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Abstract: In this work, we develop a vectorial model, for optical communications, using distributed
Raman amplification (DRA) applied to vectorial soliton pulses in monomode fiber optics. The main
result, a dependent polarization effective Raman gain coefficient, is calculated considering the random
birefringence character of the fiber and the relative mismatch between the continuous wave (CW)
pump and the signal. The Method of Moments allows the determination of the optimal initial
conditions to achieve a better performance in our system. With these starting values, the simulations
carried out with the Split-Step Fourier Method (SSFM) elucidate the influence of the peak power and
prechirping initial phase control on the vectorial soliton propagation.

Keywords: Raman amplification; vectorial soliton; optical communications; random birefringence

1. Introduction

Nonlinear effects in optical fibers have a clear influence in signal propagation in a variety of
interesting phenomena that can disrupt the transmission of the optical signal. One of them is stimulated
Raman scattering (SRS), which has allowed the development of distributed Raman amplification
systems (DRA).

Historically, the investigation of these systems began a few decades ago and a formal
theoretical analysis of the SRS phenomenon in birefringent single-mode optical fibers was clearly
substantiated [1,2], the study of the coupling between pump and the Stokes signal wave amplitudes
was obtained and the gain for the different polarization components without taking into account
dispersive effects was identified.

Later on, a vector theory of the SRS process that describes the polarization effects in Raman fiber
amplifiers (RFA) was developed [3], the results showed how polarization mode dispersion (PMD)
caused fluctuations in the continuous wave signal when it propagates through the amplifying device.
This model was later refined [4] to describe the vector interaction between strong counterpropagation
pumping and a weak Stokes signal in birefringent fibers.

In order to complete the model, a modification of the technique of averaging over the
length of random birefringence correlation in the fibers to study the properties of polarization
in RFA is proposed [5–7], along with the works in [8–10] which analyze the interaction of two
counter-propagating polarized beams in a randomly birefringent fiber via the Kerr and Raman effects.

Finally, a direct stochastic model to describe the interaction between Raman scattering in fibers
and their random birefringence was developed [11]. However, none of these works pay attention
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to the combination of Raman amplification with the dispersive phenomena and those of phase
self-modulation that arise in the fiber when short soliton pulses are propagated.

Therefore, the objective of this work is to complete a vector model of Raman amplification applied
to short solitonic pulses. To accomplish this task, a significant number of new model assumptions are
used, e.g., the random fiber birefringence properties are averaged over long enough runs, the relative
coupling between the pumping and signal polarization states is taken into account, the effective
average gain conditions recorded by a pulsed soliton signal are calculated and the optimal soliton
launch conditions using the method of moments [12] determined.

The organization of the paper is as follows. In Section 2, the theoretical model is explained;
in Section 3, the results of the simulation, using the Method of the Moments for the initial conditions
and the SSFM method [13], of the coupled equations obtained in the previous section are presented,
along with the influence of the peak power and the initial phase control on these; in Section 4, we make
an interpretation of the aforementioned results.

2. Theoretical Model

This section has three subsections. In the first one, the model of a vectorial SRS system is explained,
the Raman gain factor in random birefringence fibers is calculated in the second subsection and we end
up using the previous results of the section and making an average over all the orientations, due to the
aleatory nature of the fiber, which gives us the propagation equations of our system in the final part.

2.1. Basic Model for the Vectorial Soliton Raman Amplification

Our study of random birefringence influence in soliton Raman amplification process starts with the
electric field envelope scalar-propagation equation, which represents an optical pulse under the effect
of Stimulated Raman scattering (SRS) [14], including the orthogonal polarization components [15,16].
A more general case, a fiber with elliptical birefringence, is considered, where the unit vectors of the
principal axes in a section of the birefringent fiber are x̂ and ŷ, the electric field associated with an
optical wave signal of frequency ωs and arbitrary polarization that copropagates with a pumping ωp,
from which it receives gain through SRS, then:

E(r, t) =
1
2 ∑

j=p,s

[
êxEj,x(r, t) + êyEj,y(r, t)

]
+ c.c., (1)

here, Ej,x and Ej,y represent the polarization components complex amplitudes of signal and pump field
with j = s, p, and the vectors êx and êy are the orthonormal elliptic polarization eigenvectors related
to the vectors x̂ and ŷ in the form:

êx =
x̂ + irŷ√

1 + r2
, êy =

rx̂− iŷ√
1 + r2

(2)

in addition, the fiber core ellipcity degree is represented by the r parameter that occurs due to
unintended kinks during the fiber manufacturing process. The θ angle is usually introduced for its
characterization in the form:

r = tan(θ/2) (3)

We assume the almost transverse character of the fields, so the axial components Ej,z are supposed
to remain small enough and can be neglected. The non-linear signal polarization components PNL

s,j ,
where the third-order non-linear response tensor appears explicitly, including both the electronic and
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vibrational contributions of the medium, with j = x, y; m = x, y and j 6= m can be obtained in the
form [17]:

PNL
s,j (r, t) =

3ε0

4
χ
(3)
xxxx

{(
|Es,j|2 + B|Es,m|2

)
Es,j + C(E∗s,jEs,m)Es,m+

+ D
[
(E∗s,mEs,j)Es,j +

(
|Es,m|2 + 2|Es,j|2

)
Es,m

]
+

+ (2− fR)
(
|Ep,j|2 + |Ep,m|2

)
Es,j+

+
fR
2

[
2|Ep,j|2Im

[
R̃a(ΩR) + R̃b(ΩR)

]
+

+ |Ep,m|2Im
[
R̃b(ΩR)

]]
e−i(ωm−ωj)tEs,j

}
(4)

where Es,j = Es,j(r, t) represents the signal electric field and Ep,j = Ep,j(r, t) accounts for the pumping.
We have also explicitly introduced the isotropic R̃a(ΩR) and the anisotropic part R̃b(ΩR) of the Raman
response that allows a better modelling of the pump–signal interaction [18,19]. The parameters B,
C and D are related to the ellipticity angle θ in the form:

B =
2 + 2 sin2 θ

2 + cos2 θ
, C =

cos2 θ

2 + cos2 θ
, D =

sin θ cos θ

2 + cos2 θ
(5)

The factors appearing on the right side of (4) have a clear physical origin. On the one hand,
the first summation shows the self-phase modulation (SPM) contribution due to the same polarization
component, while on the other hand, the cross-phase modulation effects (XPM), controlled by the
fiber birefringence become a non-linear phase shift. Furthermore, given the presence of the pumping
field, the terms due to the non-linear phase coupling between its components with those of the signal
also appear.

Finally, the rest of the addends account for the effect of the SRS that provides gain from
the coupling of the signal field components with those of the co-polarized and orthogonally
polarized pumping.

Later on, the two signal polarization components propagation equations along the single-mode
fiber can be factored into the form [13,17]:

Es,j(r, t) = Hs,j(x, y)As,j(z, t) exp(iβs,jz) (6)

with j = x, y, where Hs,j(x, y) accounts for the transverse signal spatial distribution mode supported by
the fiber, As,j(z, t) is the slow variation amplitude and βs,j is the corresponding propagation constant.

To complete the theoretical description, we consider:

• Dispersive effects, which are included by developing the propagation constant in frequency
powers series.

• Losses not dependent on the polarization.
• No-pump depletion is taken into account in CW.

Pumping in CW will produce a cross-modulation phase shift. This will be constant for both slowly
varying signal amplitudes Asx(z, t) and Asy(z, t), therefore these components will satisfy the following
equations [13]:

∂As,x

∂z
+ β1s,x

∂As,x

∂t
+

i
2

β2s
∂2 As,x

∂t2 +
α

2
As,x =

= iγs

[(
|As,x|2 + B|As,y|2

)
As,x + CA∗s,x A2

s,ye−2i∆βsz
]
+

+ iγsD
[

A∗s,y A2
s,xei∆βsz +

(
|As,y|2 + 2|As,x|2

)
As,ye−i∆βsz

]
+

+
gR‖(ΩR)

2
Px As,x +

gR⊥(ΩR)

2
Py As,x,

(7)
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∂As,y

∂z
+ β1s,y

∂As,x

∂t
+

i
2

β2s
∂2 As,y

∂t2 +
α

2
As,y =

= iγs

[(
|As,y|2 + B|As,x|2

)
As,y + CA∗s,y A2

s,xe2i∆βsz
]
+

+ iγsD
[

A∗s,x A2
s,ye−i∆βsz +

(
|As,x|2 + 2|As,y|2

)
As,xei∆βsz

]
+

+
gR⊥(ΩR)

2
Px As,y +

gR‖(ΩR)

2
Py As,y

(8)

where Pj(j = x, y) represents the pumping polarization components and:

∆βs = βx − βy =
2π

λ
Bm =

2π

lB
(9)

it is related to the fiber modal birefringence, which leads to different group velocities for the two
polarization components, given that β1s,x 6= β1s,y. However, the second-order dispersion parameter
β2s and the non-linear parameter γs will be the same for both polarization components since they have
the same wavelength.

In addition, the contributions of the isotropic and anisotropic molecular response are included so
that for pumps copolarized with the signal we have [20]:

gR‖(Ω) = ga(Ω) + gb(Ω) (10)

where ga = 2γ fR Im
{

R̃a(Ω)
}

and gb = 2γ fR Im
{

R̃b(Ω)
}

, where fR is the fractional contribution
of the delayed Raman response to nonlinear polarization [21]. In the same way, for orthogonally
polarized pumping and signal, we have:

gR⊥(Ω) =
gb(Ω)

2
(11)

We also add the fiber modal birefrengence-dependent terms, which come from a coherent coupling
between the two polarization components and lead to degeneracy in the four-wave mixture (FWM).
Its importance depends on the fiber length in which phase coupling conditions are satisfied and on
the interference with the SRS process, which we minimize as much as possible, taking care that the
frequency degeneracy does not overlap the Raman gain bandwidth [22].

In the case of high birefringence fibers, the Equations (7) and (8) can be simplified considerably,
i.e., as the beat length lB is much smaller than typical propagation distances, the exponential factors
that include the term ∆βs will oscillate very quickly but slightly contribute, on average, to the pulses
evolution. If these terms are eliminated, the optical pulse propagation equations in fibers with elliptic
birefringence in the Raman gain regime, provided by a (CW) pump, become:

∂As,x

∂z
+ β1s,x

∂As,x

∂t
+

i
2

β2s
∂2 As,x

∂t2 +
α

2
As,x =

= iγs

(
|As,x|2 + B|As,y|2

)
As,x+

+
gR‖(ΩR)

2
Px As,x +

gR⊥(ΩR)

2
Py As,x,

(12)

∂As,y

∂z
+ β1s,y

∂As,x

∂t
+

i
2

β2s
∂2 As,y

∂t2 +
α

2
As,y =

= iγs

(
|As,y|2 + B|As,x|2

)
As,y+

+
gR⊥(ΩR)

2
Px As,y +

gR‖(ΩR)

2
Py As,y

(13)
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these equations represent an extension of the non-linear scalar propagation equation in Raman gain
regime by including the terms associated with polarization.

The coupling parameter B depends on the ellipticity angle θ and can vary between 2/3 and 2
for θ values between 0 and π/2. In the lossless scenario, and if θ ≈ 35◦, which leads to a value of the
parameter B = 1, Equations (12) and (13) can be solved using the inverse scattering method [23].

2.2. Calculation of the Polarization-Dependent Effective Raman Gain Coefficient in Random Birefringence Fibers

In a fiber that does not maintain polarization because of random birefringence, both the pump
and the Stokes waves will experience the same depolarization conditions, thus, having different
wavelengths, the relative polarization will be completely random.

If initially both signal and pump are equally polarized, the distance in which the gain decreases
will not be the distance in which the initial polarization state of each of them is lost but rather the
distance in which the pump and signal polarization states decouple. Beyond this characteristic length,
the gain is averaged as 1/2 of the maximum value in copolarization [24].

To characterize the effective gain coefficient, which takes into account the dependence on
polarization, we use the method developed in [25]. We will extend to soliton signals, specifically we
will apply in every stage of the birefringent single mode fiber the pumping and Stokes fields:

Ep(r, t) =
1
2

[
êx Ap,xHp,x(x, y)eikpxz + êy Ap,yHp,y(x, y)eikpyz

]
exp(−iωpt) + c.c., (14)

Es(r, t) =
1
2

exp
( gRb z

2

)[
êx As,xHs,x(x, y)eiksxz + êy As,yHs,x(x, y)eiksyz

]
exp(−iωst) + c.c., (15)

where Ap,x, Ap,y, As,x and As,y are complex amplitudes along the principal axes of each fiber section,
for pumping and signal. The kpx, kpy, ksx and ksy are the corresponding propagation constants. In the
case that the scattering would happen in counter-propagation, the following change would be enough

ksx −→ −ksx

ksy −→ −ksy

and gRb represents the gain coefficient, we assume that there is no pump depletion.
If these expressions are introduced into the Maxwell field equations, assuming polarized scattering

and an instantaneous response in non-linear polarization, the following set of gain-coupled wave
equations is obtained:

gRb As,x = Υ|Ap,x|2 As,x + ΥAp,x A∗p,y As,yK (16)

gRb As,y = ΥAp,y A∗p,x As,xK + Υ|Ap,y|2 As,y (17)

where dispersive effects and other non-linear phenomena have not been taken into account.
The Υ factor represents the overlap integral of the propagation modes of the fiber, and is inversely

proportional to the core effective area [26]. K is a function of the fiber length, its birefringence δn and
the Raman frequency ΩR according to:

K =
∫ L

0

ei∆kz

L
dz = exp

( i∆kL
2

) sin
(

∆kL
2

)
∆kL

2

(18)

finally, ∆k is related to inverse of the length at which the polarized pump and the Stokes wave are
decoupled. In a co-propagation pumping, the following equation would be fulfilled:

∆k = (kpx − kpy)− (ksx − ksy) =
δn ΩR

c
(19)
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To obtain the gain coefficient in terms of the relative polarization between pump and signal,
we consider a CW pump with initial total power P0 linearly polarized fulfilling the condition:
Ap,x = A∗p,y and |Ap,x|2 = |Ap,y|2 = P0/2, which corresponds to a linear polarization at π/4. If we
substitute in coupled Equations (16) and (17), we obtain the following expression for gain coefficient:

g2
Rb
− gRb ΥP0 + Υ2 P2

0
4

(
1− K2

)
= 0 (20)

with solutions:
gRb =

Υ P0

2

(
1± K

)
(21)

here, the plus sign corresponds to a maximum value of the gain dependent on polarization PDGmax

coefficient, obtained when pumping and signal were co-polarized. On the other hand, the minus
sign will give the minimum polarization-dependent gain PDGmin that appears in the case of relative
orthogonal polarization.

Next, we introduce the typical pump–signal polarizations decoupling length lp. This has to
be understood as the distance from which both polarization states appear uncorrelated due to the
fiber birefringent properties. To do that, we make use of the statistical model developed, applied for
pumping and continuous wave signals in a Raman Fiber Amplifier (RFA) [3]. This distance is evaluated
from the PMD coefficient Dp:

lp =
3

D2
p (ωp ∓ωs)2 (22)

the minus sign accounts for co-propagation and plus sign for counter-propagation. Since only the real
part of the K function (18) will contribute to the gain, we have:

Re(K) = cos
(∆k L

2

) sin
(

∆k/2L
)

∆kL/2
=

sin
(

2π(L/lp)
)

2π(L/lp)
(23)

where the polarization decoupling length, related to the difference in the propagation constants
∆k = 2π/lp, has been explicitly used.

In this way, the gain coefficient (21) can be expressed in its polarization-dependent form:

gRb =
Υ P0

2

(
1±

sin
(
2πL/lp

)
(2πL/lp)

)
(24)

We will have three scenarios:

• If L� lp ⇒ Re(K) ' 1 so gRb = ΥP0 = gPDG
R,max ó gRb = 0 = gPDG

R,min.

In this case, there will be a strong dependence of the gain with polarization, either with parallel
polarization and maximum value, or with orthogonal polarization and minimum value.

• If L� lp ⇒ Re(K) ' 0, so gRb = ΥP0/2.

Here, the gain coefficient for each main polarization axis becomes the same and independent of
the input pump and signal polarization states. Its value turns out to be the average at 1/2 of the
maximum value in parallel polarization.

• For distances L of the order of length lp, the gRb factor will fluctuate between the maximum and
minimum of gain.

Once the expression for the gain coefficient (24) is obtained, to model our system with random
birefringence, a succession of small equal-length fiber sections, with constant linear birefringence,
that are coupled to each other, is considered [26]; we suppose also no correlation between adjacent



Photonics 2020, 7, 86 7 of 18

pieces. According to the previous hypothesis, we define the effective factor equivalent associated with
the dependence of the gain with the polarization:

KPDG
e f f ≡

[1± Re(K)
2

]−1
=

2

1±
sin
(
2π(Lj/lp)

)
2π(Lj/lp)

, j = 1, 2, ..., N, (25)

where N is the number of small birefringent elements, the index j corresponds to j−th element and
Lj = (j − 1)δL. Its graphical representation appears in Figure 1, which depicts the average value
1/Ke f f → 1/2.

We can thus identify, in the propagation Equations (12) and (13), the parallel an orthogonal
components of the gain and using this effective coefficient (25) for the gain average, we obtain:

gR‖(ΩR)

2
Px(z)As,x(z, t) +

gR⊥(ΩR)

2
Py(z)As,x(z, t) ' gR(ΩR)

2KPDG
e f f (z)

Pp(z)
2

As,x(z, t) (26)

gR⊥(ΩR)

2
Px(z)As,y(z, t) +

gR‖(ΩR)

2
Py(z)As,y(z, t) ' gR(ΩR)

2KPDG
e f f (z)

Pp(z)
2

As,y(z, t) (27)

where the total gain parameter modulated by the effective coefficient comes from both co-polarized
and orthogonal polarized components signal–pump interaction:

gR ≈ gR‖ + gR⊥ (28)

Figure 1. KPDG
e f f vs. the normalized distance z/lp.

2.3. Averaging Vector Propagation Equations with Effective Raman Gain Term

We used the Equations (12) and (13) with B = 2/3 to describe the propagation of polarization
components in the pulse, so both components are coupled to each other in every fiber section via the
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Kerr nonlinearity and to the pump via the gain term associated with the SRS effect. The effective
coefficient KPDG

e f f (25) takes into account the relationship between the Raman gain and the polarization.
Without loss of generality, we can assume for a fixed value z that the the coupling conditions are
antisymmetric for the polarization components, i.e., when a component gets the maximum value of
KPDG

e f f the other one gets a minimum. This condition allow us to rewrite the coupled equations for the
components (12) and (13):

∂As,x

∂z
+ β1s,x

∂As,x

∂t
+

i
2

β2s
∂2 As,x

∂t2 +
α

2
As,x =

= iγs

(
|As,x|2 +

2
3
|As,y|2

)
+

gR(ΩR)

2KPDG(max)
e f f (z)

Pp(z)
2

As,x(z, t)
(29)

∂As,y

∂z
+ β1s,y

∂As,y

∂t
+

i
2

β2s
∂2 As,y

∂t2 +
α

2
As,y =

= iγs

(
|As,y|2 +

2
3
|As,x|2

)
+

gR(ΩR)

2KPDG(min)
e f f (z)

Pp(z)
2

As,y(z, t)
(30)

where KPDG(max)
e f f and KPDG(min)

e f f are related, respectively, to the positive and negative signs in (25) and
this evolution against the normalized distance is shown in Figure 1. Merging the loss term with the
effective gain term α

e f f
s (z), we get:

α
e f f
s (z)|max

min = α− gR(ΩR)

KPDGmax
min

e f f (z)

Pp(z)
2

(31)

and in order to simplify the equations for the polarization components, using the previously defined
α

e f f
s (z)|max

min factor, these become:

∂As,x

∂z
+ β1s,x

∂As,x

∂t
+

i
2

β2s
∂2 As,x

∂t2 +
α

e f f
s (z)|max

2
As,x =

= iγs

(
|As,x|2 +

2
3
|As,y|2

) (32)

∂As,y

∂z
+ β1s,y

∂As,y

∂t
+

i
2

β2s
∂2 As,y

∂t2 +
α

e f f
s (z)|min

2
As,y =

= iγs

(
|As,y|2 +

2
3
|As,x|2

) (33)

From this point, we will transform the Equations (32) and (33) in their dimensionless form using:

u =
As,x√

Ps0

v =
As,y√

Ps0

where the peak power is:

Ps0 =
√
|As,x(0, 0)|2 + |As,y(0, 0)|2

In a reference system moving along with the pulse components, we define the group velocity
dispersion factor as:

δs =
β1s,x − β1s,y

2
=

1
2

(nsx − nsy

c

)
=

∆n
2c

(34)
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The new temporal variable will be:
T = t− zβ̄1

with β̄1 = 1/2(β1s,x + β1s,y). The new dimensionless variables:

ξ =
z

LD

τ =
T
T0

with T0 being the temporal width at the starting point and LD = T0/β2s the dispersion length.
The Equations (32) and (33), for the anomalous dispersion regime, after this change of variables

appear as follows:

∂u
∂ξ

+ δ
∂u
∂τ
− i

2
∂2u
∂τ2 +

Γe f f
s |max(ξ, ΩR)

2
u = iN2

(
|u|2 + 2

3
|v|2
)

(35)

∂v
∂ξ
− δ

∂v
∂τ
− i

2
∂2v
∂τ2 +

Γe f f
s |min(ξ, ΩR)

2
v = iN2

(
|v|2 + 2

3
|u|2

)
(36)

with:
N2 = γLDPs0

Γe f f
s |max

min (ξ, ΩR) = LDα
e f f
s (ξ, ΩR)|max

min

Due to the existence of the random orientation for the birefringence in our model, it is mandatory
to make an additional transformation for the polarization amplitude variables, according to an aleatory
rotation through a Poincaré sphere [27]:[

u′

v′

]
=

[
cos θ sin θeiφ

− sin θe−iφ cos θ

] [
u
v

]
(37)

the Equation (37) can be seen as an arbitrary rotation for the angles 2θ and φ [28].
Doing the average over all the possible orientations and considering a pulse in the range of

picoseconds, we obtain a version of the Manakov-PMD equations for the transformed components of
the polarization in the distributed Raman gain regime:

∂u′

∂ξ
− i

2
∂2u′

∂τ2 +
Γe f f

s |max(ξ, ΩR)

2
u′ = iN2

(
|u′|2 + |v′|2

)
(38)

∂v′

∂ξ
− i

2
∂2v′

∂τ2 +
Γe f f

s |min(ξ, ΩR)

2
v′ = iN2

(
|v′|2 + |u′|2

)
(39)

The prior couple of equations forms the model that we are going to simulate for the study of our
system with DRA in a fiber optic with random birefringence.

3. Simulation and Results

This section has two subsections. In the first one the optimal initial conditions, for the pulse
launch, are calculated via the Method of the Moments and in the final part, we run a set of simulations
to determine the influence of the distributed gain in the pulse propagation using the SSFM.

3.1. Obtaining Optimal Launch Conditions. Method of the Moments

Figure 2 shows the proposed optical communication system, based on a constant dispersion fiber,
which works with DRA in a CW counter-pump regime. We assume that the propagation equations
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are verified by the low variation envelopes of the electric field polarization components (38) and (39).
These equations also model the losses present in the fiber and the SRS gain process induced by the
pumping stations periodically located at LA.

Figure 2. Scheme for a Raman amplification system in counter-propagation. LA accounts for the
distance between pump stations.

We assume also the following conditions:

• The CW pumping model introduces a phase constant in the polarization components as a
consequence of the XPM effect, but that constant has no impact on the overall study of the
soliton propagation [29].

• The pumping power at each amplification stage will follow an exponential decay for which the
effective length is given by:

Le f f =
1 − exp(−αpLA)

αp
(40)

• Insulators are placed at each pump station, ensuring the performance of the system by avoiding
interactions between consecutive pumping sections.

In our system, we can make use of the Method of the Moments to study the evolution of the
optical pulses as they propagate through an optical fiber to determine the optimal launch conditions
using the chirp and the peak power as parameters. First of all, to start with the method we define
three moments:

1. The zero-order moment considering each pulse as a particle with energy:

E(ξ) =
∫ +∞

−∞

(
|u(ξ, τ)|2 + |v(ξ, τ)|2

)
dτ (41)

2. The first-order moment associated wit the central temporal position Tm:

τm =
1
E

∫ +∞

−∞
τ
(
|u(ξ, τ)|2 + |v(ξ, τ)|2

)
dτ (42)

3. The Root Mean Square (RMS) is given by the second-order moment:

σ2 =
1
E

∫ ∞

−∞
(τ − τm)

2
(
|u(ξ, τ)|2 + |v(ξ, τ)|2

)
dτ (43)

the exact width is related to the RMS width through a constant factor that depends on the
functional form of each pulse [30].

One more useful moment to introduce is the one associated with the chirp, which is defined by
means of the polarization components u and v:

C̃ =
i

2E

∫ +∞

−∞
(τ − τm)

(
u∗

∂u
∂τ
− u

∂u∗

∂τ

)
dτ =

i
2E

∫ +∞

−∞
(τ − τm)

(
v∗

∂v
∂τ
− v

∂v∗

∂τ

)
dτ (44)

These moments will describe the evolution of the pulse parameters following a set of equations
depending on the functional form of the pulse. In our study, with SRS counter-propagation at each
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pump stage and despite of the possible variations of width and peak power, we will use the hyperbolic
secant as the functional form of the solitons. Thus, we can consider each component as given by [31]:

u(ξ, τ) = au(ξ)sech
(τ − τm

η(ξ)

)
exp

[ iφ − iC(ξ)(τ − τm)2

2η2(ξ)

]
(45)

v(ξ, τ) = av(ξ)sech
(τ − τm

η(ξ)

)
exp

[ iφ − iC(ξ)(τ − τm)2

2η2(ξ)

]
(46)

where the phase factor φ does not depend on time or the pulse central position τm on z.
The width η and chirp C parameters shown in (45) and (46) are related with the RMS of the

temporal width and C̃ momentum through η2 = (12/π2)σ2 and C = (12/π2)C̃ in the hyperbolic
secant case considered.

As we can see, all the parameters represent local values and change with the axial direction of the
fiber. If we introduce (45) and (46) in the non linear propagation equations with Raman amplification
term (38) and (39), we find the pulse parameters ruled out by this system of coupled equations:

dE
dξ

= −Γe f f
s |max

min (ξ, ΩR)E (47)

dη

dξ
=

β2 C
η

(48)

dC
dξ

=
( 4

π2 + C2
) β2

η2 +
2γE
π2η

(49)

These equations are similar to the ones obtained using the variational method proposed in [32].
In our case, we have included the term that balance losses and gain in the system Γe f f

s |max
min (ξ, ΩR).

Now, we apply this normalization:

e(ξ) = E/E0 W = η/T0 (50)

with E0 =
∫ +∞
−∞ (|u(0, T)|2 + |v(0, T)|2)dτ being the energy of each soliton at ξ = 0 and T0 as the initial

width having the same value for both polarization components and the dispersion length given by
LD = T2

0 /β2.
Considering the anomalous propagation regime (β2 < 0) along with (50), the moment equations

for the energy (47), perturbed soliton width (48) and chirp (49) can be written as:

de
dξ

= −Γe f f
s |max

min (ξ, ΩR)e (51)

dW
dξ

= −zA
C
W

(52)

dC
dξ

=
4

π2 zAN2 e
W
−
( 4

π2 + C2
) zA

W2 (53)

where zA = LA/LD is the normalized length between consecutive pump stations and N2 = γP0LD the
normalized initial peak power (soliton order).

The basic idea is to obtain a periodic solution of these parameters that allows the perturbed soliton
to recover its initial values (except for a phase factor) after each normalized amplification stage. We are
interested in boundaries that assure the launch parameters periodicity:

C(0) = C(1) W(0) = W(1) = 1 (54)
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To solve numerically the generic form of our system of coupled Equations (51)–(53), we employ an
algorithm based on the Runge–Kutta–Fehlberg (R–K–F) method with Cash-Karp 6th-order coefficients [33].
We have also fixed the maximum Raman effective gain value at ge f f

R |max(ΩR) = 1, 4 (Km·W)−1 with
signal and pumping wavelengths of λs = 1550 nm and λp = 1450 nm and an effective area of Aps

e f f =

50× 10−12 m2 and with αp = αs = α = 0.21 dB/Km. The pump–station length was taken periodically
at LA = 40 km. The gain will be G = exp(αLA) = 10 (α LA = 2.3) in each amplification stage.

We have carried out simulations starting from the analytic expressions of normalized peak power
and initial chirp with zA � 1 [12], we varied the dispersion length LD, and thus zA, until we found
the N2 and C0 values that assure the boundaries given by (54) at each zA. Using a range of values from
zA = 0 to zA = 5, we have obtained the optimal launch conditions, i.e., normalized input peak power
and soliton chirping, as a function of normalized pump–station spacing zA. The results are shown in
Figure 3.

Figure 3. Normalized input peak power and chirp of soliton as a function of normalized pump–station
spacing zA numerically obtained from Method of Moments when consecutive pumping stages are
separated by 40 km.

We can point out two main conclusions: the chirp parameter, which displays a highly sensitive
behaviour as can be seen in the right side of Figure 3, allows a greater spacing between the pumping
stations, even exceeding the dispersion length; on the other hand, the control in the pumping power is
the most important factor to ensure the required periodicity conditions. This is due to the fact that in
such systems the soliton power evolves, regenerating itself during the journey.

3.2. Effect of the Distributed Gain on the Energy and Width of the Propagating Vector Pulses

To validate the previous results, we try to regenerate the pulses with the same injected power.
At the beginning of the fiber z = 0, we launch vectorial chirped solitons with a wavelength of
λs = 1550 nm, at this point the initial conditions have the functional form:

u(ξ = 0, τ) = A cos θsec h(τ) exp(−iCτ2/2) (55)

v(ξ = 0, τ) = A sin θ sec h(τ) exp(−iCτ2/2) (56)

where A is the amplitude related with the soliton order, C is the lineal chirp parameter that takes into
account for the initial phase in both components of the pulse and θ determines the relative intensity of
every component. The condition:

P0 = |u(ξ = 0, τ = 0)|2 + |v(ξ = 0, τ = 0)|2 = |A|2(cos2 θ + sin2 θ) = |A|2 (57)
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is also accomplished.
Our hypotheses for the simulation are:

• The study of the propagation characteristics for the chirped vectorial solitons (CVS) has been
performed using a predictor–corrector numerical model with an SSFM [34] to resolve the
propagation Equations (38) and (39).

• The random birefringence effect on the gain is included in the effective coefficient KPDG
e f f ,

through the decoupling length ld between the polarization states of the pump and the signal,
using Equation (22). In the conventional scenario for a monomode fiber, the values of the
parameter Dp are included in the range 0, 1− 1 ps/

√
km, this election turns into a lp distance not

bigger than a kilometer.
• In that way, the amplification effective length for every section is bigger than the lp, i.e., Le f f > lp,

assuring the complete decoupling between the polarization states of the signal and pump in the
propagation process, achieving the same amplification for both signal components and with the
same average value. In our model, this effect is clearly bring out since the effective coefficient
1/KPDG

e f f reaches the 1/2 value before the pulse propagation in each one of the amplification
zones LA.

• The simulations have been carried out in soliton systems with T0 ∼ 5–10 ps width in the
anomalous dispersion regime, which allow an effective transmission rate of 10–40 Gb/s. Our study
is centered on the effect of initial control of the phase via the lineal chirp and the optimal peak
power, obtained according the Method of Moments, in the stability of the vectorial solitons with
Raman gain. For completeness, different values for the parameter zA = LA/LD have been used.

To start the simulations, we will check the complete regeneration of the energy value, in a system
with equal values of the amplitude in both components, i.e., θ = π/4. We will analyze the effect of the
pump distributed gain in counter-propagation on the total energy.

Using the adjusted pump power Pp(LA) for LA = 40 km, we can calculate the energy (41):

E(z) =
∫ +Tb/2

−Tb/2

(
|u(z, T)|2 + |v(z, T)|2

)
dT (58)

where Tb is the temporal width of the bit slot where the vectorial soliton is placed.
In Figure 4, the evolution of the energy is represented in an amplification stage with zA = 2 and

optimal pump and chirp conditions according to Figure 3.
As we can see, the effect of the losses during the first part of the propagation makes the energy

decrease but the stimulated Raman scattering, when circulating in counter-propagation, regenerates
completely the energy of the soliton at the end of the amplification stage, as expected due to the
periodic conditions implemented in the Method of the Moments.

In the same way, we have tested the stability of the propagation. To do that, we have performed
a scan in the value of the chirp parameter to calculate the widening average, measured as standard
deviation ratio for every vectorial pulse at the end of an amplification stage of LA = 40 km. The results
for these simulations are shown in Figure 5 with ZA = 0.5 and Figure 6 with ZA = 2.

It can be seen how the optimal chirp value obtained allows us to keep the ratio σ/σ0 equal to 1,
if we also use the optimal peak power for every zA value, as appears in Figure 3. The normalized width
for different values of the initial chirp using the optimal peak power and values 10% over (superior
line) or under (inferior line) the optimal is also shown in Figures 5 and 6.
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Figure 4. Evolution of the energy for the solitonic vectorial pulse with zA = 2 in one amplification
stage in optimal pump conditions P0opt, shared between the polarization components according to
(55) and (56), with θ = π/4 and optimal chirp. The value for the polarization mode dispersion (PMD)
parameter is Dp = 0.5 ps · km−1/2.

Figure 5. Change in the widening factor through an amplification stage for the vectorial soliton with
zA = 0.5 vs. the initial chirp, for different peak powers in z = 0. We assume a PMD value of Dp = 0.5
ps · km−1/2 .
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Figure 6. Change in the widening factor through an amplification stage for the vectorial soliton
with zA = 2.0 vs. the initial chirp, for different peak powers in z = 0. We assume a PMD value of
Dp = 0.5 ps · km−1/2 .

We can appreciate, comparing Figures 5 and 6, how the separation between the lines corresponding
to the non-optimal peak power values is greater in the case of zA > 1 (Figure 6) due to the relevance of
the dispersive effects. In any case, we can assure the periodicity for the pulse after every stage, so we can
conclude that in optimal conditions the propagation of the vectorial solitons is stable in DRA systems.

Finally, to display these periodicity conditions in a more clear way, we show in Figure 7 the
evolution of the widening parameter for a vectorial solitonic pulse in an amplification stage with a
value of zA = 2 with optimal chirp. It can be seen how a correct election in the peak power ensures the
periodicity in the σ/σ0 parameter, so we can consider this result as a validation of the Method of the
Moments for the study of amplification systems with random birefringence.

Figure 7. Evolution of the normalized widening with zA = 2 in an amplification stage with different
initial power peaks: optimal power (—), 10% over (· · · ) and 10% under(−−−), in all the three cases
shared between components according to (55) and (56) with θ = π/4 and optimal chirp. The value for
the PMD parameter is Dp = 0.5 ps · km−1/2.



Photonics 2020, 7, 86 16 of 18

4. Conclusions

The vector description that we have made of solitons propagation in an optical communication
system with the use of backward-distributed Raman amplification in fibers with random birefringence
allows us to ensure the stability of these pulses. For distances commonly used in amplification systems
greater than decoupling and polarization beat, the numerical resolution of propagation equations
confirms how non-linearity and Raman gain interaction between the pumping and signal polarization
states bring a homogeneous amplification of them, minimizing the dependence of gain effect with
polarization. It also validates the predictions of the Method of Moments, which provides the optimal
launch conditions to maintain, on average, the integrity of these pulses during their propagation over
long fiber runs, after successive stages of distributed Raman amplification.
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The following abbreviations are used in this manuscript:

CVS Chirped Vectorial Soliton
CW Continuous Wave
DRA Distributed Raman Amplification
FWM Four Wave Mixture
PMD Polarization Mode Dispersion
RFA Raman Fiber Amplifier
SPM Self Phase Modulation
SSFM Split-Step Fourier Method
SRS Stimulated Raman Scattering
XPM Cross-Phase Modulation
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