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Abstract: We present a theoretical description of the coupling between longitudinal optical phonons
and collective excitations of a two-dimensional electron gas. By diagonalizing the Hamiltonian of the
system, including Coulomb electron–electron and Fröhlich interactions, we observe the formation
of multisubband polarons, mixed states partially phonon and partially multisubband plasmon,
characterized by a coupling energy which is a significant fraction, up to ∼ 40%, of the phonon energy.
We demonstrate that multisubband plasmons and longitudinal optical phonons are in the ultra-strong
coupling regime in several III–V and II–VI material systems.

Keywords: multisubband plasmons; polarons; strong coupling regime

1. Introduction

Longitudinal optical (LO) phonons provide an important scattering channel for a two-dimensional
electron gas confined in a semiconductor quantum well. The effect of this coupling determines the
operation of mid-infrared quantum optoelectronic devices, such as quantum cascade lasers [1] and
detectors [2], as it limits the lifetime of carriers in excited subbands [3]. In order to take into account the
scattering between the electron gas and the phonons in the device operation, a single-particle picture
is usually employed: even though a multitude of electrons is involved in the device operation, their
density is usually sufficiently low to neglect collective phenomena.

A cooperative behaviour of the two-dimensional electron gas, due to the electron–electron
interactions (Coulomb interactions), has been observed in the infrared spectrum of highly doped
semiconductor quantum wells [4–6]. If a single electronic subband is occupied, one signature of
this collective behaviour is the so-called plasma shift: The absorption spectrum presents a resonance
which is shifted towards higher energies as compared to that of the transition between the ground
and first excited subband. This resonance corresponds to the excitation of a collective mode of the
system, known as intersubband plasmon [5,7]. In the case where two subbands are occupied, the
dipole-dipole coupling between intersubband (ISB) plasmons associated with the optically active
electronic transitions leads to a strong renormalization of the absorption spectrum [8,9]: The energies
of the peaks are shifted with respect to the single particle transitions and the oscillator strength is
redistributed in the high energy mode. If several subbands are occupied, the entire oscillator strength
is concentrated into a single resonance, corresponding to a many-body excitation of the system, the
multisubband plasmon, in which the dipole-dipole Coulomb interaction locks in phase all the allowed
transitions between confined states [4,10–12]. The multisubband (MSB) plasmon is a charge density
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wave where the collective dipole oscillates along the growth direction of the quantum well, while the
plasmon propagates in the quantum well plane, with a characteristic in-plane wavevector. The MSB
plasmon has a superradiant nature [13]: This means that its spontaneous emission lifetime depends
on the number of electrons involved in the interaction with light and it can be even shorter than the
typical non-radiative lifetime [14]. This results in a radiative broadening of the MSB plasmon spectra.

a)

diagonalization

b)

Figure 1. (Color online) (a) Scheme of the intersubband plasmons (purple arrows) and the interactions
between them (green arrow) and their interaction with phonons (blue arrow). (b) Scheme of the
multisubband plasmons of the system after diagonalization of intersubband interactions (orange
arrows) and their interaction with phonons (blue arrow).

In the last years there has been a strong research activity on the realization of quantum optoelectronic
devices whose operation is determined by the properties of intersubband or multisubband
plasmons [15–18]. The interaction of these quasi-particles with optical phonons is of paramount
importance for the operation of the device. De Liberato and Ciuti have first studied the possibility
of achieving stimulated scattering and lasing of intersubband cavity polaritons, the quasi-particles
issued from the strong coupling between intersubband plasmons and a cavity mode [19]. Their
proposal exploits the relaxation from the upper to the lower polariton branch by means of scattering by
longitudinal optical (LO) phonons. Delteil et al. [18] have provided experimental evidence of scattering
between intersubband polaritons and LO-phonons in an electroluminescent device. Following these
works, the possibility of an intersubband polariton optically pumped laser has been investigated [15,16].
The proposed device is based on scattering between LO-phonons and intersubband polaritons with a
dispersion designed to favour polariton condensation. All these works concern mid-infrared devices
based on intersubband polaritons interacting with longitudinal optical phonons. The strength of the
polariton-phonon interaction is in this case proportional to the Hopfield coefficient related to the
electronic part of the initial and final polariton state. It can thus be interesting to study this scattering
process in the absence of a cavity mode, in a device based on multisubband plasmons coupled with
free space radiation [13,14]. While the interaction between these collective electronic modes and the
electromagnetic field has been widely investigated, a complete description of their coupling with
the different phonon modes is still missing. In reference [20], a microscopic quantum theory of ISB
polarons, issued from the coupling between an ISB plasmon and a longitudinal optical phonon, is
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presented. The authors showed, for different materials, that the coupling between the phonons and
the ISB transitions can be very strong, thanks both to the collective nature of the ISB excitations and
to the natural tight confinement of optical phonons. In this paper, we extend the microscopic theory
developed in the previous study to consider MSB polarons, that is, a theory of MSB excitations coupled
to LO phonons in semiconductor quantum wells (see Figure 1). For such, we will consider an infinite
quantum well with more than one populated subband. Using a second quantization formalism,
we will reduce the full electron–phonon Hamiltonian to a quadratic, bosonic form, from which we
then calculate the MSB polaron dispersions. We will show that the coupling energy between MSB
excitations and phonons is a significant fraction of the phonon energy, resulting in the achievement of
the ultra-strong coupling regime between MSB excitations and longitudinal optical phonons.

This paper is organized as follow: We begin by developing the general theory of the coupling
between MSB transitions and LO phonons, in Section 2. In this section, we consider the Hamiltonian for
free electrons and Coulomb interactions which we broaden to find a bosonic Hamiltonian accounting
for ISB transitions. We extend from ISB transitions to ISB plasmons and finally, by considering the
interactions between them, we diagonalize the Hamiltonian to find MSB plasmons. After finding the
interaction Hamiltonian between MSB plasmon and LO phonons, we diagonalize the full interaction
Hamiltonian in Section 3. In Section 4, we apply the results to the case of an infinite quantum well,
showing when and how the strong-coupling regime can be reached. Finally, in Section 5, we give
concluding remarks.

2. Theoretical Background

In this section, we will develop a microscopic theory of MSB polarons in a quantum well for zero
temperature. We study the coupling of MSB excitations with longitudinal optical phonons, considering
also the role of Coulomb electron-electron interaction in order to derive the MSB plasmon-phonon
coupling. The total Hamiltonian of the system is given by:

Ĥ = Ĥe + Ĥphn + Ĥe-e + Ĥe-phn, (1)

with Ĥe the bare electron Hamiltonian, Ĥphn the bare phonon Hamiltonian, Ĥe-e describes the
electron-electron (Coulomb) interaction and Ĥe-phn the electron-phonon coupling.

2.1. Free Electron and Electron-Electron Coupling Hamiltonian

The single-particle Hamiltonian omitting the electron spin index (all interactions we considered
are spin conserving) is given by

Ĥe = ∑
ik

h̄ωik ê†
ik êik (2)

with ê†
ik, êik are the fermionic creation and destruction operators for an electron in the subband i. Since

we are interested in studying the ISB transitions, transitions between the different electronic states, we
define the operator B̂†

jiq = ∑
k

ê†
jk+q êik [6]. We find

[
B̂†

jiq, Ĥe

]
= −∑

k
h̄
(
ωjk+q −ωik

)
ê†

jk+q êik .

In the long-wavelength limit, the excitation wave vector q is small compared to the typical electron
wave vectors k and one can consider ωjk+q −ωik ≈ ωj −ωi ≡ ωji, then[

B̂†
jiq, Ĥe

]
= −h̄ωji B̂†

jiq.
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Our goal is then to replace the fermionic Hamiltonian Ĥe by an effective bosonic Hamiltonian
describing the transitions between subbands. To carry out this approach, we need to replace the
operators B̂ by effective bosonic operators. For this purpose, we compute the commutation relations[

B̂jiq, B̂†
jiq

]
= ∑

k

(
ê†

jk êjk− ê†
ik+q êik+q

)
= N̂j − N̂i.

Having this result in mind it is possible to define the normalized operators through the relation

B̂†
jiq =

√
∆Nji b̂

†
jiq

with ∆Nα =
〈

N̂j
〉
−
〈

N̂i
〉

the difference in the subband populations. Labeling the electronic transitions
α ≡ i→ j, we introduce the operators describing ISB transitions as

b̂
†
αq =

1√
∆Nα

∑
k

ê†
jk+q êik, (3a)

b̂αq =
1√

∆Nα
∑
k

ê†
ik êjk+q . (3b)

In this formalism, we can finally redefine He as an effective bosonic Hamiltonian

Ĥe = ∑
αq

h̄ωα b̂
†
αq b̂αq . (4)

b̂
†
αq, b̂αq are bosonic operators in the limit of weakly excited systems

[
b̂αq, b̂

†
αq

]
= δq,q′ [19].

Up to now the electron–electron or Coulomb interactions have not been considered. However,
for high electron densities, many-body effects cannot be neglected. The main effect of the electron–
electron interaction is to give a collective character to the elementary excitations, namely creating
the so-called intersubband plasmons. Let us start then by considering two electrons in the subband
j and n with momenta k and k′ that are scattered into subbands i and m with momenta k + q and
k′ + q, respectively. In order to treat the Coulomb electron–electron interaction, we start by the second
quantized form of the Hamiltonian describing the Coulomb interaction [21]

Ĥe-e =
1
2 ∑

i,j,m,n
∑

q,k,k′
Vimnj,q ê†

i,k+q ê†
m,k′−q ên,k′ êj,k . (5)

Here, the factor 1/2 accounts for the double count of the particles. The two-dimensional Coulomb
matrix element is given by

Vimnj,q =
Vq

S

∫
dz
∫

dz′ψi(z)ψj(z)e−q|z−z′ |ψm(z′)ψn(z′) (6)

where Vq is the Fourier transform of the Coulomb potential in two dimensions defined by

Vq =
e2

2ε0ε∞ |q|
. (7)

Note that, following ref. [20], we used the high-frequency dielectric constant ε∞ instead of the
static one. This is due to the fact that εs includes the effect of the coupling to LO phonons, which are
already treated exactly in the Hamiltonian.

The strength of the electron–phonon interaction, as we will see in the next section, will be
determined by the same integral as the Coulomb matrix element:
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Iimnj(q) =
∫

dz
∫

dz′ψi(z)ψj(z)e−q|z−z′ |ψm(z′)ψn(z′) (8)

For electron–phonon interaction, only cases where j → i = n → m, with j 6= i, are considered.
However, for Coulomb interaction other transitions can be considered. In a symmetric well, the
symmetry of the wave functions results in Iimnj(q) 6= 0 only when the sum of the individual indices
j, n, i and m is even [22]. For an infinite quantum well these integrals will be evaluated analytically
later. Matrix elements with different j→ i, n→ m indices represent ISB excitations where each electron
is scattered from one subband to another; these processes are responsible for the depolarization shift.
The terms other than those responsible for the depolarization shift are strongly suppressed due to
their lack of collective enhancement and can be treated perturbatively [21]. In reference [22,23], it is
shown that the intrasubband terms do not contribute to the screening of the ISB ones at the level of the
random phase approximation.

So we can now write the electron and electron–electron Hamiltonian in terms of ISB transitions as

Ĥe + Ĥe-e = ∑
α,q

h̄ωα b̂
†
α,q b̂α,q + ∑

α,β,q

e2
√

∆Nα∆Nβ

4ε0ε∞S
Iimnj(q)
|q|

(
b̂

†
α,q + b̂α,−q

) (
b̂

†
β,−q + b̂β,q

)
. (9)

2.1.1. From Intersubband Transitions to Intersubband Plasmons

The quadratic Hamiltonian (9) can be diagonalized with the Bogoliubov transformation by
introducing new bosonic operators p̂α,q, which satisfy[

p̂α,q, Ĥe + Ĥe-e

]
= h̄ω̃α,q p̂α,q . (10)

Following the same procedure as in reference [6], it is possible to re-write the Hamiltonian in
terms of operators that create and annihilate ISB plasmons which describe the ensemble of interacting
intersubband dipolar oscillators. The diagonalization of the quadratic Hamiltonian is performed
considering first α = β and later extended to include the terms where α 6= β [24]. The bosonic ISB
plasmon operator becomes

p̂α,q =
ω̃α,q + ωα

2
√

ω̃α,qωα
b̂α,q +

ω̃α,q −ωα

2
√

ω̃α,qωα
b̂

†
α,q (11)

with ω̃α,q =
√

ω2
α + Θ2

α,q and

Θ2
α,q =

e2ωα

h̄ε0ε∞

∆Nα

S
Iαα(q)
|q| . (12)

Note that Θα,−q = Θα,q. For q→ 0, Θ2
α,q coincides with the squared plasma frequency and the

new eigenvalues have exactly the frequency of the collective mode of the two-dimensional electron
gas known as the intersubband plasmon.

The MSB plasmon Hamiltonian can now be obtained by adding the the terms α 6= β, thus
including the coupling between different intersubband plasmons:

Ĥe + Ĥe-e = ∑
α,q

h̄ω̃α,q p̂†
α,q p̂α,q +h̄ ∑

α 6=β,q
Ξα,β,q

(
p̂†

α,q + p̂α,−q

) (
p̂†

β,−q + p̂β,q

)
(13)

with

Ξα,β,q =
Θα,qΘβ,q

4
√

ω̃α,qω̃β,q

Fαβ(q)√
Fαα(q)Fββ(q)

, (14)
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and

Fαβ(q) =
Iαβ(q)
|q| . (15)

2.1.2. From Intersubband Plasmons to Multisubband Plasmons

The MSB plasmon Hamiltonian can now be diagonalized by introducing the bosonic operators
P̂n,q that are linear combinations of the operators p̂α,q describing the ISB plasmons:

P̂n,q = ∑
α

(
xnα p̂α,q +ynα p̂†

α,−q

)
, (16)

with Ĥplasmon = ∑
n,q

h̄Wn,q P̂
†
n,q P̂n,q, where it holds

[
P̂n,q, Ĥplasmon

]
= h̄Wn,q P̂n,q . (17)

Considering the commutator[
p̂α,q, Ĥplasmon

]
= h̄ω̃α,q p̂α,q + ∑

α 6=β,q
h̄Ξαβ,q

(
p̂†

β,q + p̂β,q

)
(18)

will lead to the eigenvalue problem MVn,q = Wn,qVn,q, with M is the Hopfield matrix and Vn,q =

(xn1, yn1, · · · , xnN , ynN)
T , where ∑

i

(
|xni|2 − |yni|2

)
= 1 ensures the bosonicity of the operators [6,11].

In order to have numerical results, we fix a few parameters concerning the material like the
effective mass and the phonon energy h̄νphn. However, for the sake of simplicity, we consider an
infinite potential well of length LQW. This allows us to deal with analytical calculations and to have
direct indications on the role of the effective mass and phonon energy on the plasmon–phonon coupling
frequency. However, our model can be extended to more realistic potentials, eventually including
non-parabolicity [25].

The electronic wavefunctions are given by [26]

ψn(z) =

√
2

LQW
sin

nπz
LQW

,

inside the well and zero outside. Performing the integral Equation (8) we find [20,22]

lim
q→0

Iαα(q)→
10

9π2 qLQW,

lim
q→0

Iββ(q)→
26

25π2 qLQW,

lim
q→0

Iαβ(q)→
1

π2 qLQW.

The electron energy at the bottom of subband n is given by

En =
n2π2h̄2

2m∗L2
QW

,

with population at T = 0 K

Nn =
m∗L2

QW

πh̄
(EF − En) ,
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where EF is the Fermi energy. We will set the Fermi energy such that only the first and second subbands
are occupied. All the following calculations can be extended to the case of T > 0 K, by considering
the electronic distribution in the subbands. In this case all the possible optically active transitions
contribute to the formation of the multisubband plasmon modes.

As an example, in Figure 2, we show the numerical results for a quantum well of thickness
LQW = 400 Å considering the limit q→ 0. For the electron effective mass in the quantum well we set
m∗ = 0.043, corresponding to a GaInAs quantum well. The bare electronic transitions have energies
h̄ω12 = 16 meV and h̄ω23 = 27 meV. The total electronic density per unit surface ∆ntot is variable and,
as such, also h̄ω̃12. The role of the collective effects is evident when we compare the energies of the
coupled states h̄W1,2 with those of the uncoupled ISB plasmons, h̄ω̃12 and h̄ω̃23.
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20

25

30

35

40

ntot(10
12

cm
-2)

ℏ
W

(m
e

V
)

ℏW1

ℏW2

ℏω


12

ℏω


23

0.5 0.6 0.7 0.8

1.

2.

3.

4.

ntot(10
12

cm
-2)

ℏ
Ξ

1
2
(m

e
V
)

Figure 2. (Color online) Top: Bare intersubband plasmon energy without interactions (h̄ω̃12 and h̄ω̃23)
and coupled eigenmodes (h̄W1,2, in purple and blue) as a function of the total doping density ntot.
Bottom: Coupling strength between the two individual intersubband plasmons as a function of the
total electronic density.

2.2. Interaction between Phonons and Intersubband Excitations

In this section we describe the model used to treat the electron–phonon interaction. As we are
interested in the case of a plasmon frequency close to the LO phonon one, we neglect confinement
effects on the phonons and consider bulk values for their frequencies [20,27]. Furthermore, we consider
quantum wells of much larger thickness than the lattice constant. As a consequence, we neglect
interface phonon modes, whose amplitude decreases exponentially away from the interface [28,29].
The phonon dispersion is also neglected because we consider only phonons with small in-plane wave

vectors. The free phonon Hamiltonian is thus described by means of boson operators ĥ
†
q,qz , ĥq,qz ,

where the operator can be thought of as creating a phonon excitation traveling with in-plane q and
out-of-plane wave vectors qz,

Ĥphn = ∑
q,qz

h̄νphn ĥ
†
q,qz ĥq,qz . (19)

We consider the coupling between intersubband electronic excitations and phonon modes. Each
electronic transition α will couple to multiple phonon modes, indexed by different values of wave
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vector along z. It is then possible to introduce the new second quantized operators, r̂†
q and r̂q,

corresponding to the particular linear superposition of phonon modes that are coupled to electronic
transitions. Based on reference [20,30], we can write the Hamiltonian as

Ĥphn-e = ∑
α,q

h̄

√
νphne2∆nα

4h̄ε0ερ

ωα

ω̃α,q

Iαα (q)
|q|

(
b̂

†
α,q + b̂α,−q

) (
r̂†
−q + r̂q

)
, (20)

with ε−1
ρ =

(
ε−1

∞ − ε−1
s

)−1
. Using the relations

(
b̂

†
α,q + b̂α,−q

)
=

√
ωα

ω̃α,q

(
p̂†

α,q + p̂α,−q

)
,

and (
p̂†

α,q + p̂α,−q

)
= ∑

n
Xαn

(
P̂

†
n,q + P̂n,−q

)
where Xαn = (xnα + ynα)

−1, one can write the electron–phonon coupling in terms of the MSB plasmon
operators as

Ĥphn-e = ∑
q

∑
α,n

h̄

√
νphne2∆nα

4h̄ε0ερ

Iαα (q)
|q|

ωα

ω̃α,q

× Xα,n

(
P̂

†
n,q + P̂n,−q

) (
r̂†
−q + r̂q

)
. (21)

3. Exact Diagonalization of the Full Hamiltonian

Consider the Hamiltonian of one MSB plasmon coupled with a single phonon

Ĥ = Ĥplm + Ĥphn + Ĥplm-phn,

= ∑
q

h̄ Wq P̂
†
q P̂q +∑

q
h̄ νphn r̂†

q r̂q +∑
q

h̄ Gint,q

(
P̂

†
q + P̂−q

) (
r̂†
−q + r̂q

)
(22)

where Gint,q expresses the coupling between the phonons and the electronic excitation,

Gint,q = ∑
α

√
νphne2∆nα

4h̄ε0ερ

ωα

ω̃α

Iα (q)
|q| Xαq. (23)

Note that the anti-resonant terms of the phonon–MSB plasmons are included in the expression of
the full Hamiltonian. Indeed these terms are important when the coupling strength is a significant
fraction of the frequency of the individual oscillators, i.e., in the ultra-strong coupling regime [31].

We look for new coupled operators q̂1 and q̂2 such that

q̂1,q = a11 r̂q +b11 r̂†
−q +a12 P̂−q +b12 P̂

†
q, (24)

q̂2,q = a21 r̂q +b21 r̂†
−q +a22 P̂−q +b22 P̂

†
q . (25)

The Hopfield coefficients introduced here satisfy the normalization condition

|a11|2 − |b11|2 + |a12|2 − |b12|2 = 1,

|a21|2 − |b21|2 + |a22|2 − |b22|2 = 1
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such that the Hamiltonian can be diagonalized as

Ĥ = h̄Ω1,q q̂†
1,q q̂1,q +h̄Ω2,q q̂†

2,q q̂2,q . (26)

Following a Hopfield–Bogoliubov diagonalization procedure, one obtains a system of linear
equations [32]. The eigenproblem for n = 1, 2 to find the eigenvalues Ω1 and Ω2 is

Ωn


an1

bn1

an2

bn2

 =


νphn 0 Gint,q −Gint,q

0 −νphn Gint,q −Gint,q

Gint,q −Gint,q Wq 0
Gint,q −Gint,q 0 −Wq




an1

bn1

an2

bn2

 . (27)

The solutions of this system of equations are two MSB polaron modes. The characteristic equation
of the eigenproblem (det [Iλ−M] = 0) can be written as(

ν2
phn − λ2

) (
W2

q − λ2
)
− 4νphnWqG2

int,q = 0. (28)

The solutions of the above equation are given by

Ω2
UP =

1
2

(
ν2

phn + W2
q +

√(
ν2

phn −W2
q

)2
+ 16G2

int,qνphnWq

)
, (29)

Ω2
LP =

1
2

(
ν2

phn + W2
q −

√(
ν2

phn −W2
q

)2
+ 16G2

int,qνphnWq

)
. (30)

The Hopfield coefficients can be expressed in closed form. We can define a phononic part
hphn = |an1|2− |bn1|2 and a plasmonic part hplm = |an2|2− |bn2|2 linked by the relation hphn + hplm = 1.
For the phononic part, we obtain the expressions

hUP
phn =

Ω2
UP −W2

q

Ω2
UP −Ω2

LP
, (31)

hLP
phn =

W2
q −Ω2

LP

Ω2
UP −Ω2

LP
. (32)

Note that we have necessarily hUP
phn + hLP

phn = 1 (and therefore hUP
plm + hLP

plm = 1).
As a linear superposition of a MSB plasmon and a phonon, the lifetime of the MSB polarons is

directly determined by the decay rate of the MSB plasmon, γISB, and the phonon decay rate, γphn, as

γLP =
∣∣∣hLP

phn

∣∣∣2 γphn +
∣∣∣hLP

ISB

∣∣∣2 γISB, (33)

γUP =
∣∣∣hUP

phn

∣∣∣2 γphn +
∣∣∣hUP

ISB

∣∣∣2 γISB. (34)

4. Discussion and Results

In Figure 3, we took the same system as in Figure 2, and plotted the MSB polaron frequencies
ΩLP, UP as a function of the total electron density in the quantum well. The frequencies of the LO phonon
(h̄νphn = 32 meV) and MSB plasmon modes are plotted on the same graph for better understanding.
The resonance condition W1 = νphn is verified at ntot ≈ 5.26× 1011 cm−2 where h̄Gint ≈ 4.3 meV.

One can see that the strength of the interaction between LO phonons and MSB plasmon leads to
the shifting of the phonon and the MSB energies and mixing or hybridization between the two modes –
the coupling produces a repulsion between the two free modes in the region W1 = νphn. While one
might not recognize easily the typical avoided crossing curves for this type of problems, both curves
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converge, as expected, in the limits of small ntot to the uncoupled modes frequencies, that is, ΩUP

converges to νphn and ΩLP to ω23 (see the limits of W1 in Figure 2). It is particularly interesting to have
the possibility to control the MSB plasmon–phonon hybridization by varying the doping density of
the quantum well. As such, an interesting aspect to study is the mixing between the phononic and
electronic degrees of freedom. The Hopfield coefficients defined in Equation (32) quantify this mixing
and are plotted in Figure 4. The maximum mixing occurs as expected when W1 = νphn.

0.4 0.5 0.6 0.7 0.8
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e
V
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ℏΩUP

ℏW1

ℏνphn

Figure 3. (Color online) Phonon and MSB free energies (h̄W1 and h̄νphn) and coupled eigenmodes
(h̄ΩLP,UP, in purple and blue) as a function of the total doping density ntot in the quantum well.
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Figure 4. (Color online) Hopfield coefficients Equations (32) as a function of the total doping density
ntot in the quantum well.

In Table 1, we show the results for normalized coupling at WMSB = νphn for different materials.
The different values for ntot are chosen considering the fact that only the first two subbands of the
quantum well are occupied and maximizing the coupling ratio. It is clear that the coupling strength
depends strongly on the levels of doping that is possible to achieve, but also on the different materials
parameters. From the chosen materials, we can observe that the combination of higher effective
electron mass and phonon energy together with smaller relative permittivity has a tendency to lead to
stronger couplings (see Equation (23)). One can infer that, same as for intersubband polarons [20], the
origin of such large coupling strengths can be found in the superradiant nature of MSB excitations and
in the natural confinement of the phonons inside the quantum well. From this table it is possible to see
that the MSB plasmon–LO-phonon coupling can be up to 40% of the phonon frequency, indicating that
the system is in the ultra-strong coupling regime. This relative coupling energy could be even more
important, by increasing the electronic density and the number of occupied subbands. The existence of
a strong interaction between plasmons and LO-phonons could lead to the investigation of processes
of stimulated scattering of plasmons mediated by phonons, in analogy to what has been done with
intersubband polaritons [19].
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Table 1. Normalized coupling at resonance WMSB = νphn as a function of the longitudinal optical (LO)
phonon frequency for different materials [33] .

ntot

(
cm−2

)
h̄νphn (meV) Gint/νphn

InAs 3.7× 1011 30.0 0.161
GaInAs 6.5× 1011 32.0 0.175
GaAs 9.6× 1011 35.0 0.171
InP 1.4× 1012 43.0 0.218
CdTe 6.5× 1011 21.0 0.282
ZnSe 1.3× 1012 31.0 0.304
GaN 3.8× 1012 87.3 0.332
ZnO 3.8× 1012 72.0 0.395

5. Conclusions

The diagonalization of the complete MSB plasmon–phonon interaction Hamiltonian provided us
with the mixed excitations of the coupled system denominated MSB polarons. The coupling energy has
been calculated for different material systems. We demonstrated that a ratio of almost 40% between
the coupling and the phonon frequency can be achieved in ZnO material system. Even higher values
can be achieved with MSB plasmons issued from quantum wells with several occupied subbands.

In this work we only took into account longitudinal optical phonons, which are not coupled with
light. A natural perspective of this work is the study of the coupling of both plasmons and phonon
modes to electromagnetic radiation. For this, one has to redefine a matter polarization including both
transverse and optical phonon modes, which has to be added to the contribution of the intersubband
polarization. For this purpose recent work by Franckié et al. [17] could be exploited. They have
studied a quantum cascade phonon polariton laser based on an inverted intersubband transition
weakly coupled to a quasi-particle issued from the strong coupling between a transverse optical (TO)
phonon and a cavity mode. For their study, they have introduced a polarization operator associated
with the TO-phonons in the Power–Zienau–Woolley gauge. The diagonalization of the Hamiltonian
including phonons, intersubband excitations and electromagnetic field on the same ground will allow
one to accurately describe how the material Reststrahlen band can be modified by the presence of
collective electronic excitations. Another interesting perspective, which goes beyond the scope of this
work, concerns the investigation of the impact of a modified interaction with phonons induced by
collective effects on the thermal conductivity of the doped semiconductor. Indeed it has been shown
experimentally and theoretically that electron–phonon interaction can modify both the electronic and
lattice contribution to the thermal conductivity [34,35].
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