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Abstract: The gyrator transform (GT) is used for images processing in applications of light
propagation. We propose new image processing operators based on the GT, these operators are:
Generalized shift, convolution and correlation. The generalized shift is given by a simultaneous
application of a spatial shift and a modulation by a pure linear phase term. The new operators of
convolution and correlation are defined using the GT. All these image processing operators can
be used in order to design and implement new optical image processing systems based on the GT.
The sampling theorem for images whose resulting GT has finite support is developed and presented
using the previously defined operators. Finally, we describe and show the results for an optical image
encryption system using a nonlinear joint transform correlator and the proposed image processing
operators based on the GT.

Keywords: operators for image processing; gyrator transform; gyrator domain; shift operation;
modulation by a pure linear phase term; convolution; correlation

1. Introduction

The usual convolution and correlation operations have been used in some optical systems for
image processing, such as filtering, encryption, decryption, comparison, authentication, pattern
recognition and classification of images [1–6]. Shift operation has also been used in optical systems;
for instance, shift operation is utilized at the input plane of the joint transform correlator (JTC)
architecture in order to place two non-overlapping data distributions side-by-side [7,8]. The usual shift,
convolution and correlation operators have been defined using the fractional Fourier transform [9,10]
and these fractional operators were applied to the sampling theorem for fractional bandlimited
signal [11], time-variant filtering for non-stationary random signals [12] and prediction, interpolation
and filtering of α-stationary random signals [13], where α is the fractional order of the fractional Fourier
transform [10].

In this paper, we propose to define a new generalized shift, convolution and correlation operators
based on the gyrator transform (GT). The GT can be implemented using an optical system [14,15] or
a digital algorithm [16]; these implementations are used in applications of filtering and encryption of
images, holography, beam characterization, optical mode converter and phase-amplitude retrieval,
among other things [17,18]. The generalized shift is the simultaneous application of a spatial shift and
a modulation by a pure linear phase term that does not introduce a shift in the gyrator domain (GD).
The proposed convolution and correlation operators are generalized versions of the usual convolution
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and correlation operations and these generalized versions depend on the parameter α, which is the
rotation angle of the GT. We provide explicit integral equations to compute the new convolution and
correlation operators at the spatial domain. The new proposed convolution and correlation operators
can also be computed in the GD using two GTs and a pure phase term. We apply the proposed
new operators with the purpose of developing and defining the sampling theorem for images whose
resulting GT has finite support. This result is important when it is necessary to sample properly the
spatial domain or the GD of an optical system based on the GT. Finally, we present the application of
the proposed new operators in order to describe and to simulate a nonlinear JTC-based encryption
system in the GD [19,20].

2. The Gyrator Transform (GT) Operator

The gyrator transform (GT) operator at parameter α, which is the rotation angle, of a two-dimensional
function f (x, y) is [14]

fα(u, v) = G α{ f (x, y)} =
+∞∫
−∞

+∞∫
−∞

f (x, y)Kα(u, v, x, y)dxdy, (1)

Kα(u, v, x, y) = Cα exp{i2π [(uv + xy) cot α− (vx + uy) csc α]}, Cα =
1

|sin α| , (2)

where x and y denote the coordinates at the spatial domain, u and v indicate the output coordinates in
the gyrator domain (GD), Kα is the gyrator kernel and the possible values of the rotation angle are in
the following interval 0 ≤ α < 2π. For α = 0, it corresponds to the identity transform. For α = π/2,
it reduces to the direct Fourier transform with rotation of the coordinate at π/2. For α = π, the reverse
transform is obtained. For α = 3π/2, it corresponds to the inverse Fourier transform with rotation
of the coordinate at π/2 [14]. The inverse GT corresponds to the GT at rotation angle −α. There are
certain similarities in the properties of the GT and the fractional Fourier transform; however, these
transforms are basically different, because the kernel of the GT is a product of the hyperbolic and plane
waves, whereas the kernel of the fractional Fourier transform is the product of the spherical and the
plane waves [19].

The main properties of the GT, which will be used below in the following sections, are

G α{G β{ f (x, y)}} = G α+β{ f (x, y)}, (3)

G α{ f (x− x0, y− y0)} = ei2πx0y0 sin α cos αe−i2π(x0v+y0u) sin α fα(u− x0 cos α, v− y0 cos α), (4)

G α{ei2π(u0x+v0y) f (x, y)} = e−i2πu0v0 sin α cos αei2π(u0u+v0v) cos α fα(u− v0 sin α, v− u0 sin α), (5)

where x0, y0, u0 and v0 are real constants. We can observe in Equations (4) and (5) that a shift or
a modulation by a pure linear phase term applied to the function f (x, y) produces a shift of the GT
fα(u, v), which is proportional to the parameters α, x0, y0, u0 and v0. These properties of the shift or
modulation by a pure linear phase term also introduce another modulation by a pure linear phase
term in the GD. Other properties of the GT are described in [14].
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3. Generalized Shift Operator

We propose a generalized shift operator as the simultaneous application over a function f (x, y) of
a spatial shift and a specific modulation by a pure linear phase term. The generalized shift operator at
parameters x0, y0 and α is defined as

GSx0,y0;α f (x, y) = exp
{
−i2π

[
y0

(
x− x0

2

)
+ x0

(
y− y0

2

)]
cot α

}
f (x− x0, y− y0). (6)

The generalized shift operator is a commutative group for a given parameter α. The composition
law is GSx1,y1;αGSx2,y2;α = GSx1+x2,y1+y2;α. When the parameter α is equal to π/2, the generalized
shift operator is reduced to the usual shift operator GSx0,y0;π/2 f (x, y) = f (x− x0, y− y0). The GT at
parameter α of the generalized shift operator GSx0,y0;α is given by

G α{GSx0,y0;α f (x, y)} = exp {−i2π (y0u + x0v) csc α} fα(u, v). (7)

From the two previous equations, the parameter α corresponds to the rotation angle of the
GT. The generalized shift operator does not produce a shift of the GT fα(u, v) in comparison with
Equations (4) and (5). This property is very useful for centred optical systems.

4. Convolution Operator in the GD

We define a new convolution operator at parameter α in the spatial domain by using the
following integrals

f (x, y) ∗α g(x, y) = Cα

+∞∫
−∞

+∞∫
−∞

f (x′, y′)g(x− x′, y− y′)

× exp
{
−i2π

[
y′(x− x′) + x′(y− y′)

]
cot α

}
dx′dy′. (8)

The GTs of G α{ f (x, y)} = fα(u, v) and G α{g(x, y)} = gα(u, v) allow to write the previous
equation in the following form

f (x, y) ∗α g(x, y) = G−α { fα(u, v)gα(u, v) exp {−i2πuv cot α}} . (9)

The proposed convolution operator at parameter α in the GD can be computed using the product
of the resulting GTs at parameter α of the functions f (x, y) and g(x, y) and the pure phase term
given by exp {−i2πuv cot α}. The usual convolution is obtained from Equation (8) when α = π/2,
i.e., f (x, y) ∗π/2 g(x, y) = f (x, y) ∗ g(x, y). The new convolution of a function f (x, y) and a shifted
Dirac delta function δ(x− x0, y− y0) is

f (x, y) ∗α δ(x− x0, y− y0) = Cα exp {−i2π [y0(x− x0) + x0(y− y0)] cot α} f (x− x0, y− y0). (10)

Therefore, the generalized shift operator can be expressed in terms of the convolution operator
proposed in this work

GSx0,y0;α f (x, y) =
1

Cα
[ f (x, y) ∗α δ(x− x0, y− y0)] exp {−i2πx0y0 cot α} . (11)

The proposed new convolution operator is invariant to the generalized shift operator

GSx0,y0;α [ f (x, y) ∗α g(x, y)] =
[
GSx0,y0;α f (x, y)

]
∗α g(x, y) = f (x, y) ∗α

[
GSx0,y0;αg(x, y)

]
. (12)
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5. Correlation Operator in the GD

We propose the definition of a new correlation operator at parameter α in the spatial domain by
using the following integrals

f (x, y)~α g(x, y) = Cα

+∞∫
−∞

+∞∫
−∞

f (x′, y′)g∗(x′ − x, y′ − y)

× exp
{

i2π
[
y(x′ − x) + x(y′ − y)

]
cot α

}
dx′dy′. (13)

Using the GTs G α{ f (x, y)} = fα(u, v) and G α{g(x, y)} = gα(u, v), the integral form of the new
correlation operator can be expressed as

f (x, y)~α g(x, y) = G−α { fα(u, v)g∗α(u, v) exp {i2πuv cot α}} . (14)

The new correlation operator at parameter α in the GD is computed using the product of the
GTs fα(u, v) and g∗α(u, v) and the pure phase term given by exp {i2πuv cot α}. The new correlation
operator is reduced to the usual correlation when α = π/2, i.e., f (x, y)~π/2 g(x, y) = f (x, y)~ g(x, y).
The new correlation operator is also invariant to the generalized shift operator

GSx0,y0;α [ f (x, y)~α g(x, y)] =
[
GSx0,y0;α f (x, y)

]
~α g(x, y) = f (x, y)~α

[
GS−x0,−y0;αg(x, y)

]
. (15)

6. Sampling Theorem in the GD

Nowadays, the optical implementations of image processing systems are mainly carried out
using optoelectronic devices, such as spatial light modulators or cameras. These devices introduce
a sampling over the optical wave that it is used in an optical image processing system. Therefore,
a right sampling at the spatial domain is necessary for a current optical image processing system
when all features of the resulting GT for an image must be preserved by the mentioned optoelectronic
devices.

In this section, we use the proposed operators in order to describe the sampling theorem for
images whose resulting GT has finite support. We define a new Dirac comb function at parameter α

with periods Tx and Ty by

combα

(
x
Tx

,
y
Ty

)
= TxTy

∞

∑
m=−∞

∞

∑
n=−∞

exp
{
−i2πmTxnTy cot α

}
δ(x−mTx)δ(y− nTy). (16)

The GT at parameter α of the new Dirac comb function is

G α

{
combα

(
x
Tx

,
y
Ty

)}
= CαTxTycomb−α

(
u

sin α/Ty
,

v
sin α/Tx

)
. (17)

Therefore, the GT at parameter α of the new Dirac comb function at parameter α with periods Tx

and Ty is another new Dirac comb function at parameter −α with periods sin α/Ty and sin α/Tx.
In order to describe the sampling theorem in the GD, we consider a function f (x, y) whose GT

fα(u, v) has a finite support [−u0/2, u0/2] for the horizontal coordinate u and [−v0/2, v0/2] for the
vertical coordinate v. The following function S(u, v) represents shifted replicas of fα(u, v)

S(u, v) = fα(u, v)~−α comb−α

(
u
u0

,
v
v0

)
= Cαu0v0

∞

∑
m=−∞

∞

∑
n=−∞

exp {−i2π(nu0)(mv0) cot α} exp {i2π (nv0u + mu0v) cot α}

× fα(u−mu0, v− nv0). (18)
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The inverse GT at parameter −α of the previous equation is

S(x, y) =
1

Cα

∞

∑
m=−∞

∞

∑
n=−∞

f
(

m
sin α

v0
, n

sin α

u0

)
δ

(
x−m

sin α

v0

)
δ

(
y− n

sin α

u0

)
. (19)

Equation (19) is a sampled version of f (x, y) for the sampling periods of the coordinates x and y
given by Tx = sin α/v0 and Ty = sin α/u0, respectively. The reconstruction of f (x, y) is computed by
using the image filtering of the function S(x, y) with a low-pass filter in the GD; this image filtering is
described with the proposed convolution operator of Section 4. Thus, the reconstruction of f (x, y) is

f (x, y) = S(x, y)~−α G−α

{
1

u0v0
rect

(
u
u0

,
v
v0

)
exp {i2πuv cot α}

}
= Cα exp {−i2πxy cot α}

∞

∑
m=−∞

∞

∑
n=−∞

exp
{

i2πmTxnTy cot α
}

f (mTx, nTy)

× sin (π (x−mTx) /Tx)

π (x−mTx) /Tx

sin
(
π
(
y− nTy

)
/Ty

)
π
(
y− nTy

)
/Ty

. (20)

The low-pass filter in the GD is a rectangle whose extension on the horizontal coordinate is u0

and the extension on the vertical coordinate is v0. Therefore, the extension of the low-pass filter in
the GD is given by the size of the finite support of the GT fα(u, v). Equation (20) is the sampling
theorem in the GD and this equation provides the values of f (x, y) for every x and y in terms of the
sampled version of f (x, y) whenever the sampling periods are defined using the following conditions
Tx ≤ sin α/v0 and Ty ≤ sin α/u0. If the previous condition is not fulfilled, the reconstruction of f (x, y)
will have aliasing.

7. Optical Image Encryption System Using a Nonlinear Joint Transform Correlator (JTC) in
the GD

Several optical image processing systems can be described and analysed using the new operators
proposed in this work. The use of these new operators allows for an easy, simple and compact
description of the behaviour for some optical image processing systems in the GD.

The proposed operators of the previous sections are used with the purpose of describing
and simulating the nonlinear JTC-based encryption system that was presented in the work of
references [19,20]. The real-valued image to encrypt z(x, y) has their values in the interval [0, 1]
and the two random phase masks (RPMs) k(x, y) and h(x, y) are represented by

k(x, y) = exp{i2πm(x, y)}, h(x, y) = exp{i2πn(x, y)}, (21)

where m(x, y) and n(x, y) are normalized positive functions randomly generated, statistically
independent and uniformly distributed in the interval [0, 1]. Figure 1 (part I) depicts the optical
encryption scheme based on a nonlinear JTC architecture in the GD. The input plane of the JTC-based
encryption system uses two non-overlapping data distributions placed side-by-side. The first data
distribution a(x, y) is the result given by the application of the generalized shift operator at parameters
x0 6= 0, y0 = 0 and α 6= 0 over the real image to encrypt z(x, y) placed against the RPM k(x, y)

a(x, y) = GSx0,0;α {k(x, y)z(x, y)} = exp {−i2πx0y cot α} z(x− x0, y)k(x− x0, y). (22)

The second data distribution b(x, y) of the input plane of the JTC corresponds to the result given
by the application of the generalized shift operator at parameters −x0 6= 0, y0 = 0 and α 6= 0 over the
RPM h(x, y)

b(x, y) = GS−x0,0;α {h(x, y)} = exp {i2πx0y cot α} h(x + x0, y). (23)
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Figure 1. Schematic diagram of the optical system. The encryption system is a nonlinear joint transform
correlator (JTC) architecture that uses a gyrator transform (GT) and the decryption system performs
two successive GTs [19].

The GT at parameter α of the distributions k(x, y)z(x, y) and h(x, y) are denoted by

tα(u, v) = G α{k(x, y)z(x, y)}, hα(u, v) = G α{h(x, y)} =
∣∣hα(u, v)

∣∣ exp{i2πφα(u, v)}. (24)

For the encryption system, the joint gyrator power distribution (JGPD) at parameter α is the
intensity of the GT at parameter α applied over the input plane of the JTC [19]

JGPDα(u, v) =
∣∣∣G α {a(x, y) + b(x, y)}

∣∣∣2. (25)

The encrypted image is computed using the following nonlinear processing on the JGPD [19]

eα(u, v) =
JGPDα(u, v)−

∣∣tα(u, v)
∣∣2 − ∣∣hα(u, v)

∣∣2∣∣hα(u, v)
∣∣2 = t∗α(u, v)

hα(u, v)∣∣hα(u, v)
∣∣2 exp {i2π(2x0)v csc α}

+ tα(u, v)
h∗α(u, v)∣∣hα(u, v)

∣∣2 exp {−i2π(2x0)v csc α} . (26)

If |hα(u, v)|2 is equal to zero for a particular value of u and v, this intensity value is substituted by
a small constant to avoid singularities when computing eα(u, v). The encrypted image is a real-valued
image that can be computed using the following three intensity distributions: JGPDα(u, v), |tα(u, v)|2
and |hα(u, v)|2. The security keys of the encryption system are given by the RPM h(x, y) and the
rotation angle α of the GT. The RPM k(x, y) is used to spread the information content of the original
image z(x, y) onto the encrypted image eα(u, v) [19]. The inverse GT at parameter −α of Equation (26)
denotes the encrypted image e(x, y) in the spatial domain

e(x, y) = G−α {eα(u, v)} = GS−2x0,0;α {[h(x, y)~α (k(x, y)z(x, y))] ∗α h1(x, y)}
+ GS2x0,0;α {[(k(x, y)z(x, y))~α h(x, y)] ∗α h1(x, y)} , (27)

where h1(x, y) = G−α
{

1/|hα(u, v)|2
}

. Therefore, the encrypted image e(x, y) of reference [19] can be
described using the proposed generalized shift, convolution and correlation operators in this work.
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For the initial step of the decryption system depicted in Figure 1 (part II), we perform the product
of the GT of the second data distribution G α {b(x, y)} and the encrypted image eα(u, v), in order to
obtain the following result

dα(u, v) = eα(u, v)G α {b(x, y)} = eα(u, v)hα(u, v) exp {i2πx0v csc α}

=
[
hα(u, v) (G α {k(x, y)z(x, y)})∗ exp {i2πuv cot α}

] 1
h∗α(u, v)

exp {−i2πuv cot α}

× exp {i2π(3x0)v csc α}+ G α {k(x, y)z(x, y)} h∗α(u, v)hα(u, v)∣∣hα(u, v)
∣∣2 exp {−i2πx0v csc α} . (28)

Using the result of Equations (7), (9) and (14), the inverse GT at parameter −α of the previous
equation is the output plane d(x, y) of the decryption system

d(x, y) = G−α {dα(u, v)} = GS−3x0,0;α {[h(x, y)~α (k(x, y)z(x, y))] ∗α h2(x, y)}
+ GSx0,0;α {k(x, y)z(x, y)} , (29)

where h2(x, y) = G−α {1/h∗α(u, v)}. The proposed operators in this work can also be used in order to
describe the output plane d(x, y) of the decryption system presented in reference [19]. If we take the
absolute value of the second term of the right side of Equation (29), we obtain the decrypted image
z̃(x, y) centred at coordinates x = x0 and y = 0

z̃(x− x0, y) =
∣∣GSx0,0;α {k(x, y)z(x, y)}

∣∣ . (30)

We perform the numerical simulations of the encryption and decryption systems that were
described using the the proposed generalized shift, convolution and correlation operators in this work.
Figure 2a,b show the original image to encrypt and the random distribution code m(x, y) of the RPM
k(x, y), respectively. The random distribution code n(x, y) of the RPM h(x, y) has a similar appearance
to the image presented in Figure 2b but different values for their pixels. The image presented in
Figure 2c corresponds to the encrypted image eα(u, v) for the security keys α = 0.727π and the RPM
h(x, y). The decrypted image z̃(x, y) is shown in Figure 2d when the right values of the security key are
used in the decryption system. If a wrong value of the rotation angle α of the GT or an incorrect RPM
h(x, y) are used in the decryption process, the obtained decrypted image will be a random distribution
image. In reference [19], the authors showed that the sensitivity of the rotation angle of the GT over the
resulting decrypted images is much higher than the sensitivity shown by the encryption–decryption
system that uses generalized JTC to variations in the fractional order of the fractional Fourier transform.

(a) z(x, y) (b) m(x, y) (c) eα(u, v) (d) z̃(x, y)

Figure 2. (a) Original image to encrypt z(x, y). (b) Random distribution code m(x, y) of the random
phase mask (RPM) k(x, y). (c) Encrypted image eα(u, v) for the security keys α = 0.727π and the RPM
h(x, y). (d) Right decrypted image z̃(x, y).

8. Conclusions

We have proposed new image processing operators based on the GT; these new operators
are: Generalized shift and the convolution and correlation operations in the GD. The generalized
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shift operator allows to use shifted distribution images at the input plane (spatial domain) of
an optical system without introducing a shift for the resulting GTs of these shifted distribution images.
This feature of the generalized shift operator is very helpful for centred optical systems. The proposed
new operators for the convolution and correlation can be computed in the GD using the product of the
results of two GTs and a pure phase term. For these new operators of the convolution and correlation,
we presented two explicit integrals that permit to perform generalized convolution and correlation
operations at the spatial domain using different values of the parameter α. The sampling theorem
in the GD for images whose resulting GT has finite support was developed and presented by using
the new operators proposed in this work. We show that the sampling periods at the spatial domain
are directly proportional to the term sin α, where the parameter α is the rotation angle of the GT and
inversely proportional to the extension or lengths of the finite support of the image given by the result
of the GT. Finally, a nonlinear JTC-based encryption system in the GD was described and simulated
by using the new operators proposed in this paper. We expect that the proposed new operators can
be used to design, analyse and improve some optical image processing systems, such as imaging
systems, diffraction through an aperture, beam focusing, optical tweezers and image filtering system,
among others.
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