and low power consump-
tion can be widely used in various photonic applications, including military and medical
optical/wireless applications.
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