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Abstract: We introduce a metasurface platform for nonreciprocal wave manipulation. We study
metagratings composed of nonreciprocal bianisotropic particles supporting synthetic motion, which
enable nonreciprocal energy transfer between tailored Floquet channels with unitary efficiency.
Based on this framework, we derive the required electromagnetic polarizabilities to realize a
metagrating supporting space wave circulation with unitary efficiency for free-space radiation and
design a microwave metagrating supporting this functionality. The proposed concept opens new
research venues to control free-space radiation with high efficiency beyond the limits dictated by
Lorentz reciprocity.
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Getting full control over light radiation requires materials with a vast range of characteristics.
However, nature only provides us with a limited set of materials that can be utilized in order to
manipulate electromagnetic waves. Artificial materials fill this gap by providing a rich platform to
realize effective material properties not readily available in nature. Metasurfaces, as an important
class of artificial materials, are two-dimensional arrays of artificially engineered subwavelength
scatterers that provide a versatile platform to engineer the flow of electromagnetic waves, with
promising applications from microwaves to optics [1–6]. Space-gradient metasurfaces are a special
subclass of these electrically thin layers, tailored to exhibit spatially varying optical responses, thus
providing a powerful tool to engineer the direction and wavefront of an incident wave in reflection
and/or transmission. These surfaces have found many applications, including bending the flow of
electromagnetic waves, cloaking, and sensing [7–13].

Although these devices have been driving significant excitement in the optics community, most of
the relevant proposals to date provide responses that are strictly bound by Lorentz reciprocity. Breaking
reciprocity opens a whole new set of functionalities that are impossible with reciprocal structures [14,15].
Different approaches can be employed to break reciprocity in these structures [16]. Magnetic gyrotropy
(magnetized ferrite) or electric gyrotropy (magnetized plasma) have been among the first proposals to
design nonreciprocal gradient metasurfaces (see, e.g., [17]). However, nonreciprocal metasurfaces based
on these materials usually lead to bulky, expensive, and difficult-to-integrate devices. As an alternative
approach, nonlinear gradient metasurfaces have been proposed for nonreciprocal anomalous refraction
or reflection (see, e.g., [18]). However, these structures are intensity-dependent and may, as a result,
distort the signal and not appeal several application areas.

Recently, the emerging field of time-varying metasurfaces has provided several interesting
opportunities to expand the realm of exotic light-matter interactions with metasurfaces [19–21],
including nonreciprocal responses [14,15]. In particular, it was shown that time-modulated gradient
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metasurfaces open new degrees of freedom for engineered nonreciprocal responses. This concept has
recently been employed to design nonreciprocal surfaces for optical isolation and circulation [22–24].
Although surfaces with spatio-temporal modulation address many of the challenges related to the
other approaches mentioned above, their functionalities are fundamentally limited by several issues:
because of temporal modulation, we can generally expect frequency mixing with associated signal
distortion [22–24]. Furthermore, dynamic modulation is an active approach that requires external
energy applied to impart the required modulation signals, and correspondingly bulky feeding networks
in the case of electro-optical modulations.

In this letter, we introduce nonreciprocal metagratings based on media in synthetic motion,
which overcome the abovementioned challenges. We first derive the minimum physical requirements
to realize such a platform, and then propose a design to implement unitary-efficiency free-space
circulation. In 1908, three years after Einstein presented the special theory of relativity, Minkowski
formulated the electrodynamics of moving media [25,26], which, at the time, was a mysterious problem
within the framework of classical physics. The first part of Minkowski’s theory deals with the invariant
nature of Maxwell’s equations, stating that Maxwell’s equations for a stationary medium are also valid
for a medium that moves uniformly at velocity v with respect to a stationary (fixed) reference frame.
Then, constitutive relations for moving media are determined utilizing the special theory of relativity,
assuming that the constitutive relations for the medium at rest are known [25,26].

D = εE + (εµ− ε0µ0)v×H,
B = −(εµ− ε0µ0)v× E + µH.

(1)

As expected, these constitutive relations are nonreciprocal in nature, showing opportunities to
be employed as building blocks of nonreciprocal surfaces. However, in order to get considerable
nonreciprocal response, the medium should be moving with a speed comparable to the speed of light
which is not practical. However, analogous nonreciprocal constitutive relations in stationary artificial
composite media, i.e., metamaterials at rest, may be obtained [27] by artificially engineering the
inclusion bianisotropy to synthesize the electromagnetic behavior of a moving medium. The required
coupling between electric and magnetic phenomena in this class of stationary engineered materials was
termed bianisotropic “moving” coupling. Based on this concept, we can make stationary inclusions,
which, as a function of the direction from which you look at them, respond electromagnetically as if the
particles move towards you or against you (or in another direction) with a controllable speed. In the
following, we present a platform based on bianisotropic moving particles for rerouting electromagnetic
waves in a nonreciprocal fashion. Furthermore, we show how such nonreciprocal surfaces can be
realized using stationary magnet-free inclusions.

Let us consider a two-dimensional array of bianisotropic moving particles located at a
distance h from a ground plane (Figure 1). We assume that the particles considered here can
only provide electric moment in the z direction and magnetic moment along x. The structure
is illuminated with a transverse magnetic (TM) plane wave with electric field component Einc =

E0(y cosθinc + z sinθinc) exp(− jk0 sinθincy + jk0 cosθincz). Here, η0 is the free-space wave impedance,
k0 is the free-space wavenumber, θinc is the incidence angle, and E0 is the amplitude of the incident
electric field. Because of this illumination, surface electric and magnetic currents will be excited on the
structure, which sustain the scattering from the array:

Je(x, y, z) = z SIz
eδ(z− h)

∞∑
m=−∞

∞∑
n=−∞

δ(x−ma)δ(y− nb) exp
(
− jky0nb

)
,

Jm(x, y, z) = x SIx
mδ(z− h)

∞∑
m=−∞

∞∑
n=−∞

δ(x−ma)δ(y− nb) exp
(
− jky0nb

)
,

(2)

where ky0n = k0 sinθinc +
2nπ

b ; δ(·) is the Dirac’s delta function; and a, b are the periodicities in the
x and y directions, respectively, and S = ab is the area of a unit cell. Here, Iz

e and Ix
m are the surface

electric and magnetic current densities on each unit cell. The radiated fields can be written in terms
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of Floquet modal expansion with electric field component E0n =
(
y− z

ky0n
kz0n

)
Θ0n exp

(
− jky0ny− jkz0nz

)
,

where Θ0n =
(
η0

ky0n
k0

Iz
e + Ix

m

)
cos(kz0nh). Here, kz0n =

√
k2

0 − k2
y0n is the wavenumber in the z direction

for the 0n mode (the first and second indices refer to the Floquet orders with respect to the x and
y axes), Iz

e and Ix
m are the surface currents, which can be written in terms of effective electric αzz

ee ,
magnetic αxx

mm, and bianisotropic moving polarizabilities αxz
me = αzx

em as Iz
e =

jω
S

(
αzz

eeEz
ext + αzx

emHx
ext

)
and Ix

m =
jω
S

(
αxz

meEz
ext + αxx

mmHx
ext

)
, where Ez

ext (Hx
ext) is the electric (magnetic) field in the absence

of the array. Assuming no Ohmic loss, passivity requires that the total radiated power carried
away from the metasurface through all Floquet channels equals the extinction power Pz

rad = Pext,

where the radiated and extinction powers read Pz
rad = 1

2 Re
{

k=∞∑
k=−∞

E0k ×
k=∞∑

k=−∞
H0k

∗}
· z and Pext =

1
2 Re

{
Je
∗
· Eext + Jm

∗
·Hext

}
, respectively [28]. Applying these conditions will impose the following

constraints on the effective polarizabilities of the inclusions:∣∣∣αzz
ee

∣∣∣2 n=∞∑
n=−∞

A0n + 2Re
{
αzz

eeα
zx
em
∗

n=∞∑
n=−∞

B0n

}
+

∣∣∣αzx
em

∣∣∣2 n=∞∑
n=−∞

C0n = − S
ωη0

Im
{
αzz

ee
}
,∣∣∣αzx

em

∣∣∣2 n=∞∑
n=−∞

A0n + 2Re
{
αzx

emα
xx
mm
∗

n=∞∑
n=−∞

B0n

}
+

∣∣∣αxx
mm

∣∣∣2 n=∞∑
n=−∞

C0n = − S
ωη0

Im
{
αxx

mm
}
,

αzz
eeα

zx
em
∗

n=∞∑
n=−∞

A0n + αzz
eeα

xx
mm
∗

n=∞∑
n=−∞

B0n +
∣∣∣αzx

em

∣∣∣2 n=∞∑
n=−∞

B0n
∗ + αzx

emα
xx
mm
∗

n=∞∑
n=−∞

C0n = − S
ωη0

Im
{
αzx

em
}
,

(3)

where
∣∣∣∣ k0
ky0n

∣∣∣∣2A0n = η0
k0

ky0n
B0n = η2

0
C0n = Re

{ k0
kz0n

}∣∣∣cos(kz0nh)
∣∣∣2.

Now, we can tailor the polarizability response to define the desired nonreciprocal light-matter
interactions. Depending on the defined functionality, bianisotropic particles with different
polarizabilities, satisfying (3), will be required. As an example, here we design a metagrating
that can operate as an ideal (i.e., with unitary efficiency) free-space circulator, realizing a surface
that directs all the incident wave from direction A to B, all the incident wave from B to C, and all
the incident wave from C back to A (Figure 1). First, we choose the periodicity so as to align three
diffraction orders with the directions of interest (i.e., b = λ/sin(ψ), where λ is the wavelength and ψ is
the angle of Floquet channels from the normal to the surface). In order to reroute all normally incident
waves from A towards B, first we need to nullify the reflection into the specular direction, which can
be achieved if Θ00 = E0. Next, we need to make sure that no scattering trickles towards diffraction
order C, which can be guaranteed if Θ0(−1) = 0. It can be shown that the required polarizabilities for
such functionality read.

η0 sinψαzz
ee = αzx

em =
1

η0 sinψ
αxx

mm =
S

j2ω
1

sinψ cos2(k0h)
. (4)

Substituting these polarizabilities into the third condition of (3), we can derive the design equation
cos2(k0h) cosψ = 4 cos2(k0h cosψ). As a second design step, we need to make sure that, if the layer is
illuminated from direction B, all the energy is transferred into the Floquet channel C and no scattering
happens towards A. It can be shown that in this case we need Θ00 = Θ0(−1) = Θ0(−2) = 0 (when
the excitation is from port B, 00, 0(-1), and 0(-2) Floquet channels are aligned with ports C, A, and B,
respectively). This corresponds to requiring that, when the metagrating is excited from port B, the
bianisotropic moving particles do not get excited at all. In this case, the incident wave only sees the
ground plane and, as a result, all the illuminated wave gets reflected into the Floquet channel C as
initially planned. It is quite interesting to note that, although the bianisotropic moving particles are
stationary, from an electromagnetic standpoint, they seem to move with the speed of the incident wave
away from B in the same direction, so that the incident wave never gets a chance to interact with them.
Finally, we need to make sure that, if we excite the metagrating from port C, the illuminated wave will
be fully directed into port A and no scattering will happen towards B or back to C. Using (4), it can be
shown that for this case Θ00 = 0 and Θ00 = Θ01

√
cosψ = −E0 cosψ (when the excitation is from port
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C, 00, 01, and 02 Floquet channels are aligned with B, A, and C, respectively). Under these conditions,
from an electromagnetic point of view, the layer seems to move in the direction antiparallel to the
incident wave and, as it interacts with it, all the illuminated wave gets redirected into port A.

To understand how the metagrating behaves versus frequency, here we model the polarizabilities
using the conventional Lorentz dispersion model which, near its resonance, can adequately describe
the dipolar response of small inclusions, i.e., αzz

ee = Aee
ω2

ee−ω
2− jωδee

, αzx
em = Aemω

ω2
em−ω

2− jωδem
, and αxx

mm =

Ammω2

ω2
mm−ω

2− jωδmm
, where Aee, Aem, and Amm are the amplitude coefficients and δee, δem, and δmm are the

loss factors. Here, we assume that the resonance frequencies are the same for all polarizabilities (i.e.,
ωee = ωem = ωmm = ω0). As an example, here we design the metagrating to circulate the free space
wave between three Floquet channels located 45 degrees apart (see Figure 1). Amplitude coefficients
Aee, Aem, and Amm can be calculated by substituting these polarizability expressions in (4) (note that,
here, as an example, we assume δee = 2δem = 4δmm = 0.4ω0). Figure 1b–d show the amplitude of
the reflected wave into different Floquet channels under excitation from different Floquet channels. It
can be seen that at resonance (i.e., ω = ω0), the surface is capable of circulating the space wave with
unitary efficiency, which is impossible to achieve using gradient metasurfaces.
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Figure 1. (a) Schematic of a nonreciprocal metagrating (side view). Amplitudes of the reflected wave
into different Floquet channels when exciting from (b) Port A, (c) Port B, and (d) Port C. For this specific
design, we assume ωee = ωem = ωmm = ω0 and δee = 2δem = 4δmm = 0.4ω0.

This concept is quite general, and different approaches can be taken to realize stationary particles
with the required bianisotropic moving coupling. A simple approach can be based on ferrite inclusions,
in order to get the required magnetic gyrotropy to break reciprocity, and combined with a proper set of
electric dipoles in order to emulate the electromagnetic properties of a real moving inclusion [27–30].
However, as mentioned above, such inclusions require a magnetic bias, resulting in bulky and poorly
integrable structures. Another recently proposed approach has been based on mimicking Faraday rotation
using dc current bias [31]. Following this approach, recently magnet-free nonreciprocal bianisotropic
inclusions were designed and utilized as the building blocks of nonreciprocal metasurfaces [32]. Here,
inspired by these works, we design an artificial stationary inclusion with bianisotropic moving coupling.
The inclusion is composed of a ring loaded with an ideal isolator, which allows rotational travelling wave
only in one direction beneath the ring. An electric dipole in the form of a wire strip has been located
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underneath the ring that, in conjunction with the directional rotating magnetic dipole, provides the
bianisotropic moving coupling. Based on this inclusion design, we simulate a nonreciprocal metagrating
that is capable of ideally circulating space waves between three Floquet channels located 45 degrees
apart. The designed metagrating is shown in Figure 2a. The results in Figure 2b show that the structure
nicely circulates the space wave between three ports. As it can be seen from the simulated scattering
parameters, despite the presence of realistic absorption loss due to the isolators used in the loops, the
performance is close to ideal. As it was shown in the theoretical analysis, the nonreciprocal metagrating,
in principle, can be designed to circulate space wave with unitary efficiency. Here, for the proof of
concept, we considered the case in which the ports are located 45 degrees apart, however it should be
noted that the involved ports can be located with almost 90-degree angular separation with respect
to each other while providing unitary efficiency. More efficient inclusions can be utilized in order to
provide the required nonreciprocal functionalities in a more efficient way.Photonics 2020, 7, x FOR PEER REVIEW 6 of 8 
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Figure 2. Array of bianisotropic moving particles designed to circulate space waves between three
Floquet channels located with 45 degree angular distance. (a) Nonreciprocal metagrating. Inset shows a
single inclusion composed of a loop loaded with an isolator to create one-way rotating magnetic dipole
and a wire strip providing the required electric dipole response. (b) Results for isolation achieved
between different Floquet channels. Geometric parameters of the design: outer radius of the loop is
3.53 mm, inner radius of the loop is 2.63 mm, g = 0.5 mm, b = 42.43 mm, a = 9 mm, h = 2.3 mm,
dh = 2.15 mm, lx = 1.75 mm, ly = 12.2 mm, the width of the electric dipole is 0.4 mm, dielectric
permittivity is 10.2, and loop is rotated for 15 degrees in the direction shown in the figure. The structure
is simulated using infinite periodic boundary conditions. Here, for the sake of simplicity, we consider
ideal lumped isolators.
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To conclude, in this paper we have introduced a new conceptual platform for nonreciprocal wave
manipulation with unitary efficiency. The proposed concept is based on nonreciprocal metagratings
composed of stationary inclusions synthesizing bianisotropic moving coupling, while being stationary.
As an example of nonreciprocal wave manipulation, we have shown that these metagratings can
perform nonreciprocal circulation for space waves with unitary efficiency. There are a few important
points that distinguish the proposed concept from other platforms presented for nonreciprocal wave
manipulation. The proposed platform does not require a continuous profile of spatio-temporal
modulation, but it simply consists of a periodic array of bianisotropic inclusions, where all the building
blocks are identical. They are stationary, and simply biased by a dc current to break reciprocity. It
was recently revealed how gradient metasurfaces suffer from fundamental bounds on conversion
efficiency [12,33,34], yet, in the proposed design there is no fundamental limit on coupling to one
diffraction order to the other [35], enabling a versatile platform for nonreciprocal wave manipulation
with large efficiency. In contrast to structures based on spatio-temporal modulation, in the proposed
design, no up- or down-conversion of frequency arises. The period in the array is comparable to the
wavelength, avoiding severe challenges to translate these concepts to higher frequencies. We also
envision similar concepts for nonreciprocal manipulation of acoustic waves based on similar principles.
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