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Abstract: High-speed coherent optical communication has been expanding to handle the
ever-increasing data traffic, and the large modulation bandwidth of electro-optic (EO) polymer
modulators has been especially appreciated. However, to be useful in optical communication, the EO
polymer device should address several issues, such as thermal stability, photo-oxidation, and bias
drift. In this work, as a part of the experiments to address these challenges, an EO polymer with a
fluorinated polyimide backbone is utilized to create EO polymer modulators with improved thermal
stability. A coplanar electrode structure is introduced to enhance the poling efficiency and reduce the
bias drift.
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1. Introduction

Electro-optic (EO) polymer modulators have an original advantage of small velocity mismatch
between radio-frequency (RF) and optical signals, and by employing a traveling-wave modulation
electrode, an optical modulator operable above 100 Gbps was demonstrated [1–3]. Although research
on EO polymers has been conducted for decades, to prove the technology to be useful for practical
application, there are issues to be addressed, such as photo-oxidation, bias drift, large insertion loss,
and poor thermal stability [4–6].

The photo-oxidation problem can be relaxed by using commercial hermetic packaging, which has
been widely adopted for commercial optical devices with much reduced cost recently. The bias drift is
mainly caused by the field-assisted drift of impurity ions remaining in the EO polymer material during
the material synthesis. The impurity ions can be reduced significantly by employing highly advanced
impurity-filtering processes during the material preparation step. Furthermore, the bias-point drift is
no longer a concern because recent coherent communication replaces the intensity modulators with
phase modulators that do not require bias control. The insertion loss due to the material absorption
can be reduced by using fluorinated polymers, which reduces the vibrational absorption for the optical
communication wavelengths. The thermal stability can be improved by adopting ridged-backbone
polymers such as polyimides.

Various studies have been conducted to improve the EO coefficient and thermal stability. Several
approaches aimed to increase the glass transition temperature (Tg) of poly(methyl methacrylate)
(PMMA)-based EO polymers and improve the thermal stability of the device, in which the EO
coefficient (r33) was over 100 pm/V and preserved at 105 ◦C for 2000 h [7]. A high EO coefficient was
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achieved by using novel chromophores, showing a maximum r33 of 290 pm/V, and maintaining 99% of
the initial r33 at 85 ◦C for 500 h [8]. High poling and modulation efficiencies were achieved by taking
advantage of the highly confined optical mode in the Si slot waveguide [9]. State-of-the-art Si-slot EO
modulators demonstrated 200 Gbps four-level pulse amplitude modulation (PAM-4) modulation with
a low voltage–length product (Vπ·L) of 0.41 V·mm and total insertion loss of 0.7 dB [10].

Several studies were conducted using polyimides in EO modulators. An optical modulator with
propagation loss of 1.14 dB/cm and Vπ of 5.4 V was reported, which employed a guest–host-type
polymer [11,12]. The chromophores in the guest–host EO polymer could be aligned relatively easily,
even in low poling fields, and thus, the EO modulator could achieve low Vπ. However, it was difficult to
maintain the poled order of the chromophores at elevated temperatures. Side-chain EO polymers were
confirmed to exhibit superior thermal stability compared to guest–host EO polymers [1,7,13]. Another
study was conducted with a polyimide backbone sidechain EO polymer; however, the fabricated
modulator exhibited high losses because the polyimide backbone exhibited large absorption [14].

Fluorinated polymers can reduce the loss of optical signals, caused by the C–H vibrational overtone
at a wavelength of 1550 nm [11,15–17]. Therefore, fluorinated polyimides have been widely used as a
substrate for flexible organic light-emitting diode (OLED) devices owing to their high transparency,
good thermal stability, and excellent mechanical and chemical properties [17]. The EO polymer used
in this study is based on a fluorinated polyimide synthesized from 2,2-Bis (3-amino-4-hydroxyphenyl)
hexafluoropropane (6FAP) and 4,4′-(hexafluoroisopropylidene)-diphthalic anhydride (6FDA) [18].

In this work, we demonstrate EO polymer devices by incorporating a fluorinated polyimide
sidechain EO polymer. Polarization modulators and Mach–Zehnder (MZ) intensity modulators are
fabricated to measure the EO coefficient of the device and analyze the poling efficiency. We confirm
that the coplanar electrode can effectively reduce the bias drift and increase the poling efficiency by
discarding the voltage drop across the cladding layers.

2. Preparation of Fluorinated Polyimide EO Polymer and Design of Waveguide Devices with
Coplanar Electrodes

The sidechain EO polymer material with fluorinated polyimide backbone, depicted in Figure 1,
was supplied from Korea Research Institute of Chemical Technology, Daejeon, South Korea [18].
A hydroxy polyimide was synthesized by the polymerization of the reactants at 150 ◦C for 3 h.
Commercially available DR1 chromophores were selected to obtain the EO property because the
chromophores could not be synthesized. The synthesized polymers were post-functionalized by
covalently bonding the DR1 chromophores, to yield the EO polymer. The material was supplied
in the form of dry red powder and was dissolved in cyclohexanone to produce a 15 wt% solution.
The solution was spin-coated on a Si wafer at 700 rpm for 20 s, and baked on a hotplate for 10 min at
80 ◦C, and for 30 min at 200 ◦C. The EO coefficient of the thin film, measured by using the reflection
method, was 27.7 pm/V at 1310 nm, and the Tg was exceptionally high as 202 ◦C. Thermal tests were
conducted to confirm that over 90% of the initial r33 is maintained even after heating at 150 ◦C for
500 h, proving the superior thermal stability of the material.

The final thickness of the baked film was 3.7 µm. The film presented excellent surface morphology
with a low surface roughness less than 5 nm. The surface roughness of the film was measured using an
atomic force microscope, as shown in Figure 2a. The average surface roughness (Ra) was measured
as 557 pm, as shown in Figure 2b. The refractive index of the EO polymer film was measured by the
prism coupling method with a gadolinium gallium garnet (GGG) prism as 1.6252 and 1.6198 for TE
and TM, respectively, for the wavelength of 1550 nm.

The refractive indices of the materials selected for the waveguide device were as follows: 1.445 for
SiO2, the lower cladding material; 1.625 for the EO polymer; and 1.501 for NOA74, the upper cladding
material. According to the effective index method, rib-structured waveguides with waveguide widths
of 4 and 6 µm satisfied the single-mode condition.
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Figure 1. Scheme of the electro-optic (EO) polymer molecular structure used in this work, showing
the fluorinated polyimide (black) and the DR1 chromophore side chain covalently bonded to the
polyimide (red).
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Figure 2. (a) Surface roughness of EO polymer film measured using an atomic force microscope.
(b) Cross-sectional plot of the surface roughness data.

For a straight waveguide, polarization modulators could be produced by placing coplanar
electrodes as shown in Figure 3a. The gap between the electrodes and waveguide had to be close
enough to increase the poling and modulation efficiencies until the surface plasmon absorption was
not arising. For an input polarization of 45◦, both TE and TM modes were excited, and the output
polarization depended on the phase retardation between the two polarizations owing to the difference
in the EO coefficients of r33 and r13. MZ interferometers were designed as shown in Figure 3b,
by placing the coplanar electrodes along the two straight waveguides. The modulation efficiency of
the MZ modulator could be doubled by a push–pull operation, where the two waveguides were poled
in same direction and operated in opposite directions, as depicted in Figure 3c.

In the case of vertical poling devices, the electric field crosses the core and cladding materials.
A core material doped with chromophores generally exhibits lower resistivity than the cladding material,
at an elevated temperature, causing large voltage drops across the cladding layer; thus, the poling
field in the core layer would decrease at a high temperature. In coplanar electrode devices, the poling
field across the core layer is not affected by the difference in the material resistivity. The poling field
distribution of coplanar poling was calculated by the finite element method, assuming that the dielectric
constants were uniform throughout the film. The electric potential and field distribution for the applied
poling field were calculated as shown in Figure 3d. The middle electrode was left floating. The poling
field at the cores of the two waveguides was parallel to the coplanar electrodes. At vertical positions
of the waveguide center and electrode, the electric field intensities along horizontal direction were
found as shown in Figure 3e, where the applied voltage (V0) was 1 kV and the distance between the
edges of the two electrodes (dg) was 10 µm. The maximum electric field was produced near the edge of
the electrode, and that its magnitude decreased further away from the electrode. The magnitude of
the effective electric field at the center of the core became 36 V/µm, which was lower than the value
expected by uniform field assumption, 50 V/µm (1 kV/20 µm).
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Figure 3. Overview of a (a) straight waveguide polarization modulator device and (b) Mach–Zehnder
intensity modulator device. (c) Device cross-section showing the directions of the poling field and
driving field for push–pull operation. (d) Electric potential and field distributions produced by the
coplanar electrodes. (e) Electric field plot along the horizontal direction at the vertical positions of the
waveguide center (along the dotted line in (d)) and the electrode (along the dashed line in (d)).

3. Fabrication of The EO Polymer Modulator

Prior to the device fabrication, multilayer film coatings were evaluated by coating several materials
on top of the annealed EO polymer film, to determine the process compatibility. When a photoresist was
coated over the EO polymer film, severe cracking occurred, because of the solvent attack. When low-loss
fluorinated polymer ZPU produced by ChemOptics Inc., Daejeon, South Korea, was used as the upper
cladding material, cracks appeared after the UV curing of the ZPU polymer film. Finally, UV-curable
epoxy NOA74 from Norland Optical Adhesives was selected as the upper cladding material because
no damage was found on the EO polymer film even after the UV curing of NOA74.

The fabrication process is summarized in Figure 4. Si substrate with a 14.5 µm oxide layer grown
by wet thermal oxidation is used as both the optical cladding and electrical insulating layer. Cr–Au
layers of 10–60 nm are deposited to form the electrode. The lift-off process is adopted for electrode
fabrication, to prevent the chance of electrical shorts due to the metal residue. The EO polymer is
coated on top of the electrode layer producing a 3.7 µm film thickness. Then, NOA74 as a protection
layer is covered on the EO polymer with a thickness of 1.0 µm. After the photolithography to define
the waveguide pattern, the core layer is etched by 1.2 µm in an oxygen plasma to form a rib waveguide.
Then, the upper cladding of 5 µm is formed using NOA74. The metal pads for poling and operation
are opened by dry etching the polymer layers through a fine metal mask.

To reduce the burden of experimental work in optimizing the poling process, we designed the
electrodes as shown in Figure 5a. Three pairs of electrodes with different gaps (12, 16, and 20 µm)
were connected in parallel to form the same potential difference across them and perform poling
simultaneously. When the poling voltage was increased slowly, the device with a narrow electrode gap
experienced the highest electric field first and proceeded to breakdown if the voltage was increased
beyond a certain extent. Then, we presume that a maximum field before the breakdown was applied
to the devices with wider electrode gaps.
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Figure 4. Schematic fabrication procedure of the EO polymer Mach–Zehnder modulator with a
coplanar electrode.

In the poling setup shown in Figure 5b, spring contact probes were used. The pads were covered
lightly with silver paste, to ensure contact without damaging the thin metal pads. The sample was
poled on a hot plate inside a nitrogen purge chamber to prevent the oxidation of the chromophore
molecules at high temperatures and remove the effects of moisture [4]. The oxygen concentration
inside the chamber reached 1.6% after 10 min of N2 purging. The amount of current flowing through
the EO polymer during the poling process was measured using a picoammeter (Keithley 6485).
A resistor was placed as a current-limiting load after the DUT and two diodes in opposite directions
were connected in parallel with the picoammeter to prevent accidental high currents through the
picoammeter. As the temperature increased, the resistance of the EO polymer dropped, causing an
increase in the current flow.

In the first few trials of poling, the voltage was increased to a high level first, prior to the
temperature elevation, as shown in Figure 5c. In this case, an early breakdown was observed on the
electrode, as shown in Figure 5d, caused by a defect near the electrode. Electro-optic properties were
barely observed in this device. In the second case, the temperature was increased first, then the voltage
was raised, as shown in Figure 5e. An excessive amount of current suddenly flowed because of the
rapid voltage increase at the poling temperature, which led to dielectric breakdown, as shown in
Figure 5f.

The poling process was optimized to limit the maximum current flow during the poling,
by controlling the temperature and voltage in several steps, as shown in Figure 5g. At the first
step, the voltage was increased gradually up to 1 kV, which was guaranteed as a safe voltage from the
previous experiments. By observing the current flow at 200 ◦C, the voltage was gradually increased to
the maximum poling voltage of 1.8 kV, corresponding to an electric field of 100 V/µm. Thus, we were
able to avoid breakdown and achieve the highest poling efficiency.
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Figure 5. (a) Electrode design for efficient poling experiment, where three coplanar electrodes with
different gaps are connected in parallel. Note that the aspect ratio of the electrode gap is exaggerated to
show the concept clearly. (b) In the poling setup, the device is placed on a hotplate inside a nitrogen
purge box connected to a picoammeter with an accidental high-current protection circuit. The voltage,
temperature, and current profiles during the poling process and microscopic images of each sample:
(c) profile when the voltage is increased to a high level before increasing the temperature; (d) electrode
destroyed because of a defect near the electrode; (e) rapid rise in the voltage to a high poling voltage
causing breakdown; (f) dielectric breakdown along the electrode; (g) stable poling profile without
breakdown, by stepwise voltage and temperature control; (h) sample that survived the poling process.

4. Measurement of the Optical Waveguide and MZ Modulator Performance

The insertion losses of the devices with different lengths were measured using a 1550 nm
distributed feedback (DFB) laser, as shown in Figure 6. Single-mode fibers were aligned with the
device, and a fiber-optic polarization controller was used to adjust the input polarization to TE or TM.
The propagation losses of a 4-µm-core waveguide were measured as 1.9 and 2.2 dB/cm for TE and TM,
respectively. For a 6-µm-core waveguide, the propagation losses measured for TE and TM polarizations
were 1.4 and 1.6 dB/cm, respectively, which indicated that the 6-µm waveguide had better mode
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confinement. The coupling losses of the 4- and 6-µm waveguides were 3.3 and 2.9 dB/facet, respectively.
From comparisons with the measurement results of the unpoled samples, the poling-induced loss was
approximately 0.5 dB/cm.
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Figure 6. Insertion loss measurement results using cut-back method.

To observe the polarization modulation, caused by the difference between r13 and r33 EO
coefficients, a straight waveguide modulator was characterized with a 1550 nm DFB source, as
shown in Figure 7a. The length of device was 10 mm with an electrode length of 5 mm. The input
polarization was adjusted to +45◦ linear polarization, and the output polarization was observed
using a CCD through a −45◦ free-space polarizer to confirm the intensity modulation due to the
polarization change. Then, the output polarization was monitored using a polarization analyzer
(General Photonics, POD-101), and 2π phase retardation was observed between the TE and TM modes,
as shown in Figure 8b. Assuming r33 ≈ 3 r13, r33 could be calculated from the measured Vπ for complete
polarization conversion [19]. For a poling voltage of 1.8 kV, the actual poling field at the center of the
waveguide core became 100, 77, and 63 V/µm, corresponding to electrode gaps of 12, 16, and 20 µm,
respectively. The 12 µm gap electrode showed a Vπ of 128 V, and the obtained r33 value was 8.42 pm/V,
as shown in Figure 7c.
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Figure 7. Polarization conversion efficiency measurement using a straight waveguide polarization
modulator: (a) experimental setup; (b) output polarization states measured during polarization
modulation, drawn on the Poincare sphere; and (c) measured Vπ and calculated r33 of poled samples
with different electrode gaps.
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Figure 8. Long-term bias-stability experiment results: (a) Experimental setup to measure the modulation
output signal of the Mach–Zehnder (MZ) modulator and (b) intensity modulation signal to find the
bias voltage for π–phase difference. (c) Output interference signals observed at 0, 0.5, and 1 h, which
show no significant change in waveform. (d) Bias voltage variation exhibiting 7% of drift occurring in
an hour.

The MZ modulator was characterized using the experimental setup illustrated in Figure 8a.
The length of the device was 20 mm with an electrode length of 5 mm. The Vπ of 12 µm gap electrodes
on each arm was measured as 75 V, as can be seen in Figure 8b. It was poled with a poling field of
80 V/µm by applying 2.9 kV across the two arms with the middle electrode remaining as floating.
The r33 calculated from the measured Vπ was 7.22 pm/V. The bias drift of MZ modulator was observed
by monitoring the intensity modulation waveform with a bias voltage of 167 V applied for an hour.
As shown in Figure 8c, the waveform changed only slightly in an hour, which indicated that the
bias point for quadrature phase difference did not drift significantly. In the case of the ordinary EO
polymer device with a vertical field application, the bias voltage was divided proportional to the
resistivities of the core and cladding polymers and exhibited a considerably fast drift within a few
minutes [4,5]. The bias voltage variation measured for an hour was as small as 7%, as shown in
Figure 8d. The amplitude of output waveform was slightly decreased due to the alignment degradation
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of butt-coupled fibers. For the longer-term measurement of bias stability, in the next step, we will
prepare a complete packaged device to improve the optical alignment stability.

5. Conclusions

Based on fluorinated polyimide, a novel EO polymer material was synthesized, and used for the
development of an EO polymer modulator with a coplanar electrode, which could provide efficient
poling and reduced DC drift. The EO polymer with fluorinated polyimide backbone had the advantages
of improved thermal stability and low absorption losses due to the C–H vibration overtone. The poling
process was optimized by limiting the maximum current flow during the stepwise voltage increase.
An EO coefficient of 8.42 pm/V was obtained from a polarization modulation device at 1550 nm
wavelength, which was quite high considering the DR1 chromophore attached to the fluorinated
polyimide. The MZ modulator was poled with a lower degree of poling because of the wide electrode
gap, and Vπ was measured to be 75 V with a 5-mm-long electrode, in the push–pull operation. From the
measurement of the bias-drift effect, we confirmed that the coplanar electrode could provide significant
improvement over the conventional vertical poling device.

To improve the performance of the EO polymer waveguide devices by maximizing the poling
efficiency, the device fabrication process must be enhanced so as to reduce the electrode gap. The poling
field should be increased, and to do so, the device must be fabricated without any defects causing
dielectric breakdown. As the commercial DR1 chromophore has a low EO effect, chromophores
with high dipole moments and hyperpolarizabilities should be incorporated as sidechains into the
fluorinated polyimides. Then, the EO coefficient can be improved, and EO polymer modulators with
low loss, high thermal stability, and low Vπ can be achieved based on the coplanar electrodes.
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