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Abstract: An optical 90◦ hybrid based on an InGaAsP/InP deep-ridged 4 × 4 multimode interference
(MMI) coupler is proposed and fabricated. Manufacturing tolerances on structural parameters of
the 90◦ hybrid including multimode waveguide width and length, waveguide core thickness, and
refractive index are analyzed over the whole C-band using a three-dimensional beam propagation
method (3D BPM). The simulation results show that the 90◦ hybrid is insensitive to the interference
length with a deviation of 10 µm. However, the width fluctuations produce far stronger performance
variations than length fluctuations. The common-mode rejection ratios (CMRRs) are always above 40
dB, and the phase error (PE) is always below 2.5◦ with the fluctuations of the refractive index by 0.01
and the thickness by 0.1 µm of the core layer. The fabricated device exhibited a quadrature phase
response with a high common-mode rejection ratio of more than 25 dB and a small phase error of less
than 5◦ from 1545 nm to 1560 nm.
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1. Introduction

During the past few years, in order to catch up with the increasing global data traffic [1], coherent
optical communication [2] based on digital signal processing (DSP) was introduced. Thanks to the
advantages of high-performance photonic integrated circuits (PIC) [3] and ultra-high-speed circuits [4],
the real-time coherent optical operation rate of multi-channels can reach 500 Gb/s [5,6], which was
successfully realized in commercial use. PIC uses advanced modulation formats, for example, dual
polarization quadrature phase shift keyed (DP-QPSK), to provide a cheap way to achieve reliable optical
transmission and receiver system [7,8]. Coherent receivers are commercialized and standardized, and
they use two beams of light interference (one is modulated light with signal of polarization and phase
diversity; the other is an external local oscillator light source) for balanced detection. A 90◦ hybrid
is a key component in integrated coherent receiver [9–12]. Although some structures were reported
and described, multimode interference (MMI)-type 90◦ hybrids received considerable attention due
to their excellent performance in size, operating bandwidth, and polarization independence [13–15].
Through a series of design, the device works at high common-mode rejection ratio (CMRR; more
than 20 dB) and low phase error (less than 5◦) on the whole C-band. Silicon-based planar lightwave
circuit (PLC) and silicon photonics are widely used for hybrid integration [13,15]. However, InP-based
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integrated coherent receivers have higher responsivity and lower dark current on the C-band and
L-band. Furthermore, InP-based photonics can achieve a variety of monolithic integration [16]. In other
words, the 90◦ hybrid and photodetectors based on InP can exhibit monolithic integration through
the selective area growth (SAG), which can provide a smaller footprint in packages and eliminate the
complex alignments in the assembly process [17]. In this paper, all parameters affecting the 90◦ hybrid
process tolerance are discussed and analyzed comprehensively on the whole C-band. A deep-ridged
90◦ hybrid based on InP 4 × 4 MMI was fabricated, and weak oscillation in test results are discussed.

2. Device Concept

In this work, a deep-ridged InP optical 90◦ hybrid based on a 4 × 4 MMI coupler working on the
whole C-band is designed. Because of the exposed air on both sides of the waveguide core layer, the
deep-ridge waveguide has a high refractive index contrast and provides a strong confinement of the
optical field, which is a good choice for the compact integrated chip.

The hybrid structure and the deep-ridged waveguide structure are shown in Figure 1. The hybrid
contains four input ports 1/2/3/4 in region I, a multimode waveguide in region II, and four output
channels 1/2/3/4 in region III. Taper waveguides are incorporated to convert spot size.
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Figure 1. (a) The three-dimensional (3D) stereogram of the 90◦ hybrid structure and (b) the cross-section
of the waveguide structure.

Input ports 1 and 3 carry a modulated optical signal with polarized phase information and an
amplified local oscillator without modulation, respectively. The two beams interfere with each other
in the multimode waveguide, and the relative phases of the output channels are 0◦, 90◦, −90◦, and
180◦, respectively. The output 1 and 4 channels are subtracted to obtain the in-phase component of
the QPSK signal, which is called the I-channel. The output 2 and 3 channels are subtracted to obtain
the quadrature component of QPSK signal, which is called the Q-channel. If signal light and local
oscillation light are input simultaneously, the two sources of light will interfere with each other, and
the output power of the four output channels will oscillate with the phase difference between the two
input light beams. The field distributions and the relationships are shown in Figure 2. By integrating
two pairs of balanced photodetectors with the output ports 1,4 and 2,3, the photo-generated currents
are detected, and the corresponding phase information can be demodulated.
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According to the self-imaging principle, the light beam will generate multimode light fields in the
multimode interference region [18]. Lπ is defined as the beat length between the two lowest-order
modes, which can be expressed as

Lπ �
π

β0 − β1
�

4nrWe
2

3λ0
(1)

where β0 and β1 are the propagation constants of the fundamental mode and the first-order mode,
respectively, nr is effective refractive index, and λ0 is the working wavelength of the device. Here, we
chose 1.55 µm. For the 4 × 4 MMI, the first length where four images appear is

L =
3
4

Lπ (2)

where We is the effective width of the MMI, considering the lateral penetration depth of each mode
field, which associates with the Goos–Hähnchen shifts at the ridge boundaries. For high-contrast
waveguides, the penetration depth is very small; thus, the effective width is

We ≈W (3)

Based on Equations (1)–(3), the width and length of the 4 × 4 MMI can be calculated. The upper
cladding and the substrate are InP materials, while the refractive index is 3.17. The core layer of the
deep-ridge waveguide is InGaAsP (1.05 Q), while the refractive index is 3.25. The thicknesses of the
upper cladding and core layer are 1.5 µm and 0.5 µm, respectively. In this work, the width of the
single-mode waveguide is 2.6 µm. That is, when the ridge width is equal to 2.6 µm, the mode refractive
indices of TE and TM are equal, and the hybrid can achieve polarization insensitivity. The mode
refractive index of the single-mode waveguide, nr ≈ 3.18, is calculated by a commercial software called
fimmwave. The hybrid consists of a multimode waveguide with a width of 20 µm and a length of
842 µm, four input single-mode waveguides (channels 1 and 3 are useful channels) and four output
single-mode waveguides with a width of 2.6 µm and a length of 200 µm. In order to reduce the loss
and phase error caused by mode mismatch between the single-mode waveguide and the multimode
waveguide, a tapered waveguide is introduced, the width of which changes from 2.6 µm to 3.7 µm.
The subsequent simulation and fabrication are all based on the structure parameters introduced above.

3. Simulation and Manufacturing Tolerance Analysis

The three-dimensional beam propagation method (3D BPM) of the commercial software called
R-soft is used to simulate and calculate the field distribution of the hybrid. The 3D BPM, which is based
on the finite-difference beam propagation method (FD-BPM), is suitable for unidirectional transmission
waveguides with large cross-section [19]. In this research work, the refractive index and thickness
of the core layer, as well as the width and length of the multimode waveguide, were simulated and
analyzed to better understand the influence of these parameters on performances of the hybrid over
the whole C-band.

The performance of an optical 90◦ hybrid is often quantified in terms of the common-mode rejection
ratio (CMRR) and phase error (PE) [12,13]. The former CMRR is defined as −20 log[p1 − p4/p1 + p4]

and −20 log[p2 − p3/p2 + p3], where p1, p2, p3, p4 are the power at each output channel 1, 2, 3, 4, which
indicates the imbalance of I and Q channel. PE is the offset from standard deviation of the four output
channels 1, 2, 3, 4, which is 0◦, 90◦, −90◦, and 180◦, respectively. It directly reflects the complexity on
demodulation of the phase information in the input signal light.

In our laboratory, InP and InGaAsP are grown on the InP substrate by metalorganic chemical
vapor deposition (MOCVD). The thickness and refractive index of growing materials can be strictly
controlled. In this part, the worst conditions in which the refractive index and thickness of the core
layer are reduced by 0.01 and 0.1 µm are simulated and analyzed. As shown in Figure 3, when the
refractive index is reduced by 0.01, the simulated CMRRs are always above 40 dB and PEs are always
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below 2.5◦. The hybrid is insensitive to the refractive index of the core layer. As shown in Figure 4,
when the thickness of the core layer is reduced by 0.1 µm, the simulated CMRRs are always above
40 dB and PEs are always below 5◦. These results completely satisfy the optical internetworking
forum (OIF) standard which is the international standard for optical 90◦ hybrids. Thus, we can get a
conclusion that the error of material growth by MOCVD can be neglected.
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In the process of graphic transfer, lithography often directly determines the actual size of the
device. The actual size of the fabricated hybrid is determined by the photolithography process, which
can be easily affected by the quality of photoresist, exposure conditions, and environmental conditions.
Under normal conditions, the size deviation of the fabricated devices is about 1 µm. Because the MMI
is sensitive to width, the changes in CMRRs and PE were simulated and analyzed on the C-band
when the width fluctuated from 0.1 µm to 0.3 µm. Figures 5 and 6 show the influences of different
multimode waveguide widths on the CMRRs and PE. The widths were 19.7 µm, 19.8 µm, 19.9 µm,
20.1 µm, 20.2 µm, and 20.3 µm, respectively. Due to the deviation of the width, the field distribution
in the multimode interference region changed, and the optimal interference length changed with the
square rule. As shown in Figure 5, when the width of hybrid increased from 19.7 µm to 20.3 µm, the
CMRRs on the C-band basically remained above 20 dB, and they showed a trend of increasing before
decreasing, even exceeding 30 dB closer to 20 µm. When the width increased from 19.7 µm to 19.9 µm,
the CMRRs over the whole C-band decreased with the increase in wavelength, and the opposite result
could be found from 20.1 µm to 20.3 µm. When close to 20 µm, the rate of rise or fall increased. The
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maximum value of CMMRs varied with the width of the MMI. In other words, the fabricated devices
which deviate from the design value may continue to work at other wavelengths. In summary, we can
conclude that there is little influence on CMRRs with width changes within 0.3 µm.Photonics 2019, 6, x FOR PEER REVIEW 5 of 11 
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However, another key parameter, PE, was more sensitive to the width. When the width increased
from 19.7 µm to 20.3 µm, the PE decreased before increasing. From 19.8 µm to 20.2 µm, the PE was
less than 5◦ over the whole C-band, which indicates that the hybrid had the properties of a low error
code rate. However, at 19.7 µm and 20.3 µm, the PE could only be kept within 5◦ on partial bands.
When the width was 19.7 µm, the PE was less than 5◦ in the wavelength range of 1.53 µm to 1.545
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µm, and only parts of the channels from 1.545 µm to 1.56 µm were less than 5◦. The PE reached 10◦

at 1.57 µm but only 1.2◦ at 1.53 µm. On the contrary, when the width was 20.3 µm, the PE was less
than 5◦ in the wavelength range of 1.55 µm to 1.57 µm, and only parts of the channels were less than
5◦ in the wavelength range of 1.535 µm to 1.55 µm. From 1.53 µm to 1.535 µm, the PE increased
exponentially and reached 17.5◦ at 1.530 µm but only 2.5◦ at 1.57 µm. In terms of PE, only a 0.2-µm
tolerance of device width could be applied to the whole C-band. This is because, with the change in
hybrid width, the center wavelength corresponding to the tolerable phase error seriously shifted. The
band corresponding to the hybrid with the width of 19.7 µm and 20.3 µm was not completely on the
C-band. However, on the band with wavelength less than 1.53 µm or exceeding 1.57 µm, the PE at 19.7
µm or 20.3 µm could be within 5◦.

In addition, we simulated the changes in CMRR and PE on the C-band when the length of the
interference region fluctuated from 5 µm to 10 µm (in the simulation, the corresponding length of the
hybrid with a width of 20 µm was 842 µm). As shown in Figures 7 and 8, the interference lengths were
832 µm, 837 µm, 847 µm, and 852 µm. On the whole C-band, high CMRRs remained above 30 dB, and
a small PE remained within 2.5◦. The interference length with a range of 10 µm had no effect on the
performance of the device. Therefore, in this process, we could adjust the interference length to reduce
the influence of width variation on device performance.
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The normalized output power of three different types of 1 × 2 beam splitters on the C-band was
simulated to compare the bandwidth. Figure 9a–c shows the normalized output power of a 1 × 2 beam
splitter with general, paired, and symmetrical interference on the C-band, respectively. In our devices,
the 1 × 2 beam splitter was used as a 3-dB power divider; thus, we chose an output power of 0.4 to 0.5
as a valid output. The simulation results showed that the beam splitter with symmetrical interference,
which had a maximum bandwidth of 160 nm from 1.47 µm to 1.63 µm, was the best choice. Therefore,
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the symmetrical interference beam splitter could guarantee high-power uniform beam splitting when
detecting the band beyond the C-band.
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4. Fabrication

The optimized optical 90◦ hybrid was fabricated in our processing platform. Here, we designed
two different schemes to test the different performance of the hybrid, which were hybrids with and
without a delay line. The length of the designed delay line (548 GHz) was 3.6 mm. The waveguide
materials were grown on the InP substrate by metalorganic chemical vapor deposition (MOCVD).
The InP buffer layer was grown prior to depositing the core layer. Plasma-enhanced chemical vapor
deposition (PECVD) was used to deposit an approximately 1-µm-thick silicon dioxide film on the
sandwich structure as a hard mask. Then, the mask pattern was made using ultraviolet lithography
technology. The process of SiO2 etching and InP etching was easily performed via inductively coupled
plasma (ICP) etching, and the InP etching was used to form an approximately 4-µm-thick deep-ridge
InP waveguide. Finally, a 1-µm-thick SiO2 layer was deposited on the wafer by PECVD technology.
Figure 10 shows the structure diagram and scanning electron microscope image of the hybrid with a
delay line.
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5. Measurements and Result Analysis

The test bench set-up for testing the fabricated 90◦ hybrid is shown in Figure 11.
Polarization-maintaining fibers (PMFs) were used for device connecting and chip coupling. The
wavelength of the tunable laser was tuned from 1530 nm to 1565 nm. The polarization of the beam
was controlled in TE mode via a polarization controller (PC). The fused tapering fiber and the device
were aligned precisely by means of a six-dimensional coupling system. A coupling efficiency of about
20% was obtained experimentally. The output signal was separated into two beams by using a beam
splitter (BS). One beam was incident on the optical power meter to optimize the coupling efficiency,
and the other one went into the optical spectrometer to measure the spectral response of the fabricated
90◦ hybrid.
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The key parameters including PE and CMRRs were tested for the hybrid with a delay line and
without delay line [20]. By using a delay line, the phase difference between the two input beams can
be adjusted by the wavelength. The measured transmission spectrum of the fabricated 90◦ hybrid
is shown in Figure 12a, and a partial amplification is shown in Figure 12b. Among the four output
channels, an orthogonal phase relationship was observed. A periodic weak oscillation in the measured
spectrum was observed in Figure 12b. Back reflection was the most probable reason. This kind of weak
oscillation may affect the accuracy of the tested PE.
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In this work, the location where weak oscillation occurred was calculated and analyzed. Suppose
the cavity length between the two reflective surfaces is L. According to the theory of cavity resonance,
the frequency period of noise oscillation in the cavity can be obtained as follows:

∆ f =
c

2nL
(4)

where ∆ f is the frequency period of noise oscillation, and n is the refractive index of the waveguide.
Combined with ∆λ = c

f 2 ∆ f , the relationship between wavelength period and cavity length can be
expressed as

∆λ =
c2

2nL f 2 (5)

where c = 3× 108 m/s, f = 200× 1012 Hz, and the measured wavelength interval ∆λ ≈ 0.1 nm, as shown
in Figure 12b. If the refractive index n ≈ 3.19, then the cavity length L ≈ 3.6 × 10−3 m = 3.6 mm. The
cavity length is exactly equal to the length of the delay line we designed. It can be concluded that
periodic weak oscillation occurred between the two ends of the delay line, which is in good agreement
with the theoretical calculation. Some scattering impurities or defects in the processing may have
caused this phenomenon.

The PE can be calculated from the wavelength shift of the measured spectral response. Figure 13
shows the calculated relative PE of the fabricated 90◦ hybrid, which was less than 5◦ in a range from
1545 nm to 1560 nm and less than 7◦ on the whole C-band. The measured results are close to the
theoretical calculation. The CMRRs of the I/Q channel were measured from input ports 1 or 3, which is
shown in Figure 14. The CMRRs of the fabricated 90◦ hybrid were better than 25 dB on the whole
C-band, which allows its use in a coherent receiver.
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6. Conclusions

In this paper, the manufacturing tolerances on structural parameters of a 90◦ hybrid were
systematically analyzed over the whole C-band by means of the three-dimensional beam propagation
method. A commercial software called R-soft was used. The structural parameters including
multimode waveguide width and length, core layer thickness, and refractive index were investigated.
The simulation results showed that the 90◦ hybrid was insensitive to the interference length, refractive
index, and core layer thickness with deviations of 10 µm, 0.01, and 0.1 µm, respectively. The CMRRs
were always above 40 dB, and the phase error was always below 2.5◦ with the fluctuation. However,
the width fluctuations produced far stronger performance variations than the length fluctuations. A
90◦ hybrid based on an InGaAsP/InP deep-ridged 4 × 4 MMI was designed and fabricated, showing
good performance and fabrication tolerance.
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