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Abstract: The main problem with the radio-over-fiber (RoF) link is the decrease in the recovered
radio frequency (RF) power due to the chromatic dispersion of the fiber known as dispersion power
fading. One of the methods for dealing with dispersion power fading is to use the optical single
sideband (OSSB) modulation scheme. The OSSB modulation scheme can be generated by biasing the
dual-drive Mach–Zehnder modulator (DD-MZM) to the quadrature bias point (QBP) and shifting
the RF drive signal phase (θ) by 90◦, which is called the regular θ. However, the OSSB modulation
scheme only overcomes dispersion power fading well at the modulation index (m) < 0.2. This paper
proposes an irregular θmethod to overcome dispersion power fading at all m. There are two irregular
θ for every m used. The irregular θ managed to handle dispersion power fading better than OSSB
modulation scheme did at every m. Specifically, the irregular θ could handle the dispersion power
fading well at m ≤ 1. In sum, the irregular θ could overcome the dispersion power fading at any RF
frequency and optical wavelength without having to re-adjust the transmitter.

Keywords: radio over fiber; dispersion power fading; dual-drive Mach–Zehnder modulator (DD-MZM);
irregular phase shift

1. Introduction

A radio-over-fiber (RoF) system transmits radio frequency (RF) (XTX(t)) signals through optical
fiber used to support wireless communication services. The XTX(t) in the RoF system is converted to
an optical signal using an electro-optic (E/O) converter located at the central office (CO). The optical
signal is later transmitted through a fiber link, and the RF signal is recovered using an opto-electric
(O/E) converter positioned on the radio access point (RAP). The recovered RF signal (Xrec(t)) is
then transmitted wirelessly from the RAP to mobile station (MS). It is possible to convert RF signal
to the optical one by modulating the optical source directly or externally, both of which serve as
intensity modulation (IM) or phase modulation (PM). The intensity modulation is used most commonly
because it has a simple system. Recovering RF signal can be done by direct detection (DD) using a
photodetector [1].

IM on the RoF system produces modulated light waves (ETX(t)) with double-sideband spectrum
(double-sideband optical modulation, henceforth ODSB). When the ODSB signal is transmitted through
a fiber link, the chromatic dispersion of the fiber causes the sideband and optical carrier to propagate at
different speeds. This leads the modulated signal at the receiver (ERX(t)) to experience a phase difference
between the sideband and optical carrier by ϕ.The proportion of ϕfollows the length of the fiber (L),
the frequency of the RF signal (fm) and the wavelength (λc) used. The phase difference causes the O/E
process to generate two identical RF signals but with a different phase of 2ϕ, resulting in constructive
and destructive interference on Xrec(t). The destructive interference reduces the power of the recovered
RF signal (Prec(t)), which is known as dispersion power fading. If ϕ= π, massive decrease in power will
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occur (deep fade). The proportion of power decrease is obtained by comparing the signal power with
and without the fiber, something that is known as the carrier-to-noise (C/N) penalty [2].

There are two types of light sources commonly used in RoF links, namely optical frequency
comb (OFC) and single-mode laser. Chromatic dispersion fiber will give different effects on each light
source. The effect of chromatic dispersion on RoF links using OFC light sources can be overcome
by several methods. In [3], power fading is overcome by utilizing chromatic dispersion. The effect
of chromatic dispersion on RoF links using the mode-locked laser diodes (MLLD) can be reduced
using an unbalanced Mach–Zehnder interferometer (UMZI) [4], whereas in [5], the effect of chromatic
dispersion is reduced by adjusting the MLLD parameters appropriately.

The focus of this paper is to overcome dispersion power fading on RoF links using a single-mode
laser as a light source. The most useful method for dealing with dispersion power fading is to use
spools of dispersion compensation fiber (DCF) [6]. The dispersion of DCF is negative, so by inserting
DCF into the ROF link, the average dispersion is close to zero. The weakness of this method is that
DCF must always be adjusted to the L used.

Dispersion power fading can also be overcome by carrier phase-shifted (CPS) method [7–12].
In this method, the optical carrier phase before transmission is arranged in such a way that ϕ becomes
zero after transmission. With this method, the Xrec(t) is always in a constructive condition. However,
the optical carrier phase before transmission should always be adjusted to the used L, fm, and λc since
the proportion of ϕ accords with L, fm, and λc. In addition, successfully adjusting the optical carrier
phase requires complex transmitter circuits.

Another feasible method is using the optical carrier-suppressed (OCS) modulation scheme [13–20].
With the OCS modulation, the optical carrier is removed so that ETX(t) consists only of upper and lower
sidebands. The Xrec(t) is thus generated only from the multiplication between the upper and lower
sidebands, so no interference resulting in dispersion power fading is possible. The disadvantage of this
method is that the Xrec(t) frequency is twice the XTX(t) frequency, so the receiver has to do additional
works to turn the Xrec(t) frequency to its original frequency.

It is also possible to deal with dispersion power fading by using an optical single-sideband (OSSB)
modulation scheme [13,15,16,19–43] that has a spectrum consisting only of optical carriers and one
sideband (either upper or lower sideband). This modulation scheme allows the Xrec(t) to have the
same frequency as that of XTX(t), so it is not necessary for the receiver to adjust the Xrec(t) frequency.
The OSSB modulation scheme can be generated by biasing the dual-drive Mach–Zehnder modulator
(DD-MZM) on the quadrature bias point (QBP) and at the phase difference of RF drive signal (θ)
= 90◦ [19,30,40,43,44]. The DD-MZM is an electro-optic (E/O) converter that is commonly used on
RoF links. The OSSB generated using DD-MZM manages to effectively overcome dispersion power
fading if the XTX(t) spectrum is made up only of optical carriers and sideband fundamentals without
harmonics. Otherwise, the phase shift occurring in the harmonics may result in a decrease of the Xrec(t)
power. To produce XTX(t) without harmonics, the DD-MZM must be operated at a modulation index
(m) < 0.2. Hence, this method cannot overcome dispersion power fading efficiently at m ≥ 0.2.

Our previous study [45] has successfully demonstrated that modifying θ of DD-MZM biased
on QBP can change the XTX(t) spectrum. Different spectrum will also produce a different level of
dispersion power fading. This paper proposes, as an update, the use of irregular θ to overcome
dispersion power fading. The irregular θ is a θ that produces a minimum level of dispersion power
fading, which is measured using (C/N) deviation factor. To calculate the (C/N) deviation factor, it is
necessary, at first, to model the recovered RF signal’s power.

The complete contribution of this paper includes:

1. A new method for dealing with dispersion power fading by using irregular θ.
2. Generating a simple RoF link with standard DD-MZM as an E/O converter that can overcome

dispersion power fading at all m. This link:

(a) Can be used in any fm, L, and λc without having to re-adjust the transmitter.
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(b) Has Xrec(t) set at the same frequency as that of XTX(t), thereby removing any
additional work.

2. Principles of DD-MZM

The Mach–Zehnder modulator (MZM) is an external intensity modulator commonly used on
optical fiber links. It has two variants, namely single drive (SD-MZM) and dual drive (DD-MZM).
The latter has two signal driver ports and two bias ports (up and down) that can be controlled
independently to produce a number of different forms of optical modulation. The general configuration
of DD-MZM is shown in Figure 1 in which the path is distinguished by solid and dashed lines.
The dashed lines represent the path passed by the electrical domain signal, while the solid one is
passed by the optical domain signal. The continuous optical wave (Ein(t)) produced by the laser diode
(LD) is modulated by the RF signal (XTX(t)) to be transmitted later. The modulation is carried out by
inserting XTX(t) into the upper and lower signal driver ports whose phases are differentiated using an
electrical phase shifter (EPS) by θ. The upper bias port is given a Vbias voltage, while the lower one is
given 0 V voltage. The modulator output optical field is expressed as ETX(t).

Ein(t) and XTX(t) are expressed in the following formula:

Ein(t) = Eoe j2π fct (1)

XTX(t) = Vm cos 2π fmt, (2)

where Eo represents continuous optical wave amplitude, fc the continuous optical wave frequency,
Vm the amplitude of the RF signal, and fm the frequency of the RF signal. As such, the upper (Vup(t))
and lower (Vdown(t)) driving signals of DD-MZM are expressed:

Vup(t) = Vm cos(2π fmt) + Vbias (3)

Vdown(t) = Vm cos(2π fmt + θ), (4)

where θ is the phase of the electrical phase shifter (EPS). Assuming that the extinction ratio (ER) of
DD-MZM is extremely high, the optical field generated from DD-MZM (ETX(t)) can be approximated
by the equation

ETX(t) ≈
1
2

Ein(t)
{

e( jπ
Vup(t)

Vπ ) + e( jπ
Vdown(t)

Vπ )

}
, (5)

provided Vπ is the switching voltage of MZM. By inserting the Equations (3) and (4) into (5),
the following formula is obtained

ETX(t) ≈
1
2

Ein(t)
{
e( jπVm

Vπ cos (2π fmt)+ jπ
Vbias
Vπ ) + e( jπVm

Vπ cos (2π fmt+θ))
}
, (6)

For simplicity, the Equation (6) can be stated as

ETX(t) = 1
2 Ein(t)

{
e( jm cos (2π fmt)+ jπγ) + e jm cos (2π fmt+θ)

}
ETX(t) = 1

2 Ein(t).
{
e jm cos (2π fmt)e jπγ + e jm cos (2π fmt+θ)

}
,

(7)

where m = πVm
Vπ is the DD-MZM modulation index, and γ =

Vbias
Vπ is the normalized bias voltage.
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Figure 1. Schematic diagram of dual-drive Mach–Zehnder modulator (DD-MZM).

To facilitate the analysis, the Equation (7) is written as

ETX(t) =
1
2

Ein(t)
{
A·e( jπγ) + B

}
, (8)

with
A = e jm cos (2π fmt) (9)

B = e jm cos (2π fmt+θ), (10)

By implementing Jacobi–Anger expansion [46], where

e jm cos x =
∞∑

n=−∞
jn Jn(m)e jnx (11)

e jm sin x =
∞∑

n=−∞
Jn(m)e jnx, (12)

the Equations (9) and (10) become

A =
∞∑

n=−∞
jn·Jn(m)·e jn(2π fmt), (13)

B =
∞∑

n=−∞
jn·Jn(m)·e jn(2π fmt+θ), (14)

with Jn(m) is the nth Bessel function of the first kind. Therefore, Equation (7) can be expressed as

ETX(t) = 1
2 Ein(t)


∞∑

n=−∞
jn·Jn(m)·e jn(2π fmt)

·e jπγ+

∞∑
n=−∞

jn·Jn(m)·e jn(2π fmt+θ)


ETX(t) = 1

2 Ein(t)
{
∞∑

n=−∞
jn·Jn(m)·

(
e jn(2π fmt)

·e jπγ + e jn(2π fmt)
·e jnθ

)}
ETX(t) = 1

2 Ein(t)
{∑
∞

n=−∞ jn·
(
e jπγ + e jnθ

)
·Jn(m)·e jn2π fmt

}
,

(15)



Photonics 2019, 6, 104 5 of 18

By inserting (1) into (15), it is obtained

ETX(t) = 1
2 Eoe j2π fct

{
∞∑

n=−∞
jn·

(
e jπγ + e jnθ

)
·Jn(m)·e jn2π fmt

}
ETX(t) = 1

2 Eo

{
∞∑

n=−∞
jn·

(
e jπγ + e jnθ

)
·Jn(m)·e j2π( fc+n fm)t

}
.

(16)

It is noticeable from Equation (16) that the optical field generated from DD-MZM consists of an
optical carrier and sideband with infinite order. In accordance with the Bessel function, the formed
sideband order is influenced by the m used. The greater the m, the more the sideband orders formed.

By adjusting parameters γ and θ in Equation (16), the following modulation schemes will
be obtained:

1. For θ = 180o and γ = 1
2 (QBP, which is Vbias =

1
2 Vπ), an ODSB modulation scheme is produced.

The spectrum of this modulated signal is shown in Figure 2a.
2. For θ = 90o and γ = 1

2 , an OSSB modulation scheme is produced. In this instance, only (4n + 1)
order lower sidebands are suppressed, where n is an integer [19]. The spectrum can be seen in
Figure 2b.
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(ODSB) modulator and (b) OSSB modulator.

3. Modeling of Recovered RF Signal Power

To calculate the (C/N) deviation factor, it is necessary to first model the recovered RF signal’s
power. Power modeling is carried out for the RoF link consisting of DD-MZM as an E/O converter;
optical fiber, which is dispersive with H(f ) response; and photodetector (PD), which is an O/E converter
as shown in Figure 3.
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To simplify the analysis, the Equation (16) can be rewritten as

ETX(t) = Ace j2π fct +
∞∑

n=1

{
Alne j2π( fc−n fm)t + Aune j2π( fc+n fm)t

}
, (17)

where
Ac =

1
2 Eo

(
e jπγ + 1

)
·J0(m)

Aln = 1
2 Eo jn

(
e jπγ + e− jnθ

)
·Jn(m)

Aun = 1
2 Eo jn

(
e jπγ + e jnθ

)
·Jn(m).

The function of dispersive fiber link transfer is obtained from [47]

H( f ) = e
jDLλ2

c ( f− fc)2

c , (18)

where D is the chromatic dispersion in ps/(nm km), λc the optical wavelength, f the frequency offset
of the optical carrier, c the speed of light in vacuum, and L the fiber length in km. When ETX(t) is
transmitted through a dispersive link, a phase difference occurs between the first-order sideband and
the optical carrier

φ =
DLλ2

c f 2
m

c
, (19)

while the phase difference between the optical carrier and any sideband is the square of the frequency
range (±n fm), which is given by [48]

φn = n2φ, (20)

Thus, the optical field that arrives at the receiver end (ERX(t)) is formulated below:

ERX(t) = Ace j2π fct +
∞∑

n=1

{
Alne j2π( fc−n fm)t + Aune j2π( fc+n fm)t

}
·e jn2φ, (21)

At the receiver end, the ERX(t) is detected using a photodetector which is a squared-envelope
operator, given by [2] ∣∣∣ERX(t)

∣∣∣2 = ERX(t)·E∗RX(t), (22)

by simply taking the fm term, it is obtained∣∣∣ERX(t)
∣∣∣2 = e j2π fmt

{
AcA∗l1e− jφ + A∗cAu1e jφ + Al1A∗l2e− j3φ + A∗u1Au2e j3φ + Al2A∗l3e− j5φ + A∗u2Au3e j5φ + . . .

}
∣∣∣ERX(t)

∣∣∣2 = e j2π fmt
{
∞∑

n=0

(
AlnA∗l(n+1)

e− j(2n+1)φ + A∗unAu(n+1)e j(2n+1)φ
)}

,

(23)
where Al0 = Au0 = Ac.

The real portion of Equation (23) is equivalent to the photodetector’s output current and is equal
to Xrec(t) [47], so

Xrec(t) ≈

 ∞∑
n=0

(
AlnA∗l(n+1)e

− j(2n+1)φ + A∗unAu(n+1)e
j(2n+1)φ

) cos 2π fmt. (24)

The square of the amplitude term in the Equation (24) is the Xrec(t) power [2], so the formula
below is used to measure the power of the recovered RF signal as a function of L

Prec(L) =

 ∞∑
n=0

(
AlnA∗l(n+1)e

− j(2n+1)φ + A∗unAu(n+1)e
j(2n+1)φ

)
2

, (25)
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with
φ =

DLλ2
c f 2

m
c ,

A∗ln = 1
2 Eo(− jn)

(
e− jπγ + e jnθ

)
·Jn(m),

and
A∗un =

1
2

Eo(− jn)
(
e− jπγ + e− jnθ

)
·Jn(m).

The recovered RF signal is obtained from the multiplication of nth order lower sideband with
(n + 1)th order conjugated lower sideband plus the multiplication of nth order conjugated upper
sideband with (n + 1)th order upper sideband, where n is an integer. The recovered RF signal power is
obtained by squaring the amplitude of the signal.

The extent to which the power of the recovered RF signal decreases due to fiber dispersion is
known as a (C/N) penalty, which is calculated by comparing Prec(L) with and without fiber transmission.
The calculation is mathematically stated as [2]

(C/N)penalty = 10 log

∣∣∣∣∣∣∣ Prec(L)with f iber

Prec(L)without f iber

∣∣∣∣∣∣∣. (26)

This paper puts forward the idea of using (C/N) deviation factor to measure the dispersion power
fading level satisfying the following equation:

(C/N)deviation− f actor =

√√√√√ N∑
i=0

(
(C/N)penalty(i) − (C/N)penalty

)2

N
. (27)

Note: The (C/N)penalty(i) is the i-sample of (C/N) penalty, (C/N)penalty is the average sample of
(C/N) penalty, and N is the number of samples. The lower the (C/N) deviation factor, the smaller the
effect of dispersion on Prec(L). The minimum sample required for this calculation is one deep fade cycle,
as shown in Figure 4a.
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3.1. (C/N) Penalty on ODSB

The modulation scheme commonly used on RoF links is optical double sideband (ODSB). The RoF
link with DD-MZM as E/O converter will produce an ODSB modulation scheme if DD-MZM is biased
to QBP and the degree of RF phase shifting (θ) equals 180◦. The calculation of (C/N) penalty on the RoF
link with ODSB modulation follows (26) by calculating Prec(L) from the Equation (25), where Prec(L)
without fiber = Prec(0), and (C/N) penalty (dB) = Prec(L) (dBm) − Prec(0) (dBm). The parameters used in
this calculation are λc = 1550 nm with D = 17 ps/(nm.km), and fm = 60 GHz. The range of fiber length
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L is 0 to 5 km with a step of 0.1 km. The calculations are made at m = 0.1, 0.5, 0.8, 1, 1.5, 2, 3, and 4.
According to Bessel function, Jn(4) is still significant until n = 10. Thus, the considered sideband in this
calculation is that reaching until the 10th order (n = 10). The (C/N) penalty curve as the result of the
calculation is shown in Figure 4.

The vertical axis in Figure 4 expresses the (C/N) penalty in dB, and the horizontal axis expresses
the fiber length in km. Figure 4a shows the (C/N) penalty curve at m ≤ 1, while Figure 4b is the (C/N)
penalty curve at m > 1. It is obvious from Figure 4a that the RoF link with ODSB modulation at all m
experiences deep fade (large power loss) at L = 1 and 3.1 km. Based on the Equation (26), the value
of (C/N) deviation factor of RoF link with ODSB modulation is 6.8 at m = 0.1, 6.5 at m = 0.5, 6.0 at
m = 0.8, and 5.5 at m = 1. The values indicate that the smaller the m, the larger the (C/N) deviation
factor of RoF link with ODSB modulation. In other words, smaller m values make the RoF link with
ODSB modulation increasingly affected by dispersion. As shown in Figure 4b, the RoF link at m > 1
experiences deep fade at the various length of the fiber and has an irregular pattern. The same case
happens with the (C/N) deviation factor at m > 1, which is 4.1 at m = 1.5, 10.5 at m = 2, 5.6 at m = 3,
and 7.4 at m = 4.

To find out the effect of dispersion on the RoF link at different fm, the researchers did a calculation
of (C/N) penalty with m = 1, λc = 1550 nm, D = 17 ps/(nm km) at L = 1 km to 5 km with a step of 0.1 km.
The fm was varied at 30, 40, 50, 60, and 70 GHz. The results are shown in Figure 5a. On the other hand,
to establish the effect of dispersion to the RoF link at different λc, the researchers made a similar (C/N)
penalty calculation at m = 1, fm = 60 GHz, at L = 1 km to 5 km with a step of 0.1 km. The λc was also
varied at 1540 nm (D = 16 ps/(nm km)), 1550 nm (D = 17 ps/(nm km)), 1560 nm (D = 17.5 ps/(nm km)),
and 1570 nm (D = 18 ps/(nm km)), and the results of the calculation are given in Figure 5b. On the RoF
link with variation fm, the bigger the fm used, the closer the distance of the deep fade. Likewise, on the
RoF link with variation λc, bigger λc results in a closer distance of the deep fade.
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3.2. (C/N) Penalty on OSSB

One method used to manage the (C/N) penalty is the OSSB modulation scheme. The RoF link
with DD-MZM as the E/O converter will produce an OSSB modulation scheme if DD-MZM is biased
to QBP and θ is set to 90◦ [19,30,40,43,44]. To see the (C/N) penalty of RoF link with OSSB modulation,
the same calculation as that on ODSB is done but with θ set to 90◦. The results of (C/N) penalty from
this calculation are shown in Figure 6.
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Figure 6a displays (C/N) penalty curve on the RoF link with OSSB modulation at m ≤ 1. At this
value of m, no deep fade was recorded, unlike that with ODSB modulation, but there remained a
decrease of power by 0.6 dB at m = 0.5, 1.5 dB at m = 0.8, and 2.5 dB at m = 1. In other words,
the greater the m used, the greater the decrease of power. The power reduction did not occur at
m = 0.1, which means that the OSSB modulation scheme can only overcome the (C/N) penalty at
m = 0.1. The value of (C/N) deviation factor of RoF link with OSSB modulation is 0.9 at m = 1, 0.6 at
m = 0.8, 0.2 at m = 0.5, and 0.0 at m = 0.1. Hence, the RoF link with the OSSB modulation scheme is
not, by implication, affected by the dispersion at m = 0.1—the larger the m, the greater the effect of
dispersion on the recovered RF signal power. What the curve of (C/N) penalty and the (C/N) deviation
factor show is that the OSSB modulation scheme cannot effectively overcome dispersion power fading
at m > 0.1.

The image of (C/N) penalty curve on the RoF link with OSSB modulation at m > 1 is given
in Figure 6b. It is visible at this level of m that the OSSB modulation scheme is no longer capable
of overcoming dispersion power fading, which is marked by the significant loss of power at every
use. Figure 6c,d is (C/N) penalty curve on the RoF link with OSSB modulation at various fm and λc

respectively. The curve was obtained from calculations with m = 1, λc = 1550 nm, and D = 17 ps/(nm
km). Both figures illustrate the loss of power by 2.5 dB at different fiber length for different fm and λc.
This implies that the OSSB modulation scheme is also unable to overcome dispersion power fading
effectively at other fm and λc for m > 0.1.
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4. Irregular Phase Shifted

Our previous research [45] proved that altering θ on the RoF link with DD-MZM biased in QBP
causes the XTX(t) spectrum to change as well. The XTX(t) with a different spectrum will result in a
different (C/N) deviation factor. The proper shape of the spectrum will produce a small (C/N) deviation
factor value, so choosing the right irregular θ will produce a minimum (C/N) deviation factor value.

The search for irregular θ is performed for γ = 1
2 with the following steps:

(a) Calculate Prec(L) using (24) with n = 10, m = 0.1, θ = 0 rad, λc = 1550 nm (D = 17 ps/(nm km)),
and fm = 60 GHz. The Prec(L) is calculated at 0 ≤ L ≤ 5 km with step 0.1 km.

(b) From the obtained Prec(L) in a), calculate the (C/N) penalty using (26).
(c) Calculate the (C/N) deviation factor using (27) of all (C/N) penalties in b).
(d) Repeat steps a) to c) for the value 0◦ ≤ θ ≤ 360◦ with step 1◦.
(e) Find θ in step d) which produces the smallest (C/N) deviation factor.
(f) Repeat steps a) to e) for 0.1 ≤ m ≤ 4 with step 0.1. The value of m is limited to 4 since only in this

condition can the sidebands of >10 order be ignored.

The curve for the search of irregular θ is shown in Figure 7. The vertical axis represents the (C/N)
deviation factor, and the horizontal one represents the θ value, which varies from 0 to 360◦. The θ
producing the smallest (C/N) deviation factor is chosen as the irregular θ. For each m, there are two
irregular θs. The value of irregular θ I is 90◦ at m = 0.1, 86◦ at m = 0.5, 78◦ at m = 0.8, and 69◦ at m = 1.
Meanwhile, the value of irregular θ II is 270◦ at m = 0.1, 274◦ at m = 0.5, 282◦ at m = 0.8, and 291◦

at m = 1. The value of irregular θ II = 360◦ − irregular θ I. The irregular θ for another m is given in
Table 1.
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To clarify whether the irregular θ is periodical, the researchers investigated it at the range of 360◦

≤ θ ≤ 720◦, and the results are presented in Figure 8a. For m = 1, the irregular θ I is 429◦ or 69◦ + 360◦,
which means it is periodical. The irregular θ was also investigated at fm = 40 GHz. The results of the
calculation, as shown in Figure 8b, conclude that at m = 1, the irregular θ I amounts to 69◦. In other
words, the irregular θ is the same with the same m despite different fm.
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Table 1. Irregular θ for m = 0.1–4.

m Irregular θ I
(Degrees)

Irregular θ II
(Degrees) m Irregular θ I

(Degrees)
Irregular θ II

(Degrees)

0.1 90 270 2.1 88 272
0.2 89 271 2.2 85 275
0.3 89 271 2.3 79 281
0.4 88 272 2.4 73 287
0.5 86 274 2.5 68 292
0.6 84 276 2.6 65 295
0.7 81 279 2.7 62 298
0.8 78 282 2.8 60 300
0.9 74 286 2.9 59 301
1.0 69 291 3.0 58 302
1.1 63 297 3.1 18 342
1.2 56 304 3.2 15 345
1.3 50 310 3.3 105 255
1.4 44 316 3.4 107 256
1.5 38 322 3.5 108 252
1.6 32 328 3.6 107 253
1.7 28 332 3.7 105 255
1.8 145 215 3.8 103 257
1.9 142 218 3.9 47 313
2.0 86 274 4.0 45 315
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To see the proportion of decrease in (C/N) deviation factor before and after the use of irregular θ,
a comparison of (C/N) deviation factor on the RoF link with ODSB, OSSB, and irregular θ modulation
was performed. The calculation is performed using λc = 1550 nm (D = 17 ps/(nm km)), and fm = 60 GHz
at 0.1 ≤ m ≤ 4. The results of this calculation are shown in Figure 9.
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Figure 9. The (C/N) deviation factor of RoF link with ODSB, OSSB modulation schemes, and irregular θ.

The vertical axis stands for the (C/N) deviation factor, and the horizontal axis represents m. It is
visible that the value of the (C/N) deviation factor of RoF link with ODSB modulation is always greater
than those of OSSB modulation and irregular θ. The line of (C/N) deviation factor of ODSB at 0.1 < m <

1.6 decreased before fluctuating at m > 1.6. In contrast, the value of (C/N) deviation factor for OSSB
and irregular θ increased at 0.1 < m < 1.9 and then fluctuated at m > 1.9. The (C/N) deviation factor for
irregular θ is always smaller than OSSB. These findings suggest that the use of irregular θ is able to
handle dispersion power fading better than OSSB does on all m. The RoF link with irregular θ has
the (C/N) deviation factor < 0.1 at m ≤ 1. This means the irregular θ can cope with dispersion power
fading well at m ≤ 1.

To see the performance of irregular θ in handling dispersion power fading, a calculation of
the (C/N) penalty at m = 1 for RoF link calculation with irregular θ I = 69◦, irregular θ II = 291◦,
ODSB modulation, and OSSB modulation was performed. The calculation was performed with
λc = 1550 nm (D = 17 ps/(nm.km)), and fm = 60 GHz. To validate these results, a comparison of
calculation results of (C/N) penalty with the simulation results using Optisystem software was done.
The simulation circuit is given in Figure 10.
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Figure 10. The structure of RoF link simulation using Optisystem software.

The structure of the RoF link consists of sine generator, fork 1x2, electrical phase shift, CW laser,
MZM, optical fiber, photodetector PIN, band pass rectangle filter, and electrical power meter. The sine
generator works to generate pure RF signals. In this simulation, the frequency of sine generator is
set to 60 GHz. Because the switching voltage Vπ used in the simulation is 4 V, the voltage of sine
generator Vm is set to 1.274 V to obtain m = 1. The output of the sine generator is then duplicated
using fork 1x2. The first fork output is inserted into the electrical phase shift and utilized as an MZM
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top driver, while the second fork output is directly used as an MZM bottom driver. The electrical
phase shift is used to differentiate the phase between the first RF signal and the second fork output
by θ. The type of MZM used is LiNb-MZM. To produce γ = 1

2 , MZM is set with the parameters as
outlined in Table 2. MZM optical inputs are CW laser which is set to λc = 1550 nm, power = 0 dBm,
and line width = 10 MHz. The output of MZM is then transmitted through single-mode optical fiber.
The optical fiber is configured with parameters in Table 3. In this simulation, the effect of fiber
attenuation was ignored. At the receiver, the optical signal is detected using PIN photodetector under
the parameter of responsivity (1 A/W) and dark current (10 nA). Because the output of photodetector
consists of an electric signal with frequencies of 0, 60, 120 GHz, etc., it was filtered by means of a band
pass rectangle filter. To obtain an RF signal at 60 GHz, the parameter filter was used by frequency of
60 GHz, bandwidth of 10 MHz, the insertion loss of 0 dB and a depth of 100 dB. The power of the
recovered RF signal was measured using the electrical power meter. The simulation was performed in
three scenarios, with the first one being for the RoF link with ODSB modulation scheme. To produce
the ODSB modulation scheme, the electrical phase shift is set to θ = 180◦. The second scenario is to
set θ = 90◦ to produce OSSB modulation scheme, while the third scenario is for the RoF link with
the irregular θ. Since m in this simulation is 1, the electrical phase shift is set to θ = 69 and 291◦.
The measurements of power for each scenario were performed for 0 to 5 km fiber lengths with a step of
0.1 km.

Table 2. Setting parameter of LiNb-MZM.

Parameter Value Units

Extinction ratio 20 dB
Switching bias voltage 4 V

Switching radio frequency (RF) voltage 4 V
Insertion loss 0 dB

Normalize electrical signal unchecked -
Bias voltage1 0 V
Bias voltage2 2 V

Table 3. Setting parameter of optical fiber.

Parameter Value Units

User-defined reference wavelength Checked -
Reference wavelength 1550 nm

Length 0–5 km

Attenuation effect Unchecked -
Group velocity dispersion Checked -

Third-order dispersion Unchecked -
Frequency domain parameter Unchecked -

Dispersion 17 ps/nm/km

The (C/N) penalty curve for calculation and simulation results is shown in Figure 11. The curve
for the results of both the calculation and simulation from the RoF link with ODSB modulation are
the same in pattern. The same pattern of the curve also applied to OSSB modulation and irregular θ
(θ = 69◦ and 291◦). This means that the mathematical model used to calculate the recovered RF signal
power is correct. On the RoF link with the ODSB modulation scheme, a deep fade occurs at L = 1 and
3.1 km. The deep fade did not occur in the RoF link with OSSB modulation scheme, but there is a
reduction in power of about 2.5 dB at the same L. Meanwhile, the power loss on the RoF link with
irregular θ = 69◦ and irregular θ = 291◦ is extremely small. The (C/N) deviation factor of the RoF link
with irregular θ = 69◦ and irregular θ = 291◦ is 0.1, with OSSB modulation 0.9, and ODSB modulation
5.5. Therefore, irregular θ could reduce the (C/N) deviation factor by 5.4, while OSSB reduced by 4.6.
This suggests the irregular θ handles dispersion power fading better than OSSB does. Irregular θ = 69◦
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and irregular θ = 291◦ have the same pattern of the curve and performance in handling dispersion
power fading.
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Figure 11. (C/N) penalty of RoF link with ODSB, OSSB modulation, and irregular θ: The results of
calculation and simulation.

The calculation of (C/N) penalty was also performed on the RoF link with fm = 30 and 40 GHz at
m = 1 to test whether the use of irregular θ can successfully handle the dispersion power fading of RoF
link at different fm. The calculation is done with λc = 1550 nm (D = 17 ps/(nm km)). The curve for the
results of this calculation is shown in Figure 12.Photonics 2019, 6, x FOR PEER REVIEW 14 of 18 
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Figure 12. (C/N) penalty of RoF link with ODSB, OSSB modulation, and irregular θ for fm = 30 and
40 GHz.

It is obvious from Figure 12 that the ODSB modulation of RoF link with fm = 30 GHz experienced
a deep fade at L = 4.1 km, while that with fm = 40 GHz experienced it at L = 2.3 km. No deep fade was
recorded on the RoF link with OSSB modulation, but there remained a power reduction of 2.5 dB at the
same L. The reduction on the irregular θ of RoF link was incredibly small. The (C/N) deviation factor
with ODSB was 7.8 at fm = 30 GHz and 7.5 at fm = 40 GHz. On the other hand, the (C/N) deviation
factor of OSSB was 1.0 at fm = 30 GHz and 0.9 at fm = 40 GHz, while that of irregular θ was 0.1 at
fm = 30 GHz and 0.1 at fm = 40 GHz. The figures suggest that the irregular θ handles dispersion power
fading better than OSSB in every fm.

To find out whether the irregular θ can overcome dispersion power fading at another λc,
the researcher conducted a (C/N) penalty calculation on the RoF link with λc = 1540 nm (D = 16 ps/(nm
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km)) and λc = 1570 nm (D = 18 ps/(nm km)) at m = 1. Figure 13 portrays the curve for the results of
this calculation.
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Figure 13. The (C/N) penalty for RoF link with ODSB, OSSB, and irregularθmodulation atλc = 1540 nm
and 1570 nm.

It was found that the RoF link of ODSB modulation with λc = 1570 nm experienced a deep fade
at L = 0.9, 2.8 and 4.8 km, while that with λc = 1540 nm experienced the fade at L = 1.1 and 3.3 km.
The deep fade did not occur in the RoF link of OSSB or irregular θ, but a substantial power reduction of
2.5 dB occurred with OSSB modulation, whereas the reduction with the irregular θ was exceptionally
small. The (C/N) deviation factor of RoF link with ODSB modulation was 8.6, OSSB modulation 0.9,
and irregular θ 0.1, all at λc = 1540 nm. The (C/N) deviation factor with λc = 1570 nm for ODSB
modulation was 7.3, OSSB modulation 0.9, and irregular θ 0.1. These numbers also imply that the use
of irregular θ overcomes dispersion power fading better than OSSB does in any λc.

5. Conclusions

In this paper, the irregular θ method was used to overcome the dispersion power fading on
the RoF link using DD-MZM as an E/O converter. The level of dispersion effect on the recovered
RF signal power was measured using (C/N) deviation factor. Two irregular θ was set for each m
used. Results suggested that the irregular θ overcomes dispersion power fading better than OSSB
modulation scheme at all m tested. In addition, the RoF link with irregular θ handled dispersion fading
well at m ≤ 1, and it has a fixed (C/N) deviation factor at all fm and λc, which is 0.1 at m = l. All in all,
the irregular θ manages to overcome the dispersion power fading at any fm and λc without having to
re-adjust the transmitter.
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