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Abstract: Although gallium oxide Ga2O3 is attracting much attention as a next-generation ultrawide
bandgap semiconductor for various applications, it needs further optical characterization to support
its use in higher-performance devices. In the present study, terahertz (THz) emission spectroscopy
(TES) and laser THz emission microscopy (LTEM) are applied to Sn-doped, unintentionally doped,
and Fe-doped β-Ga2O3 wafers. Femtosecond (fs) laser illumination generated THz waves based on
the time derivative of the photocurrent. TES probes the motion of ultrafast photocarriers that are
excited into a conduction band, and LTEM visualizes their local spatiotemporal movement at a spatial
and temporal resolution of laser beam diameter and a few hundred fs. In contrast, one observes neither
photoluminescence nor distinguishable optical absorption for a band-to-band transition for Ga2O3.
TES/LTEM thus provides complementary information on, for example, the local mobility, surface
potential, defects, band bending, and anisotropic photo-response in a noncontact, nondestructive
manner. The results indicated that the band bends downward at the surface of an Fe-doped wafer,
unlike with an n-type wafer, and the THz emission intensity is qualitatively proportional to the
product of local electron mobility and diffusion potential, and is inversely proportional to penetration
depth, all of which have a strong correlation with the quality of the materials and defects/impurities
in them.

Keywords: terahertz emission spectroscopy; laser terahertz emission microscopy; ultrawide bandgap
semiconductor; β-Ga2O3

1. Introduction

Gallium oxide (Ga2O3) is an attractive ultrawide-bandgap semiconductor for the use in a variety
of applications such as gas sensors, high-power electronics, and deep-ultraviolet (UV) photo-detectors [1–3].
In recent years, tremendous efforts have been made to improve material quality and device performance.
However, there remain many unsolved problems in the areas of defect reduction, passivation
improvement, impurity-doping, device processes, carrier dynamics, etc. Contributions to resolve
these issues require a new type of characterization tool, particularly one that operates in a noncontact,
nondestructive manner. Terahertz (THz) emission spectroscopy (TES) and laser THz emission
microscopy (LTEM) are emerging technologies that can detect ultrafast photocarrier dynamics and
responses in materials and devices [4,5] that are affected by electron mobility, surface potential, defects,
and band bending.
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Femtosecond (fs) laser illumination to materials generates THz waves due to the charge
displacement that occurs when the photons create free carriers, or when the materials have nonlinear
optical coefficients. In the former case, excitation via acceleration due to the built-in field inside the
material or carrier diffusion due to a concentration gradient causes excited electrons to translate rapidly
and generate transient photocurrents, which are the source of THz radiation. The THz waveforms
monitored in the time domain include early-stage carrier dynamics information on a time scale of
less than a picosecond. The dynamics-related information provided is different from that provided
by typical photoluminescence, electroluminescence, and laser-induced photocurrent characterization
methods [6]. We have reported several examples in which defect analysis [7], noncontact surface
potential estimation [8,9], and nondestructive evaluation of solar cells [10] are demonstrated and
shown that TES and LTEM are practical tools for semiconductor research and development. In the
present study, we employ TES and LTEM to study local ultrafast photocarrier dynamics in β-Ga2O3,
which has an ultrawide bandgap of approximately 4.7–4.9 eV [3,11–13]. As discussed later, the wide
bandgap semiconductors have narrow depletion layers with large surface potentials, which mean that
the THz emission strongly depends on the surface conditions and the dynamic behavior of the excited
carriers. Such information is essential to develop high-performance devices.

2. Terahertz Emission from Semiconductor Surfaces

Photons with energies larger than the bandgap create electron–hole pairs within the optical
penetration depth. The primary mechanism of THz wave generation in standard and widegap
semiconductors is attributed to the drift current generated by carrier acceleration from the built-in
field, whereas wave generation in narrow bandgap semiconductors is explained by ballistic hot carrier
diffusion [14,15]. The drift current is defined primarily by the built-in field, carrier mobility, and the
number of photocarriers. Here, one can assume that the only electrons contribute to generate the THz
waves, and the built-in field is approximated by the field at the surface EMax. The THz amplitude ETHz

is then written as [16]

ETHz ∝
∂J
∂t
∝

∆n∆v
∆t

∝ µeEMaxIP (1)

where J is photocurrent, ∆n is the number of the excited carrier, ∆v is the carrier velocity after the
transient time ∆t, which is typically less than 500 fs, µe is the electron mobility and IP is the number of
photons injected. When the optical penetration depth λL is close to or longer than the depletion layer
thickness w, this can be simplified as [16]

ETHz ∝ ±µe
φD

λL
IP, (2)

where φD is the diffusion potential. The sign changes with the sign of the potential. This formula
indicates that TES includes information on the photocarrier mobility and traveling direction, defects
close to the surface, and impurities at a resolution similar to that of the laser spot size. Thus, one
can interrogate such physics by combining TES/LTEM results with those from other characterization
tools such as the Kelvin force microscope (KFM), photoluminescence (PL), Raman spectroscopy, and
optical absorption.

3. Samples and Experiments

The five types of β-Ga2O3 crystals examined here are Sn-doped (010), Sn-doped (201),
unintentionally doped (UID) (010), UID (201), and Fe-doped (010), which were grown by Tamura
Corporation using edge-defined film-fed growth, and are labeled as #SnD-1, #SnD-2, #UID-1, #UID-2,
and #FeD, respectively. The UV-vis absorption study and terahertz time domain spectroscopy have
been reported in [17,18]. The sample specifications are listed in Table 1, together with other information
such as electron mobility, surface potential φS, and dielectric constants from the literature [19–23] and
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our estimates of depletion layer thickness w, EMax, and
∣∣∣∣µe

φD
λL

∣∣∣∣. It is worth noting that the thickness of
the depletion layers is in the order of 100 nm or shorter.

Figure 1 shows the schematics of typical n-type and semi-insulating Ga2O3 energy band structures.
Ga2O3 has various types of defects, such as oxygen vacancies, Ga vacancies, and their complexes.
There exist many levels, such as those from self-trapped holes, self-trapped excitons, and shallow
donors Sn and Si in n-type samples. These have activation energies from a few meV to several tens
of meV [22,24,25]. Although the information on Fe-doped Ga2O3 remains limited, the Fermi energy
is pinned at Ec-0.85 eV due to its deep acceptors [26]. However, no clear picture of the energy band
structure near the surface of Fe-doped β-Ga2O3 crystals has been provided thus far. Therefore, there
are two possibilities as depicted in Figure 1b. One is similar to that of an n-type semiconductor,
while the other is similar to that of Fe-doped InP. These two possibilities would cause positive and
negative diffusion potentials, respectively. We examine this question for the present case. The optical
penetration depth at a photon energy of 4.8 eV is estimated to be approximately 125 nm based on the
absorption measurement in [27]. Thus, Equation (1) is always valid. Photoluminescence spectra for all
samples are given in the Supplemental Material.
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femtosecond laser (pulse width: 100 fs, center wavelength: 800 nm, repetition rate: 80 MHz) is used 
as a laser source. The femtosecond laser pulses are divided into pump pulses and trigger pulses by 
using a beam splitter. To generate THz pulse, the surfaces of the samples are irradiated with the 
pump pulses at an incidence angle of 45 degrees through an optical lens, and the radiated terahertz 
waves are detected at an opposing 45 degrees angle of emission. The samples are mounted on 
computer-controlled x-y stage. The PL detector is placed at 90 degrees of prospect angle to the 
surface. The schematic drawing of those geometries is given in Figure 2b. The emitted THz waves are 
collimated and focused onto a detector by a pair of parabolic mirrors. We use a spiral type 
photoconductive antenna (PCA) fabricated on the low-temperature-grown (LTG) GaAs substrate 
(Hamamatsu Photonics) to detect the THz waves. THz signals in time-domain are acquired by 
varying the delay between the pump and trigger pulses. The amplitude of the THz wave emission is 
monitored using a lock-in amplifier. By fixing the time delay at the maximum amplitude of the THz 
emission and scanning the sample by the pump beam, the THz emission image can be obtained. The 

Figure 1. Typical energy band structures for (a) an n-type and (b) an Fe-doped sample.

Table 1. Sample specifications.

Samples Orientation Dopant Thickness
(mm)

n
(cm−3)

µe
(cm2/Vs)

φS
(eV)

w
(nm)

EMax
(MV/cm)

|µe
φD
λL
|

(a.u)

#SnD-1 (010) Sn 0.65 6.8 × 1018 45 a 1.63 b 16 1.9 13.66

#SnD-2 (201) Sn 0.65 1.8 × 1018 50 a 1.14 b 26 0.85 10.61

#UID-1 (010) UID 0.5 1.4 × 1017 80 a 1.63 b 113 0.28 24.38

#UID-2 (201) UID 0.5 3.8 × 1017 60 a 1.14 b 57 0.39 12.74

#FeD (010) Fe 0.5 - - - - - -
a [28], b [29].

Figure 2a shows an experimental setup for the THz emission measurements. A Ti:sapphire
femtosecond laser (pulse width: 100 fs, center wavelength: 800 nm, repetition rate: 80 MHz) is used as a
laser source. The femtosecond laser pulses are divided into pump pulses and trigger pulses by using a
beam splitter. To generate THz pulse, the surfaces of the samples are irradiated with the pump pulses at
an incidence angle of 45 degrees through an optical lens, and the radiated terahertz waves are detected
at an opposing 45 degrees angle of emission. The samples are mounted on computer-controlled x-y
stage. The PL detector is placed at 90 degrees of prospect angle to the surface. The schematic drawing
of those geometries is given in Figure 2b. The emitted THz waves are collimated and focused onto a
detector by a pair of parabolic mirrors. We use a spiral type photoconductive antenna (PCA) fabricated
on the low-temperature-grown (LTG) GaAs substrate (Hamamatsu Photonics) to detect the THz waves.
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THz signals in time-domain are acquired by varying the delay between the pump and trigger pulses.
The amplitude of the THz wave emission is monitored using a lock-in amplifier. By fixing the time
delay at the maximum amplitude of the THz emission and scanning the sample by the pump beam,
the THz emission image can be obtained. The laser beam diameters for TES and LTEM/PL are 500 mm
and 50 mm, respectively. The details are reported elsewhere [20,30–32].
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4. Results and Discussion

Figure 3 shows the THz emission properties of β-Ga2O3. We observe THz emissions from all of the
samples that we examined, although their amplitudes differ substantially. The sign of the amplitude of
#FeD is opposite those of the doped samples. This indicates that the excited electrons in the doped
samples travel inward to the substrates, whereas those in #FeD travel to the surface. This answers
the first question for the surface diffusion potential of the Fe-doped β-Ga2O3 by clarifying that the
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conduction band near the surface of #FeD bends downward. After the main pulses, there are certain
differences, which is attributed to the charge oscillation near the surfaces related to the capacitance of
the depletion layers. In the Fourier spectra, the lower frequency components are enhanced because we
used the spiral type PCAs. Since the electromagnetic waves propagate along the edge of the antenna,
resulting in the integration of the waveform in time domain [33,34], we cannot discuss the intrinsic
carrier dynamics in the β-Ga2O3 with the frequency spectra.
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Figure 3. (a) Time-domain waveforms of THz amplitude (ETHz) excited at 245 nm and corresponding
Fourier spectra for #UID-1 and #FE at a laser power of 30 mW. (c) The laser power dependence of the
intensity of ETHz with fits to the data. The intensity is defined at the maximum point of the waveforms
at around 5 psec. The lines in (b) are eye guides.

Sample #FeD is found to emit the strongest THz radiation at high influences. At low fluences,
its emission is similar to that of #UID-1. The amplitudes of samples other than #FeD increase with
saturation. This is often explained by the screening effect [35]. Since the electrons and holes move in
opposite directions in the depletion layer, the built-in field is screened. The fits are obtained using the
screening effect formula, ETHz = (E0F)/(F + Fsat), where ETHz is the amplitude of THz radiation, E0 is
the THz amplitude at the high fluence limit, F is the optical fluence, and Fsat is the saturation fluence.
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The estimated values for E0 and Fsat are listed in the Table 2. However, those parameters include
no important physical meaning because the emission mechanism is complicated in the case of the
semiconductor surface. For instance, #FeD exhibits complex dynamics. On the one hand, the depletion
layer of #FeD is thicker than those of the doped samples. This produces a weaker EMax. On the other
hand, µe is expected to be high because of the lower free electron scattering rate. Furthermore, the Fe
acceptors capture electrons from point defect donors, which may be excited. The excited electrons
are blocked at the surface, while those in the doped materials can travel inward. All of these issues
affect the dynamic screening effect and should be examined via more precise models and time-domain
simulations with a Monte Carlo simulation considering real parameters.

Table 2. Estimated parameters at an excitation wavelength of 245 nm.

Samples #SnD-1 #SnD-2 #UID-1 #UID-2 #FeD

E0 0.69 0.18 1.60 0.16 36.0

Fsat 0.28 0.07 0.12 0.06 3.5

The wavelength dependences of the waveforms are depicted in Figure 4. As the photon energy
crossing the bandgap increases, one can clearly see THz emission enhancement. TES thus discloses the
ultrafast nature of the photocarriers excited from the valence band to the conduction band. Note that
the PL and optical absorption measurements merely show the direct band-to-band transitions. The PL
results are given in Figure S1 in the Supplementary Material. Details of these dynamics are discussed in
later sections. Although weak emission is observed below the bandgap, this is explained by wavelength
broadening due to the short pulse width of the fs laser.
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The maximum intensities of ETHz for #UID-1 and #FeD are plotted at the measured three
wavelengths in Figure 5. Here to avoid the strong screening effect, the amplitudes measured at a laser
fluence of 0.04 mJ/cm2 are used. The intensity increases rapidly with decreasing wavelength. The
transition is explained by the broadening of the fs optical pulses. The laser pulse, in general, is regarded
to have a shape of hyperbolic secant function, and wavelength (λ)-dependent laser intensity IP(λ) is
expressed by

IP(λ) ∝ sech2(A(λ− λP)), (3)

where λP is the center wavelength of the laser, and A is a fitting parameter corresponding to the pulse
width. Thus, the intensity of ETHz is expressed by

|ETHz| ∝ IP

∫ λg

0
sech2(A(λ− λP))dλ, (4)
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where λg is the bandgap wavelength of the laser. The broken line in Figure 4 is the fit to the experimental
data of |ETHz| with A of 0.25 assuming the wavelength width of 7 nm at a half maximum for λg of
257 nm, which corresponds to an energy of 4.82 eV. The value agrees with the β-Ga2O3 bandgap
energy. The fit quantitatively explains that the THz emission amplitudes are defined by the number of
the photocarriers excited into the conduction bands, i.e., THz waves are emitted by the photocarrier
excitation. In other words, for the present case, the THz emission spectroscopy is a direct local measure
of the Ga2O3 bandgap for the surface layer within a thickness of about 100 nm.Photonics 2020, 7, x; doi: FOR PEER REVIEW  7 of 11 
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The anisotropic bandgap of (010) β-Ga2O3 has been reported by observing the anisotropic optical
absorption with the polarization of the laser [17]. Thus it is expected that the THz emission amplitude
depends on the polarization of the fs laser. Figure 6 gives the optical polarization angle dependence of
the emission amplitude. We observed the sinusoidal modulation of the THz emission amplitudes. Here,
we rotate the pump polarization angle α from 0◦ to 360◦ (0◦ and 90◦ correspond to p- and s-polarization,
respectively) using a half-wave plate instead of rotating the sample to keep the THz E field always
aligned in the same direction to the detector. Note that the spiral PCA has a strong anisotropic response
function to the THz E-field. Typically, this modulation is explained by nonlinear THz generation
through optical rectification (OR) based on the second-order nonlinear optical susceptibility, which is
observed in many semiconductors [36]. However, (010) β-Ga2O3 has the centrosymmetric plain [3], and
no strong THz generation due to the second order nonlinear susceptibility is expected [37]. In addition.
A small wavelength change on the order of a few nm strongly modulates the THz amplitude. Thus,
one can conclude that TES can measure the anisotropic bandgap of β-Ga2O3 directly.

The built-in surface field of doped Ga2O3 is much larger than those of conventional semiconductors.
The field EMax is roughly estimated by dividing φD by the depletion layer thickness w, which is
defined by,

w =

√
2εrε0φD

eND
(5)

where φD of a doped semiconductor can be approximated by the surface potential measured values via
KFM. The values of w are typically about 100 nm or less, which results in built-in fields that are much
stronger than those of the conventional semiconductors [38]. As given in Equation (2), the emission

amplitude is proportional to
∣∣∣∣µe

φD
λL

∣∣∣∣. All these parameters are intricately related to each other with the
surface states and impurities near the surfaces. The parameters discussed above are listed in Table 1.



Photonics 2020, 7, 73 8 of 11

They suggest that #UID-1 has the strongest emission of the doped Ga2O3 samples. The values agree
quantitatively with the intensities observed in Figure 2. The results indicate that TES is a useful tool for
nondestructive, noncontact analysis of the local electron mobility, surface potential, defects, etc.
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Figure 6. Pump polarization angle dependence of the THz radiation amplitude for Fe-doped (010) at
various pump powers and wavelengths. (a) illustrates the schematic configuration of the measurements.
The angle starts from the parallel to the [102] direction. (b) and (c) are measured at a wavelength of
245 nm and 260 nm, respectively.

Finally, we evaluate the #UID-1 wafer by LTEM. With a beam diameter of 50 µm at an fs laser
power of 50 mW, we scanned the laser beam on #UID-1 for a 5 mm × 5 mm area. The LTEM and PL
images are given in Figure 7a and 7b, respectively. The PL image was obtained at an fs laser power
of 20 mW at a wavelength of 365 nm, which corresponds to the UV luminescence as described in
Figure 1a [39]. Both images show a similar intensity distribution. The distribution is possibly attributed
to the sample holder tilt. The LTEM image of the normalized intensity divided by the PL intensity is
shown in Figure 7c. This suggests that the LTEM image corresponds to almost the self-trapped hole
distribution. A faint feature is also seen in the LTEM image, which might be caused by the surface
scratch marks.
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5. Conclusions

In summary, TES and LTEM have been applied to β-Ga2O3. The polarity change in the THz
amplitude revealed that the band near the surface of Fe-doped β-Ga2O3 bends downward, unlike
similar bands in n-type materials. It was also found that the emission intensity from the n-type β-Ga2O3

samples was proportional to
∣∣∣∣µe

φD
λL

∣∣∣∣. The wavelength and polarization dependences of the THz emission
also confirmed that anisotropic optical excitation from the valence to the conduction band played an
essential role in THz emission. It is also shown that the LTEM visualizes the self-trapped hole and a faint
surface potential distribution. These results have proven that TES and LTEM provide local information
on the mobility, surface potential, defects, and anisotropic photoresponse within the diameter of the fs
laser beam in a nondestructive, noncontact manner. PL and UV-vis sometimes provide less information
on band-to-band transitions [40,41]. Thus, one can probe local ultrafast photocarrier dynamics by
combining TES/LTEM with other characterization techniques such as KFM, nano-Raman spectroscopy,
nano-PL, and pump-and-probe measurements [42]. This is essential to semiconductor research and
development, especially with regard to wide bandgap semiconductors [43].
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