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Abstract: In this paper, we enhance the performance efficiency of the free-space optical (FSO)
communication link using the hybrid on-off keying (OOK) modulation, M-ary digital pulse position
modulation (M-ary DPPM), and M-pulse amplitude and position modulation (M-PAPM). This work
analyzes and enhances the bit error rate (BER) performance of the moment generating function,
modified Chernoff bound, and Gaussian approximation techniques. In the existence of both an
amplified spontaneous emission (ASE) noise, atmospheric turbulence (AT) channels, and interchannel
crosstalk (ICC), we propose a system model of the passive optical network (PON) wavelength division
multiplexing (WDM) technique for a dense WDM (DWDM) based on the hybrid fiber FSO (HFFSO)
link. We use eight wavelength channels that have been transmitted at a data rate of 2.5 Gbps over a
turbulent HFFSO-DWDM system and PON-FSO optical fiber start from 1550 nm channel spacing
in the C-band of 100 GHz. The results demonstrate (2.5 Gbps × 8 channels) 20 Gbit/s-4000 m
transmission with favorable performance. In this design, M-ary DPPM-M-PAPM modulation is used
to provide extra information bits to increase performance. We also propose to incorporate adaptive
optics to mitigate the AT effect and improve the modulation efficiency. We investigate the impact
of the turbulence effect on the proposed system performance based on OOK-M-ary PAPM-DPPM
modulation as a function of M-ary DPPM-PAPM and other atmospheric parameters. The proposed
M-ary hybrid DPPM-M-PAPM solution increases the receiver sensitivity compared to OOK, improves
the reliability and achieves a lower power penalty of 0.2–3.0 dB at low coding level (M) 2 in the
WDM-FSO systems for the weak turbulence. The OOK/M-ary hybrid DPPM-M-PAPM provides an
optical signal-to-noise ratio of about 4–8 dB of the DWDM-HFFSO link for the strong turbulence
at a target BER of 10−12. The numerical results indicate that the proposed design can be enhanced
with the hybrid OOK/M-DPPM and M-PAPM for DWDM-HFFSO systems. The calculation results
show that PAPM-DPPM has increased about 10–11 dB at BER of 10−12 more than the OOK-NRZ
approach. The simulation results show that the proposed hybrid optical modulation technique can
be used in the DWDM-FSO hybrid links for optical-wireless and fiber-optic communication systems,
significantly increasing their efficiency. Finally, the use of the hybrid OOK/M-ary DPPM-M-PAPM
modulation schemes is a new technique to reduce the AT, ICC, ASE noise for the DWDM-FSO optical
fiber communication systems.

Keywords: ASE noise; ICC; DWDM-FSO/PON optical fiber network; hybrid OOK/M-ary DPPM-M-
PAPM; hybrid fiber FSO (HFFSO) link
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1. Introduction

Pulse position modulation (PPM) and digital PPM (DPPM) and systems are mod-
ulation schemes that can perform great performance in free-space optical (FSO) trans-
mission links [1,2]. This format is used in a variety of applications, including FSO links,
hybrid fibers, optical wireless communication (OWC), subsequent FSO systems, satellite-
to-satellite systems, atmospheric turbulence (AT), interchannel crosstalk (ICC), and indoor
wireless channels [1–3]. The modulation of DPPM improves power efficiency and does
not require monitoring of decision-making circuit thresholds [4,5]. Many experiments
on the hybrid fiber/FSO (HFFSO) systems and the OWC have been carried out [5–9].
Previous researches have demonstrated that the DPPM and PPM schemes outperform
on-off keying (OOK) in terms of sensitivity and power efficiency for the HFFSO link.
The M-pulse amplitude and position modulation (M-PAPM) for both pulse amplitude
modulation (PAM) and PPM modulation have been investigated and studied for optical
fiber (OF) communications [5–8]. M-PAPM can provide high efficiency and sensitivity in
the FSO communication; because the dispersion is free [1,5,8]. Because of the increased
bandwidth requirement for higher data rates, OF, AT, OWC and indoor networks [8–15]
have been proposed to multiplex the wavelength division multiplexing (WDM) technique
and dense WDM (DWDM) systems. The WDM technique could also be used in the HFFSO,
OWC, and hybrid OF/multiple networks. For example, the proposed approach designs a
high-performance system and bandwidth optimization solution with long-range potential,
higher bit rates, high-speed technology, and enhanced data protection for WDM passive
optical networks (WDM-PON) [8,9,13,16]. The WDM application has been presented in
both OF and FSO systems [8,9,17–21]. A suitable technique for representing amplified
spontaneous emission noise (ASE) in an FSO transmission link is the moment generating
function (MGF), although we have upper limits at the bit-error-rate (BER) using the up-
dated techniques of Chernoff bound (CB), Gaussian approximating (GA), and modified
Chernoff bound (MCB) [5,8,9,22–25]. Both the FSO and OF systems have been presented
using WDM technology [8,9,17–21]. The moment generating function (MGF) represents a
suitable technique for finding the amplified spontaneous emission (ASE) noise in an FSO
transmission link [2,9,17]. Using the modified Chernoff bound (MCB) technique, Gaussian
approximations (GA), and Chernoff bound (CB), we obtain upper bounds on the bit error
rate (BER) [5,8,9,21–25]. To reduce the AT impact, approaches are proposed including
compensation for the mitigation techniques and adaptive optics (AO) focused on digital
signal processing [22]. We highlight the main contributions, including: (1) we use the M-ary
DPPM-M-PAPM modulation to deliver additional bits to improve the efficiency; (2) we add
the AO to minimize the ICC interferences and enhance the reliability performances; (3) we
achieve adequate BER results with a lower complexity; (4) we extract the theoretical BER
expressions and provide simulation results for M-DPPM-M-PAPM modulation schemes in
the WDM-PON/HFFSO scenarios; (5) the hybrid OOK/M-ary DPPM-M-n-PAPM and the
AO are offered to boost the performance and system efficiency in receivers of WDM-HFFSO
systems through the OOK non-return-to-zero (OOK-NRZ) modulation; and (6) we improve
the power penalty (PP) performance and the system efficiency for the WDM-HFFSO sys-
tems, optical-wireless and fiber-optic communication systems. In this work, we enhance the
hybrid OOK/DPPM-M-PAPM techniques and improve the signal-to-noise-ratios (SNRs)
of the HFFSO systems under the AT effects, ICC, and ASE. In this work, we enhance
the hybrid OOK/DPPM-M-PAPM systems and improve the signal-to-noise-ratios (SNRs)
of the HFFSO under the AT, ICC, and ASE effects. We develop the proposed model in
the [9,17]. Also, we enhance our calculations and evaluate them to reduce the AT, and ASE
noise. The remainder of the paper is organized as follows: Section 2 describes the proposed
PON/WDM-HFFSO optical fiber communication system. Section 3 discusses the M-ary
DPPM-M-PAPM model for the hybrid WDM-PON/HFFSO link. The AT channel effects are
analyzed in Section 4. The numerical results are presented in Section 5. Section 6 concludes
this paper.
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2. System Description

The length of slots ts = MTb/n is for the DPPM frames, n = 2M where Tb= 1/Rb is
for the bit cycle, Rb for the data rate and M is for the coding level (CL) [9]. Figure 1a shows
the HFFSO-PON systems where optical signals (OSs) suffer from the ASE noise (ASEN),
beam-spreading, beam-absorption, attenuation, ICC, and splitting losses at the optical
band-pass filter (OBPF)/demux. The proposed system is modeled and simulated using
MATLAB software (2013). The results are based on Monte-Carlo simulations. We use eight
channels WDM-DWDM starting from 1550 nm over single-mode fiber and the channel
spacing in the C-band of 100 GHz of the ITU (International Telecommunication Union).
The results demonstrate (2.5 Gbps data rate ×8 channels) 20 Gbit/s-4000 m transmission
with favorable performance. We investigate eight-wavelength channels that have been
transmitted over turbulent HFFSO links using the WDM technique. The feeder fiber path
length of 20 km is proposed for the system model [8,15,17]. By using the optical amplifier
(OA) gain G on the remote node, we improve the device model after receiver collection
lens (RCL) as seen in Figure 1a. We propose that the OA system is used to reduce the inter-
channel crosstalk for the proposed system. Figure 1b shows the proposed architecture for
all scenarios [9]. As seen in Figure 1, M-ary DPPM is transmitted over the OA and OBPF (b).
The receiver converts the OS into an electrical signal. The module of the receivers consists
of a photodetector (PD), an electric amplifier, a filter, and a compared circuitry for the
decision circuit and AO. We propose the hybrid pulse modulation/M-ary DPPM-M-PAPM
for the DWDM-FSO and hybrid optical fiber over the atmospheric turbulence channel.
Information is transmitted as a series of DPPM-M-PAPM pulses. The modulated signal
from M-ary DPPM-M-PAPM is connected to OA and OBPF to provide M-ary DPPM-M-
PAPM output as shown in Figure 1b [9]. For our calculations, we assume the loss of the
signal multiplexer (mux)/demultiplexer (demux) (≤3.5 dB) [8,15].
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Figure 1. System model for 8 channels PON-DWDM-HFFSO for OOK-NRZ/M-ary DPPM-M-PAPM under moderate tur-
bulence (MT), strong turbulence (ST), and weak turbulence (WT): (a) proposed framework for interchannel crosstalk (ICC) 
evaluation and (b) schematic of the receiver system. We reproduced it from [9]. 

3. M-ary Digital Pulse Position Modulation and M-pulse Amplitude and Position 
Modulation (M-Ary DPPM-M-PAPM) Scheme 

In this section, the random variable (RV) of the MGF describes the current Ysig ∆t  
where sig ∈ {0, 1} which depends on the pulses or is not transmitted for the signal pulses, 
Δt is the duration of the crosstalk pulse. It is written as [5,9,24,26–28]: 

MYsig ∆t s =  
R’G esq ts⁄ 1 sigPtr t dtts

1 R’No esq t⁄ 1
 

exp
Ri

’G esq ts⁄ 1 PXT t dt∆t
1 Ri

’No_XT esq ts⁄
1 R’No esq ts⁄ 1

L   (1)

where ∆t = ts is the time slots align with the OS slots otherwise t1 or t2, and ∆t = 0 for 
no crosstalk in the slot. Furthermore, the DPPM-PAPM pulse and ICC pulse strength are 
Ptr , PXT , respectively for the hybrid modulation techniques over the FSO link. R’ =
 hνi⁄ ,  is the PD quantum efficiency, νi, ν and are the optical frequencies of ICC wave-
lengths and signal respectively and ℎ is Planck’s constant, q is the electron charge, [5,8–

Figure 1. Cont.
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Figure 1. System model for 8 channels PON-DWDM-HFFSO for OOK-NRZ/M-ary DPPM-M-PAPM under moderate
turbulence (MT), strong turbulence (ST), and weak turbulence (WT): (a) proposed framework for interchannel crosstalk
(ICC) evaluation and (b) schematic of the receiver system. We reproduced it from [9].

3. M-ary Digital Pulse Position Modulation and M-pulse Amplitude and Position
Modulation (M-ary DPPM-M-PAPM) Scheme

In this section, the random variable (RV) of the MGF describes the current Ysig(∆t)
where sig ∈ {0, 1} which depends on the pulses or is not transmitted for the signal pulses,
∆t is the duration of the crosstalk pulse. It is written as [5,9,24,26–28]:

MYsig(∆t)(s) =

R′G
(

esq/ts − 1
) ∫

ts
sigPtr(t)dt

1− R′No
(
esq/t − 1

)


exp
{

R′iG(esq/ts−1)
∫

∆t PXT(t)dt
1−R′i No_XT(esq/ts)

}
[
1− R′No

(
esq/ts − 1

)]L (1)

where ∆t = ts is the time slots align with the OS slots otherwise t1 or t2, and ∆t = 0 for no
crosstalk in the slot. Furthermore, the DPPM-PAPM pulse and ICC pulse strength are Ptr,
PXT, respectively for the hybrid modulation techniques over the FSO link. R′ = η/hvi,η is
the PD quantum efficiency, vi, ν and are the optical frequencies of ICC wavelengths and
signal respectively and h is Planck’s constant, q is the electron charge, [5,8–10,29–34],
No = 0.5(NF×G− 1) hv is the OA power spectral density (PSD) at the single polar-
ization ASEN. NF and G are the noise figure and OA gain G respectively, L = Bomtts
encompass the system modes for the spatial and temporal method [2,8,9,35–42], Bo is the
bandwidth of the optical noise for the demux channel and mt is the number of ASEN states.
No_XT is the PSD-ASEN at the PD and the signal-to-crosstalk ratio CXT = Ptr/PXT. The total
MGF for Gaussian zero-mean, including the thermal noise variance (TNV) is calculated
as [5,9,35–42]:

MYsig(∆t)(s) = MYsig(∆t)(s) exp

(
s2σ2

th−DPPM−PAPM
2

)
(2)

where σ2
th−DPPM is the DPPM-PAPM TNV. The means and variances are given as [5,9]:

µYsig(∆t)(s) =
LR′qNo

ts
+ R′Gq

(
sig Ptr

PXT∆t
ts

)
(3)

σ2
Xsig(∆t) = σ2

th−DPPM−PAPM +

(
LR′q2No(1 + R′No)

t2
s

)
+ R′Gq2

[(
1 + 2R′No

) sigPtr
ts

]
+ R′iGq2

[(
1 + 2R′i NoXT

)PXT∆t
t2
s

]
(4)
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The symbol error probability (SER) is received in the exist of ICC Pws(Ii−ri)
:

Pws(Ii−ri)
≥

n

∏
j = 1

j 6= sigslot

P
(
X1(∆t) > Xj

)
(5)

where Xj denotes the non-signal slot Xo
(
∆tj
)

and ∆tj is the j (empty) slot overlap with the
ICC. Using the GA, the expression P

{
Xo
(
∆tj
)
> X1(∆t)

}
is explained from [1,2,5,9,10,29]:

P
{

Xo
(
∆tj
)
> X1(∆t)

}
= 0.5erfc

 µX1(∆t) − µX0(∆tj)√
2
(
σ2

X1(∆t) + σ2
X0(∆tj)

)
 (6)

In the proposed CB, we have fixed threshold Tth and the general form for RV (X)
variable and a is P (X > Tth) ≤ E {exp [s (X− Tth)]}, s > 0:

P
{

Xo
(
∆tj
)
> X1(∆t)

}
≤ MX1(∆t)(−s) MX0(∆t)(s) (s > 0) (7)

FortheMCB[2,5]of twoRVsforXo
(
∆tj
)

andX1(∆t),P(X > Tth)≤MX(s)e−sTth/sσth
√

π [5,9,10].
Modifying this inequality for the diffe rence of RVs s for Xo

(
∆tj
)

and X1(∆t) which both
have the same TNV then:

P
{

Xo
(
∆tj
)
> X1(∆t)

}
≤

MX1(∆t)(−s)MX0(∆t)(s)

2sσth
√

π
(s > 0) (8)

The SER for MDPPM-MPAPM frames in the exist of ICC is written as [1,9,10]:

Pwe(Is−rs) ≤ 1− [1− P{Xo(0) > X1(∆t)}]n−1(Is−rs)[1− P{Xo(ts) > X1(∆t)}]Is−rs (9)

where and Is, rs are the numbers of ICC system of duration ts occurring in the frame and
signal pulse respectively [42],

Pwe(I1,I2−r1,r2)
≤ 1− [1− P{Xo(0) > X1(∆t)}]n−1− ..

χ [1− P{Xo(t1) > X1(∆t)}]I1−r1 [1− P{Xo(t2) > X1(∆t)}]I2−r2 (10)

where I1, I2, and r1,r2 are the ICC duration t1, t2.
..
χ = Is − rs. The BER when without ICC

is written as:

BERIS(n1) = pf(Is)
(n1) =

n
2(n− 1)

×
(

pf(Is)
(1)Pwe(Is−1)+ps(Is)

(0)Pwe(Is−0)

)
(11)

BER =
1
n

n

∑
n1=1

2

∑
Is=0

BERIS(n1) (12)

BER(n1) = pf(0,0)(n1)
n

2(n− 1)
Pwe(0,0_0,0) (13)

while for the calculated BER, we have written as [1,2,29,35–42]:

BERI1,I2(n1) =
1
n

ts
∑

t1=tc

pf(I1,I2)
(n1)

n
2(n−1)


[
ps(I1,I2)

(1, 0)Pwe(I1,I21,0)

]
+
[
ps(I1,I2)

(0, 1)Pwe(I1,I20,1 )

] 
+ps(I1,I2)

(0, 0)Pwe(I1,I20,0 )

(14)
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In the presence of ICC, the overall BER of the M-DPPM-M-PAPM is calculated from
Equations (13) and (14) [1,2,29]:

BERM-DPPM-M-PAPM =
1
n

n

∑
n1=1


BER(n1) + BER0,1(n1) + BER1,0(n1)

+
2
∑

I1=1

[
BERI1,1(n1) + BERI1,2(n1)

]  (15)

4. Atmospheric Turbulence Channel

Differences in the air and variation between the refractive index structure (RIS) C2
n

and Earth’s surface temperature are responsible for the scintillation effects [8]. These
findings are focused on the probability density function (pdf) of the Gamma-Gamma (GG)
model [5,8,9,29–34].

pGG (hZ) =
2(αβ)(α+β)/ 2

Γ(α) Γ(β)
hZ

((α+β)/2)−1K α−β

(
2
√

αβhZ

)
; hZ > 0 (16)

where hZ is the total attenuations due to the signal
(
hsig

)
and interfering (hint) and pointing

errors. α and β are the scattering methods of the influence of the large and small-eddies,
respectively, and Γ(·) is the gamma function, and Kn(·) is the modified second kind Bessel
function [8,10].

α =

exp

 0.49σ2
R(

1 + 0.65d2 + 1.11σ12/5
R

)7/6

− 1


−1

(17)

β =

exp

0.51σ2
R

(
1 + 0.69σ12/5

R

)−5/6

1 + 0.9d2 + 0.62d2σ12/5
R

− 1


−1

(18)

d =
√

kD2
RX /4l f so (19)

where d is the normalized RCLs [8–10,30,33] and DRX is the RCL diameter. C2
n is the

RIS constant, l f so is the free-space distance, k = 2π/λ is the wave-number, and λ is the
wavelength [29,30,34–40]. The Rytov variance (RVAR) σ2

R characterize the different AT
regimes over the GG pdf, if the resulting σ2

R > 1; we use the ST, if the RVAR σ2
R ≈ 1, we

use the MT, if RVAR σ2
R < 1, we apply the WT [8–10,29]; and if saturated, turbulence

σ2
R → ∞ are given as in [8–10,40–46]:

σ2
R = 1.23C2

nk7/6 l11/6
f so (20)

5. Results and Discussion

Table 1 shows the proposed parameters for the system model [proposed values] and
values in Refs. [2,17,42] used in the system architecture. The proposed design parameters
are specified in Table 1 [proposed] and [2,17,42]. We investigate the impact of the turbulence
effect on the proposed system performance based on the OOK-M ary-DPPM modulation
as a function of M-ary DPPM-PAPM and other atmospheric parameters. Figure 2 shows
the high gain (G = 30 dB) of the AT impact in the case of BER. MCB and CB are about
the same, through AT strength rises [9,10,43–46]. The curves of CB and MCB vary from
GA. The high (a) (G) = 27 dB [42] and G = 30 dB [current work] with the ICC is shown
in Figure 3. For M = 2 and (b) G = 8 dB, the present work shows the MCB, CB, and GA
output. The MCB synchronizes with the GA on low G in Figure 3a but at high G is near the
CB with as the ASEN decreases the TNV results. The GA at high G with no ICC and in
the existence of ICC exceeds the CB and MCB. The CB extends the CL and bandwidth of
the DPPM-PAPM receiver for noise equivalent Be. The margin of the GA is greater than
the MCB of the PAPM-M-DPPM. The MCB, CB, and GA output of a G = 8 dB with an ICC
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and M = 2 is shown in Figure 3b. The results are enhanced and validated with Ref. [42].
The MCB synchronizes with the GA at low G but gains considerably near the CB as the
ASEN reduces the TNV impacts [43–46].

Table 1. System parameters used for calculations in [2,17,42] and [Proposed work].

Parameters Description Refs. [2,17] Ref. [42] [Proposed Work]

Rb Data rate 2.5 Gbps 2.5 Gbps 2.5 Gbps

Bo
Demux OBPF

bandwidth 80 GHz 76 GHz 80 GHz

λsig Wavelength 1550 nm 1550 nm 1550 nm

η
Quantum
efficiency 0.75 0.9 1

G OA gain 30.6 dB or 8.8 dB 27 dB or 8 dB 30 dB or 8 dB
NF OA noise figure 4.77 dB [2] 4.77 dB [2] 4.77 dB [2]
l f so FSO link length 1000 m and 1500 m 1000 m and 1500 m 1500 m and 4000 m

mt

ASE noise
polarization

states
2 2 2
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In the case of BER targets of 10−12, ST and WT using MCB, CB, and GA, the receiver
sensitivity (RS) is applied for G =30.6 dB and l f so = 1500 m [2,9,40] as shown in Figure 4a,b.
Numerical results demonstrated that RSs are −51.49 dBm (CB), −51.59 dBm (MCB), and -
50.53 dBm (GA), resulting in improvement and optimization as achieved in [2,9,40]. The RS
of −51.49 dBm (CB), −51.56 dB (MCB), and −50.25 dBm (GA) is presented for G = 30 dB,
l f so= 2500 m, at target BER of 10−12 [Proposed work]. Figure 5 shows the BER against
the optical SNR (OSNR) (dB) for the WDM-PON/HFFSO link with hybrid OOK/M-ary
DPPM- and M-PPM using the CL M = 5, l f so = 4000 m, and DRX = 25 mm for ST. The hybrid
OOK/M-ary DPPM-PAPM offers about 4 dB, 6 dB, and 8 dB OSNR improvements over
3-DPPM, 4-DPPM, and 5-DPPM of the ST for the WDM.
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HFFSO optical fiber network, respectively at a target BER of 10−12. The ST without the
hybrid OOK/M-ary modulation format required greater power under the AT effects, ICC,
and ASE noise, to achieve the same BER performance than ST with the hybrid OOK/M-ary
DPPM scheme as shown in Figure 5. This suggests that the hybrid modulation scheme
OOK/M-ary DPPM-PAPM based on WDM-HFFSO communication is favored to ensure
greater efficiency and greater performance in our design. The target BER of 10−10 is
achieved for values of m ≥ 100, while the BER becomes worse specifically at higher ICC
and lower CL for value m≤ 100, as shown in Figure 6. For target BER of 10−9, the resulting
DPPM PP analysis for ICC M = 2 is compared to the OOK as shown in Figure 7. The M-
DPPM-M-PAPM combination produces less PP than the OOK. The M-DPPM-M-PAPM
improvement in the PP is improved as the CL number increases from M = 1 to 2 and the ICC
sources [5,8,9,46–56]. The proposed M-ary DPPM-M-PAPM approach increases receiver
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sensitivity in the WDM-M-HFFSO systems compared with OOK-NRZ and improves
reliability and produces a lower PP of 0.2–3.0 dB PP for WT. Without adaptation to reach a
BER of 10−12, the modulation techniques decreased OSNR by 4 dB as shown in Figure 8.
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and M-n-PAPM modulation scheme.

Compared to the hybrid OOK/M-ary DPPM, the M-n-PAPM requires 0.3 dB more
power. The results demonstrate that the proposed hybrid OOK/M-DPPM and M-n-PAPM
models for the WDM-FSO systems can be improved [54–60]. Table 2 summarizes the
proposed modulation schemes of MPPM, M-ary-PAPM, and hybrid M-ary PAPM-MPPM
with hybrid k-level n-pulse where kn (with k ∈ {1, 2, . . . }) [2,8,9,17,42,50]. Figure 9 shows
BER vs. the average RCL power input (dBm), DRX = 25 mm for M-ary DPPM and OOK
for NT and (a) WT (b) MT and (c) ST for M-ary DPPM and G = 30 dB, M = 5. At the BER
target of 10−12, DPPM provides around 10–11 dB increases in sensitivity compared with
the WDM-FSO OOK-NRZ as shown in Figure 9a [2,9,10,17,42–47,56–62]. With a disability
in the AT, DPPM’s overall sensitivity is reduced to approximately 10 dB (WT), 8 dB (MT),
and 8 dB, respectively (ST). The OOK-NRZ based FSO system offers about 7–9 dB for the
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DPPM scheme as shown in Figure 9b [2,9]. With AT deficiency, DPPM is reduced to around
7 dB (WT), 8 dB (MT) and 8 dB (ST) [2,9,10,17,42–47], respectively as shown in Figure 9c.

Table 2. The proposed M-ary DPPM-M-PAPM based modulation schemes DWDM-FSO optical fiber
communication network system [2,8,9,17,42,50].
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M-ary PAPM-DPPM modulation provides about 10–11 dB increases in OOK-NRZ
sensitivity for the WDM-FSO optical fiber network system in the absence of turbulence
on the target BER with all AA as seen in Figure 10 [48–58]. When the turbulence and
ASE noise is present, the OS is reduced to 10 dB (WT), 8 dB (MT), and 8 dB (ST) [present]
in the sensitivity increase of PAPM DPPM over OOK NRZ [56–62]. It is necessary to
ensure and continuously maintain the consistency and accuracy of the simulation models
and algorithms with reality. This is accomplished mainly by comparing the simulation
behavior to the simulation and experimental results achieved in [2,5,8,9,15,42,50]. Also,
in our research several (successful) comparisons were done, sets of the previous research
and comparing them with the results of models. Tables 1, 3 and 4 show the system
parameters used for calculations [2,5,8,9,15,42,50] and [Proposed work]. The simulation
results reveal that the BER’s WDM/PAPM-DPPM is better than that of OOK-NRZ by
approximately 10 dB–11 dB of 10−12. Table 3 provides the performance comparison of
the proposed hybrid M-ary-PAPM M-DPPM-based DWDM FSO optical fiber network
link with contemporary literature for the references [2,5,8,9,15,42]. The numerical results
show a highly efficient M-ary-PAPM M-DPPM-based DWDM FSO has been designed
by incorporating a DWDM-PON optical fiber network. The results of the numerical
investigation demonstrate that the proposed link performance improves on increasing the
increased receiver sensitivity, capacity, and efficiency under the atmospheric turbulence
effects. We illustrate a comparative investigation of the proposed M-ary DPPM-M-PAPM-
based DWDM-FSO optical fiber communication systems performance with contemporary
literature and show that the proposed link performs better for maximum range, efficiency,
and channel capacity. We reduce the ASE noise, AT channels, and (ICC for the DWDM-FSO
optical fiber communication systems. Table 4 shows the performance comparison of the
proposed M-ary DPPM-M-PAPM based-DWDM-FSO optical fiber link with reference [50].
The proposed hybrid M-ary-PAPM M-DPPM provides an improvement of 4–8 dB at a BER
of 10−12 (OSNR) [proposed work] while in Ref. [50] it is 1 and 2 dB at a BER of 10−6.
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M-ary PAPM-DPPM modulation provides about 10–11 dB increases in OOK-NRZ 
sensitivity for the WDM-FSO optical fiber network system in the absence of turbulence on 
the target BER with all AA as seen in Figure 10 [48–58]. When the turbulence and ASE 
noise is present, the OS is reduced to 10 dB (WT), 8 dB (MT), and 8 dB (ST) [present] in 
the sensitivity increase of PAPM DPPM over OOK NRZ [56–62]. It is necessary to ensure 
and continuously maintain the consistency and accuracy of the simulation models and 
algorithms with reality. This is accomplished mainly by comparing the simulation 

Figure 9. BER vs. AOP at RCL input (dBm) for M-ary DPPM and OOK using DRX = 25 mm, G = 30 dB,
M = 5, and l f so = 4000 m for NT with (a) WT, (b) MT, and (c) ST.
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Table 3. Performance comparison of the proposed M-ary DPPM-M-PAPM based-DWDM-FSO optical fiber link with
contemporary literature.

Ref. [2] Ref. [5] Ref. [8] Ref. [9] Ref. [15] Ref. [42] [Proposed Work]

Technique used DPPM-FSO
link

WDM-FSO
hybrid

fiber-based
DPPM

DPPM- based
DWDM-FSO

system

M-ary
PPM-based
WDM -FSO

system

WDM-FSO
network-based

DPPM
modulation

DPPM-based
WDM-FSO

communication
system

hybrid M-ary-PAPM
M-DPPM-based DWDM FSO

optical fiber network

Data rate 2.5 Gbps 2.5 Gbps 2.5 Gbps 2.5 Gbps 2.5 Gbps 2.5 Gbps 2.5 Gbps
Net capacity 2.5 Gbit/s 5 Gbit/s 20 Gbit/s 20 Gbit/s 5 Gbit/s 5 Gbit/s 20 Gbit/s

Maximum link
range reported 1500 m 2000 m 4000 m 2500 m 2000 m 2000 m 4000 m

Quantum
efficiency 0.75 0.8 1 1 0.8 0.9 1

No. of channels 1 2 8 8 2 2 8
Target BER 10−12 10−12 10−12 10−12 10−12 10−12 10−12

Table 4. Performance comparison of proposed M-ary DPPM-M-PAPM based-DWDM-FSO optical
fiber link with reference [50].

Ref. [50] [Proposed Work]

Modulation scheme technique hybrid MPAPM technique
deep space optical link

hybrid M-ary-PAPM
M-DPPM-based DWDM FSO

optical fiber network

OSNR improved 1 dB and 2 dB 4–8 dB

Target BER 10−6 10−12

Optical pulses per frame for M 16 16

6. Conclusions

In this work, we studied and enhanced the HFFSO optical fiber communication net-
work system using the hybrid modulation techniques of OOK/M-ary DPPM-M-PAPM,
based on the DWDM-PON network. ICC analyses for DWDM-DPPM systems are given
for the GA, CB, and MCB. Also, we consider using hybrid OOK/M-ary DPPM-M-PAPM
modulation techniques to increase spectral efficiency and incorporate adaptive optics to
mitigate the crosstalk interferences in the DWDM-PON/HFFSO scenarios for improved
reliability. The BER performances are then theoretically analyzed. In the presence of atmo-
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spheric turbulences, the OOK/M-ary hybrid DPPM modulation scheme is an excellent way
to increase DWDM-PON/HFFSO efficiency. Furthermore, the results obtained show that
the ICC interferences could be effectively suppressed thanks to the M-ary DPPM-M-PAPM
modulation and that the proposed system could achieve superior BER performance. We in-
vestigate the impact of the turbulence effect on the proposed system performance based
on OOK-M-ary-DPPM modulation as a function of M and other atmospheric parameters.
The proposed design of the M-ary DPPM-M-PAPM can improve the power penalty over
OOK-NRZ and enhances performance efficiency. The proposed M-ary DPPM-M-PAPM
architecture can enhance the receiver sensitivity and reliability over OOK-NRZ.
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