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Abstract: We studied a Spherically Radially Anisotropic (SRA) multilayer sphere with an arbitrary
number of layers. Within each layer permittivity components are different from each other in radial
and tangential directions. Under the quasi-static approximation, we developed a more generalized
mathematical model that can be used to calculate polarizability of the SRA multilayer sphere with
any arbitrary number of layers. Moreover, the functionality of the SRA multilayer sphere as a cloak
has been investigated. It has been shown that by choosing a suitable contrast between components of
the permittivity, the SRA multilayer sphere can achieve threshold required for invisibility cloaking.
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1. Introduction

Recently, electromagnetic cloaking has achieved great progress theoretically as well as experimentally.
In addition to the optical regime [1–4], many applications have been considered for the microwave
range of spectrum [3]. The first approach in this respect was the use of coordinate transformation to
control electromagnetic waves. In this method, the object that has to be cloaked is virtually transformed
into a point or a line. Using this transformation, the parameters required for cloaking coating,
i.e., permittivity and permeability, have been derived. Based on transformation optics, the design of
spherical cloak with isotropic multilayers has also been proposed [5].

Alternatively, another approach, called scattering cancellation and basic principle of scattering has
been proposed [6–10]. This cloaking technique requires plasmonic metamaterials as a cloak medium.
The scattering cancellation mechanism is very specific about the dimensions and material of the target
object. The object dimension has to be small compared to operating wavelength, in other words, it can
cancel the dominant scattering mode under quasi-static condition.

Radially-dependent cloaking methods using anisotropic shells and coatings have also been
investigated and employed for spherical and cylindrical shaped geometries [11–13]. Based on Mie
theory, cloaking models using multilayer anisotropic spherical shells have also been developed [14,15].
Under full-wave analysis, the analytical solution of electromagnetic (EM) scattering by radially
multilayered uniaxial anisotropic spheres placed in free space and all the field expansion coefficients
are expressed in the form of spherical vector wave functions [16]. However, only the EM scattered by
multilayered uniaxial anisotropic spheres is characterized and illustrated.

Motivated by Pendry’s cloak for perfect invisibility, the interaction of electromagnetic waves with
a coated anisotropic sphere, having radially anisotropic permittivity, as well as permeability, have been
studied [13]. An effective medium theory for radially-anisotropic magnetodielectric coated spheres
is proposed by Gao et al. [17]. They derive the wave equations for the coated sphere with dielectric
and magnetic anisotropies in both the core and the shell. The scattering problem of an anisotropic

Photonics 2020, 7, 52; doi:10.3390/photonics7030052 www.mdpi.com/journal/photonics

http://www.mdpi.com/journal/photonics
http://www.mdpi.com
https://orcid.org/0000-0002-8836-484X
https://orcid.org/0000-0001-5474-8952
https://orcid.org/0000-0001-9457-7617
http://dx.doi.org/10.3390/photonics7030052
http://www.mdpi.com/journal/photonics
https://www.mdpi.com/2304-6732/7/3/52?type=check_update&version=2


Photonics 2020, 7, 52 2 of 12

sphere has been studied numerically and analytically for parametric studies using the concept of
anisotropy ratio [18]. Kettunen et al. [19] have investigated how to achieve cloaking and magnification
using a single anisotropic cylindrical and spherical layer based on anisotropy ratio. Naqvi et al. [20]
considered this approach under the regime of non-integer dimensional space.

More recently, the concept of mantle cloaking based on the concept of cloaking by surface has
been presented in order to overcome the strict limitations and requirements that are mandatory
for metamaterial cloaking [7,21]. Theoretical investigations of this cloaking technique with ideal
assumptions as well as robust practical designs for 1-D, 2-D and 3-D geometries within FSS technology
have also been developed [21]. The idea and practical realization of a broadband mantle cloak, formed
by a subwavelength metasurface with both time- and frequency-domain analysis is proposed [22].
It is shown that drastic scattering reduction is achievable over a broad frequency range using active
non-Foster mantle cloak.

In this article, we present the model that calculates the effective permittivity and polarizability of a
multilayer anisotropic sphere using the transmission line method under the quasi-static limit. When the
condition of quasi-static approximation cases, the multipolar effects between the various anisotropic
layers that form the spherical structure can no longer be overlooked. Due to these multipolar effects,
several resonance peaks will occur at various wavelengths which depend on the thickness and
material of the layers, making the anisotropic multilayer structure actually visible. Each layer has
been considered as a different region and as having a distinct value of tensor permittivity. Laplace’s
equation has been solved for each region and an analytic solution has been derived in the form of
potential. It is considered that all permittivity components are positive and the whole structure is
placed in free space with vacuum permittivity ε0. It has been shown that the whole structure can
work as a cloak based on the contrast between radial and tangential permittivity components. All the
solutions have been performed up to three layers and obtained results are in good agreement with
previously presented works [23,24].

2. Formation

Let us consider a multilayer anisotropic sphere with radius ak surrounding the isotropic inner
core of the sphere shown in Figure 1. The radius of the outer layer is fixed and equal to a1 and the
internal radii may be written as [23,25].

ak =
N − (k− 1)

N
a1 (1)

The number of layers, N is an arbitrary number whereas k = 1, 2, 3......N.
With excitation from external electric field E = ẑ0E, the solution that satisfies Laplace’s equation

in an arbitrary kth region isotropic layer can be written as [19,26,27]

Φk = Bkr cos φ + Ckr−2 cos φ, (2)

whereas, for SRA layer, we obtained

Φk = Bkrνk cos φ + Ckr−νk−1 cos φ (3)

and:

ν =
1
2

(
−1 +

√
1 +

εt

εr

)
, (4)

where εt and εr corresponds to the tangential and radial permittivity components, respectively.
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Figure 1. Geometry represents the anisotropic multilayer sphere immersed in free space.

Let us consider a geometry composed of a (isotropic to anisotropic) multilayer sphere. Equation (2)
represents the potential of N-layers structure for kth isotropic subregion, and the consecutive
anisotropic layer is

Φk+1 = −Bk+1rνk+1 cos φ + Ck+1r−νk+1 cos φ. (5)

By applying boundary conditions, we have

Φk = Φk+1 r = ak+1 (6)

εk
∂rk
∂r

= εk+1
∂rk+1

∂r
r = ak+1. (7)

The resulting generalized algebraic equations for the case of isotropic-to-anisotropic can be written
in a matrix form as [28–31] (

Bk
Ck

)
= [Mk]

(
Bk+1
Ck+1

)
(8)

where

[Mk] =
1

(νk + 1)εk

(
Mk11 Mk12
Mk21 Mk22

)
(9)

and:

Mk11 = (2εk + νk+1εk+1) aνk+1−1
k+1

Mk12 = [−2εk + (νk+1 + 1)εk+1] a−νk+1−2
k+1

Mk21 = (νk+1εk+1 − εk) aνk+1+2
k+1

Mk22 = [εk + (νk+1 + 1)εk+1] a−νk+1+1
k+1 .
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Similarly, the generalized propagation matrix for two adjacent anisotropic layers of the sphere,
we obtained (

Bk
Ck

)
= [Pk]

(
Bk+1
Ck+1

)
(10)

where

[Pk] =
1

(2νk + 1)εk

(
Pk11 Pk12
Pk21 Pk22

)
(11)

and:

Pk11 = [(νk + 1)εk + νk+1εk+1] aνk+1−νk
k+1

Pk12 = [(νk+1 + 1)εk+1 − (νk + 1)εk] a−νk+1−νk−1
k+1

Pk21 = (νk+1εk+1 − νkεk) aνk+1+νk+1
k+1

Pk22 = [νkεk + (νk+1 + 1)εk+1] a−νk+1+νk
k+1 .

The generalized propagation matrix for the case of anisotropic-to-isotropic layers is(
Bk
Ck

)
= [Qk]

(
Bk+1
Ck+1

)
(12)

where:

[Qk] =
1

(2νk + 1)εk

(
Qk11 Qk12
Qk21 Qk22

)
(13)

and:

Qk11 = [(νk + 1)εk + εk+1] a−νk+1
k+1

Qk12 = [2εk+1 − (νk + 1)εk] a−νk−2
k+1

Qk12 = (εk+1 − νkεk) aνk+2
k+1

Qk12 = (2εk+1 + νkεk) aνk−1
k+1 .

When νk = νk+1 = 1, all above generalized expressions are reduced into the isotropic
multilayer sphere [23].

3. Special Cases

Considering all the layers of the structure, we obtain the following relationship(
B0

C0

)
= [M]×

( N−2

∏
i=0

[Pi]

)
× [Q]

(
BN
0

)
. (14)

When there is no reflected field C in the inner region, i.e., CN = 0.
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3.1. Case-1 : For Number of Layers (N) = 1

When we considered the case N = 1, the whole structure is reduced only to innermost layer
or core that consists of an isotropic sphere placed in free space and for that [P0] = 1 and [Q] = 1.
The expression of polarizability may be written as [23].

αP =
3Vε0

a3
1

M21

M11
, (15)

Where V is the volume of the sphere (V = 4πa3
1/3). From the definition of the polarizability, it is

convenient to derive the formula of the effective permittivity of the stratified structure.

εe f f = ε0 +
αP
V

1− αP
3ε0V

(16)

The normalized polarizability of a dielectric spherical object in free space, by considering the case
N = 1, we have

αP = 3Vε0
(ν1ε1 − ε0)

2ε0 + ν1ε1
. (17)

3.2. Case-2 : For Number of Layers (N) = 2

In case of N = 2, i = 0, 1, 2, 3, ..., [P0] = 1, the simplified solution of the above Equation (16) is(
B0

C0

)
= [M]× [Q]

(
B2

0

)
, (18)

where

[S] = [M]× [Q] =
1

3ε0

(
M11 M12

M21 M22

)
× 1

(2ν1 + 1)ε1

(
Q11 Q12

Q21 Q22

)
. (19)

So, we have the polarizability of two concentric anisotropic sphere

αP =
3ε0V

a3
1

S21

S11
(20)

and:

S11 =
1

3(2ν1 + 1)ε0ε1

(
M11Q11 + M12Q21

)
S12 =

1
3(2ν1 + 1)ε0ε1

(
M11Q12 + M12Q22

)
S21 =

1
3(2ν1 + 1)ε0ε1

(
M21Q11 + M22Q21

)
S22 =

1
3(2ν1 + 1)ε0ε1

(
M21Q12 + M22Q22

)
.

The normalized polarizability is

αP = 3
(ν1ε1 − ε0) [ε2 + (ν1 + 1)ε1] + [ε0 + (ν + 1)ε1] (ε2 − ν1ε1) (a2/a1)

2ν1+1

(2ε0 + ν1ε1) [ε1(ν1 + 1) + ε2] + [(ν1 + 1)ε1 − 2ε0] (ε2 − ν1ε1) (a2/a1)
2ν1+1 . (21)
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The corresponding polarizability of a homogeneous dielectric sphere with relative permittivity
εh is

αp = 3
(εh − 1)
(εh + 1)

. (22)

Hence, the effective permittivity εe f f ,p for the sphere may be written as

αp = 3
(εe f f ,p − 1)
(εe f f ,p + 1)

, (23)

where

εe f f ,p =
ε1ν1[ε1(ν1 + 1) + ε2] + ε1(ν1 + 1)(ε2 − ν1ε1)

(
a2
a1

)2ν1−1

[ε1(ν1 + 1) + ε2]− (ε2 − ε1ν1)
(

a2
a1

)2ν1−1 . (24)

3.3. Case-3 : For Number of Layers (N) = 3

For the case N = 3, the simplified algebraic equation may be written as(
B0

C0

)
= [M]× [P1]× [Q]

(
B3

C3

)
, (25)

where

[M]× [P1]× [Q] =
1

3ε0

(
M11 M12

M21 M22

)
× 1

(2ν1 + 1)ε1

(
P11 P12

P21 P22

)
× 1

(2ν2 + 1)ε2

(
Q11 Q12

Q21 Q22

)
. (26)

The derived expression with many products can be made more convenient by introducing an
arbitrary variable R, so

[R] = [M]× [P1]× [Q] (27)

and:

R11 =
1

3(2ν1 + 1)(2ν2 + 1)ε0ε1ε2

{
(M11P11 + M12P21)Q11 + (M11P12 + M12P22)Q21

}
R12 =

1
3(2ν1 + 1)(2ν2 + 1)ε0ε1ε2

{
(M11P11 + M12P21)Q12 + (M11P12 + M12P22)Q22

}
R21 =

1
3(2ν1 + 1)(2ν2 + 1)ε0ε1ε2

{
(M21P11 + M22P21)Q11 + (M21P12 + M22P22)Q21

}
R22 =

1
3(2ν1 + 1)(2ν2 + 1)ε0ε1ε2

{
(M21P11 + M22P21)Q12 + (M21P12 + M22P22)Q22

}
.

Moreover, the normalized polarizability is

αP =
3Vε0

a3
1

R21

R11
(28)



Photonics 2020, 7, 52 7 of 12

where

αP = 3
(A1 A2 A3) + (A4 A5 A3)(

a2
a1
)2ν1+1 + (A1 A6 A7) + (A4 A8 A7)(

a2
a1
)2ν1+1( a3

a2
)2ν2+1

(A9 A2 A3) + (A10 A5 A3)(
a2
a1
)2ν1+1 + (A9 A6 A7) + (A8 A7 A11)(

a2
a1
)2ν1+1( a3

a2
)2ν2+1 (29)

and:

A1 = ν1ε1 − ε0

A2 = ν2ε2 + (ν1 + 1)ε1

A3 = (ν2 + 1)ε2 + ε3

A4 = ε0 + (ν1 + 1)ε1

A5 = ν2ε2 − ν1ε1

A6 = (ν2 + 1)ε2 − (ν1 + 1)ε1

A7 = ε3 − ν2ε2

A8 = ν1ε1 + (ν2 + 1)ε2

A9 = ν1ε1 + 2ε0

A10 = (ν1 + 1)ε1 − 2ε0

A11 = (ν1 + 1)ε1 − 2ε0

A12 = ε1(ν1 + 1).

So, for the next iteration N = 3, the effective permittivity εe f f ,p for the sphere may be written as

εe f f ,p =
ν1ε1[(A2 A3) + A12(A5 A3)](

a2
a1
)2ν1+1 + ν1ε1[(A6 A7) + A12(A8 A7)](

a2
a1
)2ν1+1( a3

a2
)2ν2+1

(A2 A3 − A5 A3)(
a2
a1
)2ν1+1 + (A6 A7 − A7 A8)(

a2
a1
)2ν1+1( a3

a2
)2ν2+1 . (30)

4. Multilayer Sphere as a Cloak

If we want to obtain a design rule for an ideal cloak, that is εe f f = 1, which is already given in
the literature. We are considering a simpler approximative approach if the radius of the inner sphere
vanishes. We are using these approximations in effective permittivities for every iteration, k→ N and
ak → 0. Consider the iterative case of N = 2, the radius of the inner core of the sphere i.e., a2 = 0.
Inserting this into Equation (25)

εe f f ,p → ε1rν1. (31)

By choosing the anisotropy components such that

ε1t = κ1, ε1r =
1

2κ1 − 1
(32)

and then these chosen values are inserted into Equation (25). The resulting anisotropy ratio will be
ε1t
ε1r

= κ1(2κ1 − 1). For growing κ, ν1 → ∞ which implies

εe f f ,p → 1. (33)

It shows that the SRA sphere works as a cloak. Similarly, for the case of N = 3, radius of the inner
core a3 = 0 by using the above Equation (31), we have

εe f f ,p = ε2rν2, (34)
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which implies

ε2t = κ2, ε2r =
1

2κ2 − 1
. (35)

Let us choose the permittivity components that satisfy the invisibility condition for an arbitrary
kth number of layers.

εtk = κk, εrk =
1

2κk − 1
. (36)

5. Numerical Results and Discussion

In our manuscript, we numerically investigated the two different aspects of the multilayer
anisotropic homogenization model. In the first part, we observed that the normalized polarizability is a
function of the N number of layers of the structure. For that, we plotted (18), (22) and (30). During our
numerical test, we took the radius of an inner isotropic core equal a1 = 1, first anisotropic shell a2 = 0.5,
second anisotropic shell a3 = 0.25. We used three layers derivation of the multilayer anisotropic model
surrounding an isotropic core layer. For the validation of this model, we took the anisotropy ratio,
it is ν = {2, 3} such that, for two concentric SRA layers of the structure is ν1 = 2 and ν2 = 3 and vice
versa. We fixed the following value of permittivities are ε = {1, 2, 4, 6}. It has been used for a number
of layers N = {1,2,3}, it has also been observed, that the polarizability of the spherical dielectric core,
first and the second anisotropic shell is ap = 6.283, ap = 1.500 and ap = 1.189, respectively, shown
in Figure 2. Numerical results show the trend of the normalized polarizability approaches zero by
increasing the number of anisotropic layers.

In Figure 3, we described the behavior of inhomogeneous isotropic multilayer sphere. In this case,
when permittivity of inner layer ε1 = 2 and permittivity of cover layer ε2 = 4, polarizability has more
weight as compared to the other case, when permittivities of cover and inner layers are ε2 = 2 and
ε1 = 4 respectively. Hence, with an increasing number of layers in both cases polarizability approaches
to a negative value. When N = 2, a similar pattern has been observed for both cases of outer layer
permittivity, ε2 = 4 and ε2 = 2, respectively. We will continue inspecting this model of inhomogeneous
multilayer anisotropic sphere for cloaking applications.

0 20 40 60 80 100

N

1

2

3

4

5

6

7

e
ff

Polarizability

1
=2,

2
=4,

3
=6(single Layer)

1
=2,

2
=4,

3
=6(2 Layers)

1
=2,

2
=4,

3
=6(3 Layers)

Figure 2. Normalized polarizability of isotropic core surrounded by the Spherically Radially
Anisotropic (SRA) layers as a function of N number of layers, with the following parameters: ε1 = 2;
ε2 = 4; ε3 = 6; and anisotropic ratio is ν1 = 1 and ν2 = 3.
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-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

-1

e
ff

Polarizability

1
=2,

2
=4(no. of layers variable)

1
=4,

2
=2(no. of layers variable)

1
=2,

2
=4(2 layers)

1
=4,

2
=2(2 layers)

Figure 3. Normalized polarizability of the isotropic multilayer sphere as a function of the N number of
layers, with the following parameters: ε1 = 2; ε2 = 4; ν1 = 1 and ν2 = 1.

In the second part, we investigated the cloaking behavior using anisotropic multilayer sphere.
For the validation of this model, we took into account Equation (37) that shows the relationship between
radial and tangential permittivity components required for invisibility cloaking. Both components
were defined as functions of κ. The permittivity ratio becomes εt

εr
= κ(2κ − 1). The invisibility

cloaking condition is εt
εr
→ ∞, whereas κ → ∞. When we studied simultaneously increasing tangential

permittivities and decreasing radial permittivities, it worked like an ideal cloak shown in Figure 4.

0 20 40 60 80 100

rad

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ta
n

Cloak

Figure 4. The anisotropy ratios that make the intact radially anisotropic multilayer sphere invisible,
Equation (37), plotted on a linear scale.

Moreover, we also studied the coherent vision of the cloaking. We manufactured a model of the
isotropic layer that is surrounded by a homogeneous anisotropic multilayer sphere using COMSOL
Multiphysics (5.2 version). We described the potential distribution of the structure having different
parametric values such as radius of the inner core a = 0.25 m, first shell b = 0.5 m, second shell
c = 0.75 m and vice versa. Similarly, the tangential permittivity of the outer shell is ε1t = 8; second shell
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ε2t = 4; dielectric core ε3t = 1, and the radial permittivity of the outer core is ε1r = 0.008; second shell
ε2r = 0.035; and dielectric core ε3r = 1.

We selected relatively moderate anisotropy ratios ν = {15, 4.868} which are required to cloak the
inner isotropic core layer of the sphere. Figure 5 represents the potential distribution of the structure
in the xy-plane. The homogeneous multi-anisotropic layer makes the multilayer sphere invisible
when observed from the outside. Due to simultaneously large radial and small azimuthal permittivity,
the potential has a strong gradient at the origin, the structure is very sensitive to any perturbations
near the origin.

Figure 5. Potential distribution of a structure, where anisotropic multilayer sphere with tangential
permittivities ε1t = {8, 4, 1} and radial permittivities ε1r = {0.008, 0.035, 1} were taken.

6. Conclusions

In this paper, we studied the electrostatic response of the SRA multilayer sphere. A quasi-static
mathematical model has been presented that calculates the polarizability and effective permittivity
of the SRA multilayer sphere with any arbitrary number of layers. We obtained closed-form
expressions for the effective permittivity and consequently, the polarizability. The model has been
validated analytically by deriving the results that are already available in the literature for quasi-static
approximation. In addition, the working of the SRA multilayer sphere as a cloak has been investigated.
Cloaking is based on a certain relationship between radial and tangential permittivity components,
that can make the whole structure invisible. Using only a single and thick anisotropic layer around the
object that has to be cloaked, it is not possible to have the same value of permittivity everywhere inside
the anisotropic shell. In our idea, we discretized a single layer and divided it into a finite number of
layers. We assigned different values of permittivity corresponding to each layer and that described the
discretization for each layer.
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