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Abstract: The achievement of wideband high-gain optical parametric amplification has not been
shown in micrometer-scale cavities. In this paper we have computationally investigated the optical
parametric amplification process in a few micrometer-long dispersive microresonator. By performing
a gain medium resonance frequency dependent analysis of optical parametric amplification, we have
found that it is possible to achieve a wideband high-gain optical amplification in a dispersive
microresonator. In order to account for the effects of dispersion (modeled by the polarization damping
coefficient) and the resonance frequency of the gain medium on optical parametric amplification,
we have solved the wave equation in parallel with the nonlinear equation of electron cloud motion,
using the finite difference time domain method. Then we have determined the resonance frequency
values that yield an enhanced or a resonant case of optical parametric amplification, via gain factor
optimization. It was observed that if the microresonator is more dispersive (has a lower polarization
damping coefficient), then there are more resonance frequencies that yield an optical gain resonance.
At these gain resonances, a very wideband, high-gain optical amplification seems possible in the
micron scale, which, to our knowledge, has not been previously reported in the context of nonlinear
wave mixing theory.

Keywords: optical amplification; microresonator; nonlinear wave mixing; gain resonance;
parametric amplifier

1. Introduction

Parametric amplification has been studied extensively in the context of nonlinear optics. It has
been well established that we can amplify a relatively low power input wave, by using another wave
of high intensity, which is called the pump wave, in a nonlinear medium [1–4]. This theory has been
mostly investigated experimentally rather than computationally. This is because the concept is almost
always studied in the micrometer or nanometer wavelength range, and yet the required medium length
to observe any significant nonlinear effect is in the millimeter or centimeter range, which requires
an extremely high computational cost for obtaining meaningful results. Furthermore, based on the
current concept of parametric amplification, it is impossible to achieve a wideband non-negligible
wave amplification in a few micrometer-sized gain medium or a cavity, as the required gain medium
length for significant parametric amplification is mostly on the order of centimeters. For this reason, the
concept of parametric amplification is not feasible to be used for optical microsystems. However, if it can
be achieved in the micrometer scale, super gain optical parametric amplification can lead to much more
efficient macroscale high power devices by being engineered to operate in an array form to maximize
optical interference, such as laser beam welding machines and petawatt lasers that are used for particle
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acceleration and fusion reactions. Another potential technological advancement can be in the field of
optical antennas via the generation of a supercontinuum for achieving ultra-wideband operation.

In this paper, we have carried out a computational analysis that aims to show that it is possible
to amplify a low power input wave by mixing it with an intense pump wave of ultrashort duration,
in a wide range of frequencies and with a very large gain coefficient, inside a low-loss microcavity
of several micrometers of length. This can be achieved by using a gain medium whose resonance
frequency matches with one of the gain resonances of the amplification in a microcavity. The gain
resonances of an optical amplification in a microcavity can be determined by solving the wave equation
in parallel with the equation of nonlinear electron motion. For this reason, we will start our analysis by
investigating wave propagation in nonlinear dispersive media.

2. Wave Propagation in Nonlinear Dispersive Media

Nonlinearity arises when at least one of the waves that propagate in a medium has a very high
intensity. Such high intensities are only possible with very short duration pulses, such as the pulses of
a mode locked laser, which have durations on the scale of picoseconds or femtoseconds [5,6]. When
high intensity pulses have very short durations, which is almost always the case, we must account for
the wave dispersion, as the impulse response of the charge polarization density of many dielectric
media last much longer in duration than the pulse durations of such high intensity pulses [7–10].
One can solve the wave equation in parallel with the nonlinear equation of electron cloud motion
for a nonlinear dispersive medium. This is because the parameters such as the resonance frequency,
damping coefficient, atom density, and atomic diameter have known values for most solids, which
makes the simulation results much more meaningful and precise. In order to determine the time
variation of the electric field in a nonlinear dispersive medium, we need to solve the following two
equations [1] (see Figure 1):
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petawatt lasers that are used for particle acceleration and fusion reactions. Another potential 
technological advancement can be in the field of optical antennas via the generation of a 
supercontinuum for achieving ultra-wideband operation. 

In this paper, we have carried out a computational analysis that aims to show that it is possible 
to amplify a low power input wave by mixing it with an intense pump wave of ultrashort duration, 
in a wide range of frequencies and with a very large gain coefficient, inside a low-loss microcavity of 
several micrometers of length. This can be achieved by using a gain medium whose resonance 
frequency matches with one of the gain resonances of the amplification in a microcavity. The gain 
resonances of an optical amplification in a microcavity can be determined by solving the wave 
equation in parallel with the equation of nonlinear electron motion. For this reason, we will start our 
analysis by investigating wave propagation in nonlinear dispersive media. 

2. Wave Propagation in Nonlinear Dispersive Media 

Nonlinearity arises when at least one of the waves that propagate in a medium has a very high 
intensity. Such high intensities are only possible with very short duration pulses, such as the pulses 
of a mode locked laser, which have durations on the scale of picoseconds or femtoseconds [5,6]. When 
high intensity pulses have very short durations, which is almost always the case, we must account 
for the wave dispersion, as the impulse response of the charge polarization density of many dielectric 
media last much longer in duration than the pulse durations of such high intensity pulses [7–10]. One 
can solve the wave equation in parallel with the nonlinear equation of electron cloud motion for a 
nonlinear dispersive medium. This is because the parameters such as the resonance frequency, 
damping coefficient, atom density, and atomic diameter have known values for most solids, which 
makes the simulation results much more meaningful and precise. In order to determine the time 
variation of the electric field in a nonlinear dispersive medium, we need to solve the following two 
equations [1] (see Figure 1): ∇ 𝐸 − 𝜇 𝜀 𝜕 𝐸𝜕𝑡 = 𝜇 𝜎 𝜕𝐸𝜕𝑡 + 𝜇 𝜕 𝑃𝜕𝑡  (1) 

𝜕 𝑃𝜕𝑡 + 𝛾 𝜕𝑃𝜕𝑡 + 𝜔 𝑃 − 𝜔𝑁𝑒𝑑 𝑃 − 𝜔𝑁 𝑒 𝑑 𝑃 = 𝑁𝑒𝑚 𝐸 (2) 

𝑃: Polarization density (C/m ), 𝑒: Electron charge, m: Electron mass, 𝐸: Electric field ( ). 
In Equation (2) we have made an expansion up to the third order of the nonlinear charge 
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Figure 1. A nonlinear dispersive medium placed in a cavity. 

Figure 1. A nonlinear dispersive medium placed in a cavity.

In Equation (2) we have made an expansion up to the third order of the nonlinear charge
polarization density as higher order terms will be negligibly small. For a dielectric medium, the
electrical conductivity can be assumed as negligible (σ ≈ 0). Some typical values for solid dielectric
media are [1].

Resonance f requency : f0 = 1.1× 1015 Hz

Damping rate : γ = 1× 109 Hz, Electron density : N = 3.5× 1028/m3

Atomic diameter : d = 0.3 nanometers
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Consider the wave E2 that has a very high amplitude, without the presence of the low amplitude
wave E1, the pair of equations that describe the propagation of E2 in a nonlinear dispersive medium is
given as

∇
2(E2) − µ0ε∞

∂2(E2)

∂t2 = µ0σ
∂(E2)

∂t
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∂2P2
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+ω0
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2

Ned
(P2)

2
−
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2

N2e2d2
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3 =
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m
(E2) (3b)

P1 : Charge polarization density due to the electric field E1
P2 : Charge polarization density due to the electric field E2
ε∞ : Background (infinite spectral band)permittivity.
Now assume that E1 and E2 are propagating together in the same nonlinear dispersive medium

(see Figure 2). In this case the pair of equations that represent the total electric field propagation is
given as

∇
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Figure 2. Two waves are propagating through a nonlinear dispersive medium placed in a cavity.

We want to determine the propagation of the low amplitude wave E1 in the presence of the high
amplitude wave E2; in other words we want to determine the propagation of E1 when there is an energy
coupling from E2 as a result of the nonlinear interaction. In order to do that we subtract Equations (3a)
and (3b) from Equations (4a) and (4b) respectively, which gives us

∇
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From Equations (3a), (3b), (5a) and (5b) we can see that E2 and E1 are coupled to each other. Based
on Equations (5a) and (5b), we will investigate whether it is possible to amplify the low power electric
field E1, by drawing energy from a low loss microcavity that is energized by the high-power electric
field E2.
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3. Optimization of Optical Parametric Amplification Gain Performance

Goal: Maximize the stimulus wave magnitude |E1|with respect to the resonance frequency ( f0)
of the interaction medium, with the high power pump wave and the low power stimulus wave time
variations at the cavity input (excitations) respectively being (see Figure 3)

E2
(
x = xinput, t

)
= A2 cos(2π f2t +ψ2)

(u(t) − u(t− ∆T2)) (u(t) : Unit step f unction)

E1
(
x = xinput, t

)
= A1 cos(2π f1t +ψ1)(u(t) − u(t− ∆T1)) (A2 � A1 , ∆T1 � ∆T2)
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The equations that need to be solved at each iteration of the optimization process are given as

∇
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−
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{
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3 + 3P1
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2
}
= Ne2

m E1( f0)

At each iteration, we use an update equation based on Newton’s method.

f0,k+1 = f0,k − ρk

∣∣∣∣E1
(

f0,k
)∣∣∣∣∣∣∣∣E1

(
f0,k

)∣∣∣∣− ∣∣∣∣E1
(

f0,k−1

)∣∣∣∣
(

f0,k − f0,k−1

)
, k = 1, 2, . . .

With the step size ρk being updated at each iteration as (optimized by trial and error for
fast convergence).

ρk = 1.467
(log |

|E1( f0,k)|
|E1( f0,k)|−|E1( f0,k−1)|

| )/( |
|E1( f0,k)|

|E1( f0,k)|−|E1( f0,k−1)|
|)

We choose the left cavity wall as an optical isolator and the right cavity wall as an optical
bandpass filter.
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4. Finite Difference Time Domain Formulation Based Solution of the Gain Factor Optimization
Problem in Optical Parametric Amplification

We can discretize Equations (3a), (3b), (5a) and (5b) using the finite difference time domain method
as shown in Equations (6a), (6b), (7a) and (7b), at each iteration of the optimization problem. Our
first aim is to discretize Equations (3a) and (3b) and solve for E2(i, j + 1, k) i.e., the value of E2 at a
given point at the next time step. Since E2 is coupled to P2, we first solve for P2(i, j + 1, k) and then
substitute it into the equation for E2(i, j + 1, k). We keep on solving these two equations iteratively for
all time steps and for all points in the spatial domain of a given one dimensional problem. For a higher
accuracy of the resulting solution, we choose ∆t and ∆x as small as possible [11]. Then we discretize
Equations (5a) and (5b) and substitute the value of P2(i, j, k) obtained from Equations (6a) and (6b)
to solve for E1(i, j + 1, k) in Equations (7a) and (7b). Finally, we modify the value of the resonance
frequency (see Equation (8a)) based on Newton’s method, and we repeat this whole procedure for
each iteration of the optimization process until the desired gain factor is attained.

E2(i+1, j,k)−2E2(i, j,k)+E2(i−1, j,k)
∆x2

−µ0ε∞(i, j)E2(i, j+1,k)−2E2(i, j,k)+E2(i, j−1,k)
∆t2

= µ0σ(i, j)E2(i, j,k)−E2(i, j−1,k)
∆t

+µ0
P2(i, j+1,k)−2P2(i, j,k)+P2(i, j−1,k)

∆t2

(6a)

P2(i, j+1,k)−2P2(i, j,k)+P2(i, j−1,k)
∆t2 + γ

P2(i, j,k)−P2(i, j−1,k)
∆t

+4π2 f0(k)
2(P2(i, j, k)) − 4π2 f0(k)

2

Ned (P2(i, j, k))2
−

4π2 f0(k)
2

N2e2d2 (P2(i, j, k))3

= Ne2

m (E2(i, j, k))

(6b)

E1(i+1, j,k)−2E1(i, j,k)+E1(i−1, j,k)
∆x2

−µ0ε∞(i, j)E1(i, j+1,k)−2E1(i, j,k)+E1(i, j−1,k)
∆t2

= µ0σ(i, j)E1(i, j,k)−E1(i, j−1,k)
∆t

+µ0
P1(i, j+1,k)−2P1(i, j,k)+P1(i, j−1,k)

∆t2

(7a)

P1(i, j+1,k)−2P1(i, j,k)+P1(i, j−1,k)
∆t2 + γ

P1(i, j,k)−P1(i, j−1,k)
∆t

+4π2 f0(k)
2(P1(i, j, k)) − 4π2 f0(k)

2

Ned {(P1(i, j, k))2 + 2P1(i, j, k)P2(i, j, k)}

−
4π2 f0(k)

2

N2e2d2 {(P1(i, j, k))3 + 3(P1(i, j, k))2P2(i, j, k)
+3P1(i, j, k)(P2(i, j, k))2

} = Ne2

m (E1(i, j, k))

(7b)

f0(k + 1) = f0(k) − ρ(k)

∣∣∣E1( f0(k))
∣∣∣∣∣∣E1( f0(k))

∣∣∣− ∣∣∣E1( f0(k− 1))
∣∣∣ ( f0(k) − f0(k− 1)) (8a)

ρ(k) = 1.467
(log |

|E1( f0(k))|
|E1( f0(k))|−|E1( f0(k−1))| |)/(|

|E1( f0(k))|
|E1( f0(k))|−|E1( f0(k−1))| |) (8b)

x: Spatial coordinate, t: Time, k: Iteration number, E(x, t, k) = E(i∆x, j∆t, k) → E(i, j, k)
By solving these six equations simultaneously, along with the initial condition and the boundary

conditions of a given optical parametric amplification problem, we can maximize the gain factor.
In order to test our computational model, we have compared our computational results with the
experimentally verified theoretical results in the well-established context of nonlinear sum frequency
generation, in the Appendix A. Now we move on to the discussion of the simulation results.
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5. Simulation Results

5.1. Finding the Optimal Resonance Frequency for High Gain Optical Parametric Amplification

Assume that a 440 THz stimulus wave Est and a high power 282 THz pump wave Ehp (Nd:YAG
laser field) are propagating inside a low-loss cavity that has two reflecting walls. The reflecting wall on
the left side can be thought as an optical isolator and has a reflection coefficient of Γ1 ≈ 1, the one on the
right side represents a switch controlled optical band-pass filter with a frequency dependent reflection
coefficient Γ( f ). Both waves are generated at x = 0 µm and at the time instant t = 0 (see Figure 4)

Ehp(x = 0 µm, t) = 3× 108
×

sin
(
2π

(
2.82× 1014

)
t
)

V

m
, f or 0 ≤ t ≤ 1 ps

Est(x = 0 µm, t) = 1×
sin

(
2π

(
4.4× 1014

)
t
)

V

m
, f or 0 ≤ t ≤ 30 ps

Dielectric constant o f the gain medium
(
ε f=∞

)
= 10 (µr = 1)

Resonance f requency o f the gain medium = f0 (to be determined)

Damping coe f f icient o f the gain medium : γ = 1× 109 Hz

Time interval and duration o f simulation : 0 ≤ t ≤ 30 ps

Spatial range o f the gain medium : 0 µm < x < 10 µm

Right cavity wall location : x = 10 µm

Le f t cavity wall location : x = 0 µm

Electron density o f the gain medium : N = 3.5× 1028/m3

Atomic diameter : d = 0.3 nm
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Problem definition: Find the optimum resonance frequency f0,opt that maximizes |Est| in the cavity,
for 10 THz < f0 < 1000 THz (THz to UV), for 0 µm < x < 10 µm, 0 ≤ t ≤ 30 ps, such that

∇
2
(
Ehp

)
− µ0ε∞

∂2
(
Ehp

)
∂t2 = µ0σ

∂
(
Ehp

)
∂t

+ µ0
∂2Php

∂t2 (9a)

∂2Php

∂t2 + γ
∂Php

∂t
+ω0

2
(
Php

)
−
ω0

2

Ned

(
Php

)2
−

ω0
2

N2e2d2

(
Php

)3
=

Ne2

m

(
Ehp

)
(9b)

∇
2(Est) − µ0ε∞

∂2(Est)

∂t2 = µ0σ
∂(Est)

∂t
+ µ0

∂2(Pst)

∂t2 (10a)

∂2(Pst)

∂t2 + γ
∂(Pst)
∂t +ω0

2(Pst) −
ω0

2

Ned

{
Pst

2 + 2PstPhp
}

−
ω0

2

N2e2d2

{
Pst

3 + 3Pst
2Php + 3PstPhp

2
}
=

Ne2(Est)
m

(10b)

Initial conditions:

Php(x, 0) = Php
′(x, 0) = Ehp(x, 0) = Ehp

′(x, 0) = Pst(x, 0) = Pst
′(x, 0)

= Est(x, 0) = Est
′(x, 0) = 0

Boundary and excitation conditions:

Ehp(x = 0 µm, t) = 3× 108
× sin

(
2π

(
2.82× 1014

)
t
)

V/m,
f or 0 ≤ t ≤ 1 ps (Ultrashort)

Est(x = 0 µm, t) = 1×
sin

(
2π

(
4.4× 1014

)
t
)

V

m
, f or 0 ≤ t ≤ 30 ps

Ehp(x = 15 µm, t) = Est(x = 15 µm, t) = 0 f or 0 < t < 30 ps

Absorbing boundary condition (perfectly matched layer (PML)):

σ(x) = {
(x− (L− ∆))σ0 , (L− ∆) ≤ x < L

}, f or L = 15 µm, ∆ = 2.5 µm,

σ0 = 4.5× 108 S/m

Optical isolator condition: Full reflection at x = 0 µm

Γ(x = 0 µm, t) = 1 (Re f lection coe f f icient is equal to 1)

Switch controlled optical bandpass filter condition: Full reflection at x = 10 µm for
t ≤ 30 picoseconds, frequency dependent reflection at x = 10 µm after t = 30 picoseconds;

∣∣∣Γ( f ′)
∣∣∣ =


1 f or all f ′ , f or x = 10 µm, 0 ≤ t ≤ 30 ps

1− e
−(

( f ′− f )
√

2THz
)

2

, f or x = 10 µm, t > 30 ps

Using the formulation given in Equations (8a) and (8b), the maximum stimulus wave amplitude
that has been reached in the cavity (for 0 < t < 30 ps) is determined as |Est|max = 3.3 × 109 V/m,
which corresponds to f0 = 519.79 THz ≈ 520 THz (see Table 1). However, there might be other gain
resonances, especially around the major gain resonance f0 = 520 THz. Therefore, finding the optimum
gain factor and the optimum resonance frequency is not enough by itself. To determine all the other
gain resonances, we also need to sweep the resonance frequency f0 from 10 THz to 1000 THz in 10 THz
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increments, and investigate the reason behind the high gain at this resonance frequency by analyzing
the stored electric energy density and the intracavity charge polarization density of the pump wave.

Table 1. Gain maximization by using Newton’s method.

f0 γ (THz) ε∞ Gainmax fhp k (Iteration #)

100 THz 1× 109 8 2.37 282 THz 1
145 THz 1× 109 8 5.26 282 THz 4
173 THz 1× 109 8 8.78 282 THz 7
286 THz 1× 109 8 9.60 282 THz 10
222 THz 1× 109 8 10.48 282 THz 13
257 THz 1× 109 8 2.76 282 THz 16
341 THz 1× 109 8 81.53 282 THz 19
308 THz 1× 109 8 42.80 282 THz 22
395 THz 1× 109 8 1.74 × 103 282 THz 25
364 THz 1× 109 8 2.28 × 104 282 THz 28
422 THz 1× 109 8 1.95 × 102 282 THz 31
478 THz 1× 109 8 9.11 × 103 282 THz 34
446 THz 1× 109 8 4.47 × 104 282 THz 37
543 THz 1× 109 8 3.58 × 106 282 THz 40
494 THz 1× 109 8 7.93 × 107 282 THz 43
523 THz 1× 109 8 2.78 × 109 282 THz 48
520 THz 1× 109 8 3.3× 109 282 THz 55

As we can see from Table 2, there are several resonance frequencies that yield a high gain for the
stimulus wave, for a 1.064 µm (282 THz) Nd-YAG pump wave. The amplification peaks occur between
the resonance frequencies f0 = 350 THz and f0 = 600 THz. This suggests that we can achieve strong
optical parametric amplification in a micrometer sized cavity using a 282 THz pump wave, if we use a
gain medium that has the correct or optimal resonance frequency for amplification. In this case the
optimal resonance frequencies are as shown in Table 2. The corresponding optimal resonance frequency
values of the amplification peaks are especially determined by the intracavity charge polarization
density (and to a lesser extent on the electric energy density) created by the pump wave. If we look at
Figure 5, the charge polarization density that is created by the pump wave is very high at the gain
resonances, and as the charge polarization density decreases at higher frequencies, only less significant
(minor) gain peaks are observed. This makes perfect sense because the charge polarization density
created by the pump wave couples to the stimulus wave electric field intensity (see Equation (5b)) and
acts as a source for the stimulus wave thereby amplifying it. Although the maximum gain factor of the
stimulus wave also depends on the stored electric energy density in the cavity, if there is not enough
charge polarization density in the cavity to couple this stored electric energy to the stimulus wave,
amplification does not occur. This can be seen from Figures 5 and 6. There are many high electric
energy density peaks beyond f0 = 600 THz, however, since there is not enough charge polarization
density that can transfer this energy density to the stimulus wave, amplification is not significant.
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Table 2. Maximum stimulus wave amplitude (gain factor) inside the cavity at x = 5.73 µm for
{0 < t < 30 ps, γ = 1× 109 Hz}, versus f0. Optimum values are indicated in bold.

f0(THz) Gain f0(THz) Gain f0(THz) Gain f0(THz) Gain

10 0.120577 360 13,955.76 710 192.9947 1060 5.290399
20 0.119641 370 28,260.69 720 3.557906 1070 2.48809
30 0.118304 380 73,850,338 730 5.695308 1080 6.194094
40 0.120458 390 5,634,596 740 6.493167 1090 25.24946
50 0.118122 400 2.95× 109 750 30.82443 1100 2.283147
60 0.117918 410 2.51× 109 760 12.05276 1110 1.618231
70 0.118931 420 5607.815 770 17,012.28 1120 2.419331
80 0.116904 430 17,967.91 780 2.497066 1130 2.133482
90 0.117378 440 11.62478 790 18.15685 1140 2.022782

100 0.115572 450 464,425.4 800 2.543182 1150 5.050085
110 0.113245 460 671.619 810 1.952851 1160 16.92071
120 0.119991 470 2.76× 109 820 6448.756 1170 5.295395
130 0.111728 480 1978.626 830 1.736152 1180 2.347687
140 0.123545 490 1.44× 109 840 2.081747 1190 2.026987
150 0.110618 500 2.280443 850 788.9752 1200 2.578767
160 0.109067 510 1.455558 860 5.500709 1210 2.602232
170 0.106427 520 3.32× 109 870 2.538705 1220 1.648149
180 0.1069 530 2.49× 109 880 4.015976 1230 1.800072
190 0.104759 540 6.513151 890 52.11927 1240 2.407561
200 0.101458 550 2.09× 109 900 2.097142 1250 6.42529
210 0.101138 560 40.6945 910 2.650694 1260 20.76235
220 0.109835 570 189.8859 920 44.83461 1270 4.758879
230 0.117831 580 6.333655 930 29.90211 1280 2.797384
240 0.1268 590 90.41447 940 6.153443 1290 2.471782
250 0.094509 600 153,416.4 950 2.431923 1300 2.909788
260 0.11143 610 25.67948 960 14.18509 1310 5.671367
270 0.100675 620 3.574412 970 8.473389 1320 6.931144
280 0.149913 630 3.029247 980 11.70417 1330 2.508562
290 0.135223 640 3.802499 990 1.696305 1340 1.777325
300 0.122908 650 7.824547 1000 4.54118 1350 1.474725
310 0.115541 660 13394.1 1010 3.222625 1360 1.666677
320 0.166839 670 3.348052 1020 10.25462 1370 2.45095
330 0.272456 680 3.898014 1030 42.7863 1380 7.857468
340 30.65431 690 125798.1 1040 1.573557 1390 11.59378
350 10318.25 700 4.999371 1050 2.231005 1400 5.346075

f0 : Resonance frequency (in THz); Gain : Maximum amplitude of the stimulus wave for 0 < t < 30 ps.
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Figure 5. Maximum polarization density (created by the pump wave) inside the cavity at x = 5.73 µm
for 0 < t < 30 ps, γ = 1 × 109 Hz, versus f0.
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Since the resonance frequency values that yield a high stimulus wave gain factor is between
f0 = 350 THz and f0 = 600 THz, using any dielectric material that has a resonance frequency or an
emission peak in this range (especially in the vicinity of the boldly indicated frequencies at Table 2), is
suitable for achieving high gain amplification of a stimulus wave of any frequency, under a 282 THz
Nd:YAG pump wave, such as the Bithiophene based red fluorescent light emitting material called
BTCN [12], which has a resonance frequency value of 470 THz with a FWHM bandwidth of 80 THz.
BTCN is recently suggested as a good red-light emitting material for organic light emitting applications.

5.2. Effect of the Damping Coefficient on Stimulus Wave Amplification

As the damping coefficient γ (polarization decay rate) increases, the amplification of the stimulus
wave gets weaker (Figures 7–11). This is because the amount of stored electric energy density in the
cavity depends on the damping coefficient. As the charge polarization density decays quicker due
to high γ, the stored electric energy will have less time to accumulate in the cavity and the stimulus
wave will have less time to get amplified. If we look at Figures 7–11, the gain resonances eventually
disappear as the damping coefficient is increased. For γ > 1012 Hz, the amplification of the stimulus
wave becomes insignificant.
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If we compare Figure 7 (γ = 109 Hz) and Figure 8 (γ = 1010 Hz), we can see that when the
damping coefficient is increased from 109 Hz to 1010 Hz most gain resonances decrease in amplitude,
except the ones at f0 = 380 THz and f0 = 550 THz where there is a minor increase in the amplitudes
of the gain peaks. However, if we look at Figure 9 (γ = 1011 Hz) and Figure 10 (γ = 1012 Hz), there
is a drastic attenuation of the gain factor from γ = 1010 Hz to γ = 1011 Hz and from γ = 1011 Hz to
γ = 1012 Hz.

The amplification for γ = 1013 Hz is almost insignificant as shown in Figure 11. At this damping
rate, the magnitude of the stored electric energy density is not enough to amplify the stimulus wave
significantly, as the pump wave magnitude is quickly damped to a level at which nonlinearity is lost
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and energy coupling does not occur. Figure 12 illustrates the sharp decrease of the gain factor for
γ > 1010 Hz.Photonics 2020, 7, x FOR PEER REVIEW 12 of 22 
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5.3. Analyzing the Gain Spectrum of the Stimulus Wave at the Optimal Resonance Frequency

Now let us compute the gain spectrum of the stimulus wave at the optimal resonance frequency
of f0 = 520THz (see Figure 7 and Table 2), for γ = 1× 109 Hz. The configuration is shown in Figure 13:

Photonics 2020, 7, x FOR PEER REVIEW 13 of 22 

 
Figure 12. Stimulus wave amplitude variation inside the cavity at x = 5.73 μm, for {𝛾 = 1 × 10  Hz, 𝛾 = 3 × 10  Hz, 𝛾 = 4 × 10  Hz, 𝛾 = 5 × 10  Hz}, for a sample resonance frequency of 𝑓 = 550 THz. 

5.3. Analyzing the Gain Spectrum of the Stimulus Wave at the Optimal Resonance Frequency 

Now let us compute the gain spectrum of the stimulus wave at the optimal resonance frequency 
of 𝑓 = 520THz (see Figure 7 and Table 2), for 𝛾 = 1 × 10  Hz. The configuration is shown in Figure 13: 

 
Figure 13. The configuration for computing the gain spectrum of the stimulus wave for 𝑓 = 520 THz. 

Our problem: For the gain maximizing resonance frequency of f = 520 THz, find the maximum 
stimulus wave amplitude (gain factor) 𝐸 ,  in the cavity for each stimulus wave frequency 

Figure 13. The configuration for computing the gain spectrum of the stimulus wave for f0 = 520 THz.



Photonics 2020, 7, 5 14 of 22

Our problem: For the gain maximizing resonance frequency of f0 = 520 THz, find the maximum
stimulus wave amplitude (gain factor)

∣∣∣Est,max
∣∣∣ in the cavity for each stimulus wave frequency fstimulus,

in the range 10 THz < fstimulus < 1000 THz (THz to UV), for
{
γ = 1× 109 Hz , 0 ≤ t ≤ 30 ps

}
, such that

∇
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Initial conditions:

Php(x, 0) = Php
′(x, 0) = Ehp(x, 0) = Ehp

′(x, 0) = Pst(x, 0) = Pst
′(x, 0) = Est(x, 0)

= Est
′(x, 0) = 0

Boundary and excitation conditions:

Ehp(x = 15 µm, t) = Est(x = 15µm, t) = 0 f or 0 < t < 30 ps

Ehp(x = 0µm, t) = 3× 108
×

sin
(
2π

(
2.82× 1014

)
t
)

V

m
, f or 0 ≤ t ≤ 1 ps (Ultrashort)

Est(x = 0 µm, t) = 1×
sin

(
2π

(
4.4× 1014

)
t
)

V

m
, f or 0 ≤ t ≤ 30 ps

Absorbing boundary condition (perfectly matched layer):

σ(x) = { (x− (L− ∆))σ0 , (L− ∆) ≤ x < L }, f or L = 15µm, ∆ = 2.5µm, σ0 = 4.5× 108 S/m

Optical isolator condition: Full reflection at x = 0 µm

Γ(x = 0µm, t) = 1 (Re f lection coe f f icient is equal to 1)

Switch controlled optical bandpass filter condition: Full reflection at x = 10 µm for
t ≤ 30 picoseconds, frequency dependent reflection at x = 10 µm after t = 30 picoseconds;

∣∣∣Γ( f ′)
∣∣∣ =


1 f or all f ′ , f or x = 10 µm, 0 ≤ t ≤ 30 ps

1− e
−(

( f ′− f )
√

2THz
)

2

, f or x = 10 µm, t > 30 ps
( f ′ : Stimulus wave input f requency)

The stimulus wave is supplied to the cavity at t = 0 as a quasi-monochromatic wave. For a given
initial (at t = 0 s) stimulus wave frequency, the center frequency of the band-pass filter is adjusted to be
at the same frequency with the initial stimulus wave frequency. By doing so, we can observe how much
gain can be obtained from the cavity for each initial stimulus wave frequency. Since the resonance
frequency of f0 = 520 THz yields the maximum stimulus wave gain, we choose this frequency to
compute the gain spectrum of the stimulus wave. Then we sweep the stimulus wave frequency from
10 THz to 1000 THz in 10 THz increments. The amplification (gain) spectrum of the stimulus wave
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for f0 = 520 THz is plotted below in Figure 14. As evident from Figure 14, the gain spectrum of the
stimulus wave extends from the THz region to the UV region of the electromagnetic spectrum. This
means that we can obtain strong output radiation at any frequency in the given band. Note that there is
relatively low gain around the resonance frequency f0 = 520 THz as the dielectric absorption is strong
around the resonance region.Photonics 2020, 7, x FOR PEER REVIEW 15 of 22 
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γ = 1× 109 Hz.

Important Notes:

(1) Based on our computations, changing the length of the cavity, or the length of the gain medium,
does not change the spectral gain resonance locations.

(2) The amplitude (3 × 108 V/m) of the pump wave is the typical electric field amplitude of a
milimeter2 focused 1.064 µm wavelength ultrashort Nd:YAG laser beam, which corresponds
to an optical intensity of 10 GW/cm2. Dielectric breakdown in dispersive media occurs at an
optical intensity level of TW/cm2 and beyond. Therefore, at this amplitude the pump wave
would not induce dielectric breakdown and would not pose an optical hazard to the medium of
interaction [13–15].

(3) The temporal walk-off between the interacting waves that stems from the dispersion of the
medium limits the effective interaction length. To counter-act this effect, we should ensure that
the reflection losses at the cavity walls are minimized. The optical isolator that is used as a cavity
wall should be of high quality to maximize intracavity reflections (Γisolator ≈ 1). The bandpass
transmission filter reflection coefficient must be maximized at the optical transmission stopband,
so that the stored electric energy is retained in the cavity to support the high-gain amplification
of the stimulus wave. In this paper we have assumed that the optical isolator (left cavity wall)
reflection coefficient is 1 from the inside of the cavity (ideal optical isolator), and the reflection
coefficient of the filter (right cavity wall) is close to 1 at the transmission stopband. When the
reflection losses are minimized, the number of round trips in the cavity for which the nonlinearity
is retained, is maximized and the reduced effective interaction length due to temporal walk-off

between the interacting waves is compensated.
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Another precaution to counter-act the temporal walk-off effect is to retain the high pump wave
amplitude to keep the nonlinearity and nonlinear coupling as high as possible. This can be achieved by
choosing an interaction medium with a low polarization damping coefficient. When the polarization
damping coefficient is low, the stored electric energy is preserved for longer durations, which increases
the number of round trips in the cavity for which the nonlinear energy coupling process is sustained.
This also compensates for the reduced effective interaction length. The effect of the polarization
damping coefficient on optical parametric amplification will be discussed in more detail in the
next section.

5.4. Effect of the Damping Coefficient γ and the Mean Cavity Wall Reflection Coefficient Γmean on Optical
Parametric Amplification

Consider the following resonant optical parametric amplification case, in which f0 = 800 THz is
the spectral location of a gain resonance for a 100 THz pump wave. The input wave E1 and the pump
wave E2 are propagating inside a cavity that has two reflecting walls on the left and right side. Both
waves are generated at x = 0 µm at time t = 0 s (see Figure 15).

E1(x = 0 µm, t) = 1× sin
(
2π

(
2.5× 1014

)
t
)

V/m , f or 0 ≤ t ≤ 50ps

E2(x = 0 µm, t) = 3.75× 108
× sin

(
2π

(
1× 1014

)
t
)

V/m , f or 0 ≤ t ≤ 1ps

Resonance f requency o f the gain medium : f0 = 800 THz

Damping rate o f the gain medium : γ

Dielectric constant o f the gain medium (ε∞) = 10 (µ∞ = 1)

Spatial range o f the simulation domain : 0 ≤ x ≤ 15 µm,
Gain medium spatial range : 0 µm < x < 10 µm

Le f t wall re f lection coe f f icient (x = 0 µm) = Γ1;
Right wall re f lection coe f f icient (x = 10 µm) = Γ2

Electron density o f the gain medium : N = 3.5× 1028

m3 ,
Atomic diameter : d = 0.3 nm
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The variation of the maximum input wave amplitude that has been reached between 0 < t < 50 ps
is plotted with respect to the damping coefficient γ and the mean cavity wall reflectivity Γmean in
Figures 16 and 17. If we look at these figures, it is obvious that as the damping coefficient decreases
and/or as the mean cavity wall reflectivity increases, the amplification efficiency improves.
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In Figure 16, we can clearly see that the maximum amplitude of the input (or stimulus) wave
decreases sharply for γ > 2× 109 Hz. This means that the gain factor of the input wave to be amplified
can be significantly enhanced by choosing an interaction medium with a low damping rate. Moreover,
it is interesting to observe that the damping coefficient has a threshold value for high-gain amplification,
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in this case γ = 2× 109 Hz is the threshold value for high-gain amplification. Around γ = 1011 Hz, we
can see that the amplification of the input wave has reduced by several orders of magnitude.

In Figure 17, we can see that the mean reflection coefficient of the cavity walls plays a major
role in achieving high-gain optical parametric amplification. Below a mean reflection coefficient of
Γmean = 0.79, the amplification becomes insignificantly small as compared to the amplification for
Γmean > 0.9, and the gain factor (maximum reached amplitude for 0 < t < 50 ps) of the input wave
gradually increases as the mean reflection coefficient of the cavity walls increases. As previously
explained, this is because the stored electric energy is better preserved in the cavity for a larger mean
reflection coefficient, which enables the amplitude of the pump wave and hence the nonlinearity, to be
retained for a longer duration, and a higher gain factor of the input wave to be obtained [15–18]. The
critical (threshold) values of the damping coefficient and the mean reflection coefficient of the cavity
walls, for high-gain amplification, are investigated for three different values of the resonance frequency
of the interaction medium, the input/stimulus wave frequency, and the pump wave frequency, as
shown in Table 3. Based on these critical/threshold values, we suggest the mean reflection coefficient
of the cavity walls to be greater than 0.85 (Γmean > 0.85) and the damping coefficient of the dielectric
interaction medium to be lower than 109Hz (γ < 109 Hz).

Table 3. Critical (threshold) values of the polarization damping coefficient γ and the mean reflection
coefficient Γmean for high gain amplification of the input (stimulus) wave.

f0 γcritical(THz) ε∞ fst fhp Γmean,critical

520 THz 4× 109 10 440 THz 282 THz 0.74
800 THz 2× 109 10 250 THz 100 THz 0.79
1000 THz 1.5× 109 10 100 THz 180 THz 0.82

6. Conclusions

Recent studies on achieving high-gain optical parametric amplification in microresonators have
focused on materials that display a strong nonlinearity under high intensity excitation. For instance,
the recent studies mentioned in [19–21] have investigated lithium niobate (LN) for that matter. The
study mentioned in [19] has focused on the strong nonlinearity of lithium niobate in a microcavity
with a high quality factor, and the study mentioned in [20] has focused on optimal mode matching
in a periodically poled LiNbO3 waveguide. These studies have reported high harmonic generation
and parametric amplification efficiencies. However, none of the recent studies have investigated the
possible existence of optimum resonance frequencies for a given pump wave excitation, that can
simultaneously maximize the stored electric energy density and the nonlinear coupling coefficient
(pump wave polarization density) and may enable ultra high-gain amplification in microresonators
with a cavity length of as small as a few micrometers.

Through rigorous computational analysis that involves the maximization of the nonlinear
constructive interference and the nonlinear coupling coefficient, we have shown that a very wideband,
super-gain optical parametric amplification is possible in a 10 µm long microcavity. This interaction
medium length is even much smaller than the recently suggested parametric amplification waveguide
of 300 µm length mentioned in [21], as our analysis directly focuses on maximizing both the nonlinear
energy coupling coefficient and the stored electric energy density in the cavity, rather than the stored
electric energy (quality factor) alone, which are both critical in achieving a super-gain amplification.

As a summary for resonant optical parametric amplification by nonlinear wave mixing in
a microresonator under a 282 THz Nd:YAG pump wave excitation, the following requirements
must be met:

• The cavity should be low loss. This is satisfied in our computations by choosing a dielectric gain
medium (σ ≈ 0), and by adjusting the reflectivities of the cavity walls to be very high.

• The damping coefficient (polarization decay rate) of the gain medium should be low (γ < 109Hz).
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• The resonance frequency ( f0 ) of the gain medium must match with one of the resonance
frequencies that are found to maximize the stimulus wave gain inside the cavity. In the case of
a 282 THz Nd:YAG pump wave excitation, the resonance frequency of the interaction material
should reside between 350 THz and 600 THz (350 THz < f0 < 600 THz).

• Bithiophene based red fluorescent light emitting material called BTCN, which has a resonance
frequency value of 470 THz with a FWHM bandwidth of 80 THz, is a suitable interaction medium
for resonant optical parametric amplification using a 282 THz Nd:YAG pump wave excitation.

Once these requirements are satisfied, it is possible to amplify a low power input (stimulus) wave
with a very large gain coefficient, in a wide range of frequencies, inside a low loss microresonator of
several micrometers of length.

Author Contributions: Literature survey, background research, software design, and the interpretation of the
results was conducted by Ö.E.A. Supervision of this article was conducted by M.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Verification of Our Computational Model

We want to test the accuracy of our computational model by using the experimentally verified
theoretical formula in the well-established context of sum frequency generation via nonlinear wave mixing,
which is the basis of optical parametric amplification [1,4], in the following example.

Example A1. Nonlinear sum frequency generation (frequency up-conversion).

This example is about the generation of a higher frequency component (ω3), by mixing two
monochromatic waves with frequencies ω1 and ω2, such that ω3 = ω2 +ω1. In order to achieve this, at
least one of the waves must have a high intensity, so that nonlinearity arises and wave mixing occurs.

The high amplitude pump wave E2 is generated at x = 2.5 µm. It has an amplitude of A2V/m and
a frequency of 180 THz.

E2(x = 2.5 µm, t) = A2 × sin
(
2π

(
1.8× 1014

)
t + ϕ2

)
V/m

The input wave E1 is generated at x = 2.5 µm. It has an amplitude of A1V/m and a frequency of
120 THz.

E1(x = 2.5 µm, t) = A1 × sin
(
2π

(
1.2× 1014

)
t + ϕ1

)
V/m

For simplicity, assume that ϕ1 = 0, ϕ2 = 0

Range of independent simulation variables: 0 ≤ x ≤ 10 µm, 0 ≤ t ≤ 60 ps

Resonance f requency o f the interaction medium : f0 = 1.1× 1015 Hz

Damping coe f f icient o f the interaction medium : γ = 1× 1012 Hz

Dielectric constant o f the interaction medium (ε∞) = 1 + χ = 10 (µr = 1)

Le f t per f ectly matched layer (le f t absorption layer)is f rom x = 0
to x = 2.25 µm

Right per f ectly matched layer (right absorption layer)is f rom x = 7.75 µm
to x = 10 µm
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Figure A1. Configuration for frequency up-conversion.

The theoretical formula for frequency up-conversion efficiency, which is derived from the solution
of nonlinear wave equation that is based on material nonlinearity coefficient, is given as [4].

ηtheoretical =
ω3

ω2
( sin

√
2d2n3ω32(cnε0A22)L2 )

2
=
ω3

ω2
( sin

√
2d2n4ω32cε0A22L2 )

2
(A1)

ω2 = Frequency of the pump wave, ω1 = Frequency of the input wave; d = Material nonlinearity
coefficient, n = Refractive index; A2 = Pump wave amplitude, A1 = Input wave amplitude, L = Length
of the nonlinear media; ω3 = ω1 +ω2 = Frequency o f the upconverted wave.

Our computational model is based on the finite difference time domain discretization of the
nonlinear electron motion equation that involves the resonance frequency and the damping coefficient
of the interaction medium. Coupled with the wave equation, the total wave E = E1 + E2 can be
evaluated from:

E(i+1, j)−2E(i, j)+E(i−1, j)
∆x2

−µ0ε∞(i, j)E(i, j+1)−2E(i, j)+E(i, j−1)
∆t2

= µ0σ(i, j)E(i, j)−E(i, j−1)
∆t

+µ0
P(i, j+1)−2P(i, j)+P(i, j−1)

∆t2

(A2a)

P(i, j+1)−2P(i, j)+P(i, j−1)
∆t2 + γ

P(i, j)−P(i, j−1)
∆t +ω0

2(P(i, j))

−
ω0

2

Ned (P(i, j))2
−

ω0
2

N2e2d2 (P(i, j))3 = Ne2

m (E(i, j))
(A2b)

For a time interval of 0 ≤ t ≤ tmax, the computational formula for frequency up-conversion efficiency is

ηcomputational

=
Intensityoftheω3frequencycomponentofthetotalwaveatt=tmax

Intensityoftheω2frequencycomponentofthetotalwaveatt=0
(A3)

In this example, we have used the following values for each efficiency formula

ω2 = Frequency o f the pump wave = (2π× 180)THz
ω1 = Frequency o f the input wave = (2π× 120)THz

L = Length of the nonlinear dispersive media = 3.33 micrometers (from x = 3.33 µm to 6.66 µm);

ω3 = Frequency o f the upconverted wave = 2π× 300THz

n = Re f ractive index =
√

10
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d = Material nonlinearity coefficient = 6.3× 10−22 (the theoretical and the computational results agree for
this value of d for a sample pump wave amplitude of A2 = 109 V/m. Our aim is to see if the results
also agree for all of the other pump wave amplitudes for this value of d); A2 = Pump wave amplitude
(varied from 5× 107V/m to 2× 109 V/m ); A1 = Input wave amplitude = A2/100 (A1 � A2).
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