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Abstract: We describe the basic principles and the experimental implementation of the hyperspectral
transient absorption technique, based on femtosecond laser sources. In this technique the samples
were optically “pumped” using the femtosecond tunable pulse delivered by an Optical Parametric
Amplifier, and “probed” for changes in transmission in a broad spectral range with a “white light”
laser-generated supercontinuum. The spectra were collected by a pair of multichannel detectors
which allowed retrieval of the absorbance change in a wide spectral range in one time. The use of the
supercontinuum probe introduced artifacts in the measured 2D data set which could be corrected
with a proper calibration of the chirp. The configuration with crossed polarization for pump and
probe pulse extended the spectral measured range above and below the pump energy within the
same experiment. We showed the versatility of the technique by applying it to the investigation of
the charge carrier dynamics in two-dimensional single layer graphene.

Keywords: transient absorption spectroscopy; femtosecond laser sources; charge carrier dynamics;
two-dimensional materials; graphene

1. Introduction

The development of femtosecond laser solid-state sources at kHz repetition rate and at millijoule
pulse-energy has made fs transient absorption (TA) spectroscopy a widely-employed tool for the
visualization of ultrafast electron dynamics in condensed matter physics [1–3], chemistry [4,5],
and biology [6,7].

In the TA technique (pump-probe scheme) the change in the transmission or the reflection
of a sample, excited by a pump pulse, is measured by a time-delayed probe pulse. Traditional
pump-probe spectroscopy exploits narrow pulses centered at two specific wavelengths (two-color
scheme) and makes use of single channel detectors to monitor the probe transmission along with lock-in
demodulation to extract the differential signal. This scheme, which allows for low noise measurements,
suffers from the fact that it is possible to probe the time-dependent variation of one wavelength at
a time. In general, the investigation of ultrafast dynamics in solid target (semiconductor for example)
or molecules requires to probe a wide energy spectrum in time for a correct understanding of the
underlying photo-physics.

A valid solution is to use broadband fs supercontinuum pulses which can be generated by exploiting
self-phase modulation in a transparent medium [8]. This allows adoption of a pump-supercontinuum
probe scheme. The use of high-speed multichannel detectors and of a data acquisition system
(DAQ) for fast readout permits the rapid acquisition of an entire spectrum at a chosen time delay
(hyperspectral detection).

The use of a supercontinuum pulse introduces artifacts in the measurements due to the temporal
dispersion of the frequency (chirp) of the probe so that the red portion of the pulse arrives earlier. These
artifacts can be corrected by carefully taking in consideration the different time delays of the several
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monochromatic components of the probe. This requires a measurement of the chirp and a numerical
procedure to correct the experimental data.

Here we describe the basic principles and the experimental implementation of the hyperspectral
transient absorption technique based on supercontinuum probe. We discuss the sensitivity of the
technique, the time resolution and the chirp correction method to retrieve undistorted spectra. Moreover
we describe an experimental setup with crossed polarization for pump and probe pulses which widens
the measurement’s spectral interval. This configuration simultaneously probes, in the same experiment,
a spectral range above, below, and including the pump energy due to an efficient suppression of the
pump scattered light.

We apply the technique to the study of exciton dynamics in two-dimensional single layer
graphene. The correct application of the technique provides the exact visualization of exciton dynamics.
The ability to probe a wider spectral range around the pump energy advances the understanding of
the underlying photo-physics.

2. Experimental Setup

The hyperspectral transient absorption setup, here used, exploited as a laser source a high-power
(1 mJ) Ti:Sapphire (800 nm operating wavelength) femtosecond regenerative amplifier (Spitfire,
Spectra-Physics, Santa Clara, CA, USA) operating at a repetition rate of f = 1 kHz.

Combined with an optical parametric amplifier (OPA-TOPAS, Spectra-Physics, Santa Clara, CA,
USA) this system generated sub-100 fs pulses in the ultraviolet, visible, and infrared spectral regions.
This source was coupled to a setup for hyperspectral transient absorption spectroscopy [3]. The sketch
of the setup is depicted in Figure 1. The samples were optically excited using the femtosecond tunable
pulse delivered by the OPA. A mechanical chopper modulated the pump beam synchronously at f/2.
The pump was sent though a mechanical delay line to control the optical path length and then focused
on the samples.

A small fraction of the fundamental beam was recorded and focused through a concave mirror on
a sapphire plate to generate the supercontinuum in the NIR (850–1600 nm), which was collimated by
another concave mirror and filtered to get rid of the residue of the 800 nm beam. The supercontinuum
was split in two parts (signal and reference). The signal was focused on the sample through reflective
optics and downstream collimated. The transmitted spectrum was coupled to a 50 µm core multimode
fiber and sent to a spectrometer (CP-140, Horiba, Minami-ku Kyoto, Japan) featuring an ion-etched,
holographic grating working in the NIR spectral range (800–1700 nm). The grating at the same time
dispersed the spectrum and refocused it onto an InGaAs detector (linear diode array, Hamamatsu,
Shizuoka, Japan) with 256 pixels of 50 µm (horizontal) and 500 µm (vertical) dimensions. The reference
beam passed through a similar optical path and it was collected by another identical spectrometer
and multichannel detector. It was better but not crucial that the reference went through the sample
(or a replica) too. Pump and probe beam impinged on the sample in a quasi-collinear geometry.

In order to measure change in the transmission in a wide spectral range above and below the pump
energy, we implemented a crossed polarization configuration with s-polarized pump and p-polarized
probe. A high quality Glan-laser polarizer (GLP) with 105 extinction ratio (GL10, Thorlabs, Newton,
NJ, USA) was introduced to set to p-polarization the white-light. A combination of an half-wave plate
and another high quality GLP (GL10, Thorlabs, Newton, NJ, USA) was used as a variable attenuator to
set to s-polarization the pump pulse and to tune its intensity. Two high quality Glan-laser polarizers
(GL10, Thorlabs, Newton, NJ, USA), set to p-polarization, were introduced in the signal and reference
optical paths, between the sample and the detectors, in order to get rid of the scattered pump beam.

We note that in some photosynthetic systems [9,10] or in spatially asymmetric clusters [2]
an anisotropic response in the transient absorption under optical excitation was observed. In such
cases the kinetics of both configurations (with the pump and probe parallel or perpendicular aligned)
have to be collected. The optical anisotropy was measured by subtracting the perpendicular from the
parallel arrangement of the pump and probe pulses and dividing by the magic angle spectrum (parallel
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plus two times the perpendicular arrangement). If the parallel configuration was implemented (by
rotating the pump polarizer) then the scattering of the pump was also collected with the effect of
a constant sharp dip in the differential spectrum which was present also at negative pump-probe delay
(pre-zero data). In most cases it could be ruled out via postprocessing of the data.
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Figure 1. Schematic representation of the setup for ultrafast hyperspectral transient absorption 
spectroscopy with crossed polarization of pump and probe. The system was based on an amplified 800 nm 
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supercontinuum. Other components: DL, delay line; M, mirror; BS, beam splitter; SP, sapphire plate; 
F, long-pass filter; Rr, retroreflector; GLP, Glan-laser polarizer; HWP, half-wave plate. The technique 
reconstructs the time and wavelength dependent change in the sample absorbance ∆𝐴(𝜆, 𝑡)  (2D 
spectrograms) induced by the pump. 

Figure 1. Schematic representation of the setup for ultrafast hyperspectral transient absorption
spectroscopy with crossed polarization of pump and probe. The system was based on an amplified
800 nm mode-locked Ti:Sapphire laser. A pair of multichannel optical detectors allow for the
acquisition of the entire spectrum. The samples were optically pumped using the spectrally tunable
femtosecond pulses generated in the OPA. The induced changes in transmission were probed using
the white-light supercontinuum. Other components: DL, delay line; M, mirror; BS, beam splitter;
SP, sapphire plate; F, long-pass filter; Rr, retroreflector; GLP, Glan-laser polarizer; HWP, half-wave
plate. The technique reconstructs the time and wavelength dependent change in the sample absorbance
∆A(λ, t) (2D spectrograms) induced by the pump.

The detection consisted of a pair of high-resolution multichannel detector arrays coupled to
a high-speed data acquisition system (DAQ). We note that the probe power over the entire spectrum
was only a few hundred nanowatts. It was well below that of the pump, even for measurements made
at low pump powers, and could be considered as nonperturbative.

The DAQ worked synchronously with the laser and the chopper, and acquired spectra at the rate
of 1 kHz. The spectra corresponded alternately to the excited sample (in presence of the pump-ON
state) and to the non-excited sample (in absence of the pump-OFF state). The change in the sample
absorbance induced by the pump was calculated [11] over two consecutive spectra by:

∆A(λ, t) = −log10

 Is(λ, t)

I0
s (λ)

·
I0
R(λ)

IR(λ)

 (1)

where Is(λ, t) and I0
s (λ) are the transmitted probe intensities through the excited and non-excited

sample, and IR(λ) and I0
R(λ) are the corresponding intensities measured in the reference channel.

Is(λ, t) is the only quantity depending on the pump-probe delay (t). It is worth noticing that these four



Photonics 2019, 6, 95 4 of 12

quantities cannot be measured simultaneously, since Is(λ, t) and IR(λ) are measured during an ON
state, while I0

s (λ) and I0
R(λ) during the subsequent OFF state. This introduced an intrinsic uncertainty

in the pump-probe technique.
The sensitivity of the technique, with this detection approach, was limited by the bit depth of the

multichannel detectors. In our setup we used InGaAs arrays with 14 bits A/D Conversion. This meant

that a relative intensity difference
∣∣∣∣ Is−I0

s
I0
s

∣∣∣∣ = 2−14
≈ 6·10−5 could be in principle measured in the collected

spectra which corresponded to a ∆A/A0 ≈ 6·10−6. In practice, several sources of noise had to be taken
into account.

There were two main classes of noise in the transient absorption technique [12]: (1) Optical noise
due to pulse-to-pulse energy fluctuations in the pump and probe beams, (2) detector noise which
consisted of shot noise in the detector (the statistical noise associated with measuring N photons which
goes as

√
N) and readout noise (electronic noise which is independent on the optical intensity) [13].

These latter two sources of noise were independent and added up as the square root of the sum of the
squares: Detector noise =

√
(readout2 + shot2).

The use of a reference channel allowed reduction of the noise coming from fluctuation of the
intensity in the probe pulse train and improved the signal-to-noise ratio [14]. One photodetector was
used for the white-light transmitted through the sample, while the other photodetector was illuminated
with light from the same source but which had not gone through the sample (or had gone through a part
of it not excited by the pump pulse). The intensity noise of the supercontinuum was largely canceled
out with that balanced detection scheme. This cancellation method is called common mode rejection.

However, the noise due to detector and readout electronics, which were not correlated in the two
channels, were not cancelled by the referencing scheme. Therefore, adding a reference measurement
channel could introduce additional noise. In general, if the optical noise dominated, it was useful
introducing a reference channel. This is particularly true in the pump-supercontinuum scheme. Indeed
while the pulse to pulse intensity fluctuation of the 1 kHz Ti:S amplifier is on the order of 0.5%–1% rms,
white-light generation is relatively noisy with ≈10% rms intensity fluctuations from shot to shot [8,14].
The noise in the data was mainly determined by the fluctuations in the white-light continuum so that
the merit of referencing became apparent.

In order to reduce the noise it was useful to calculate the absorbance change ∆A(λ, t) between two
consecutive spectra and perform repeated measurements. For a purely statistical noise distribution the
signal-to-noise ratio increases with the square root of the number of collected ON-OFF cycles. Several
thousands of spectra are usually stored at a chosen time delay. A Matlab code calculated ∆A(λ, t) over
two consecutive spectra and averaged over the few thousands ON/OFF cycles.

3. Results

This section contains the measure of the supercontinuum chirp and the application of the technique
to single layer graphene. In the first Section 3.1 we report the results of the cross-correlation between
the pump pulse and the supercontinuum probe pulse. We show that, due to the temporal dispersion
of the supercontinuum, a variation in the temporal onset (time zero) of the kinetic traces appeared.
This artifact could be corrected by means of a numerical procedure which we describe in detail.
The chirp correction procedure was essential in order to visualize correctly the experimental data.
An example is given in Section 3.2 by applying the technique to the investigation of exciton dynamics
in single layer graphene. We show how the 2D data set must be corrected for an understanding of the
underlying photo-physics.

3.1. Chirp Correction and Time Resolution

The temporal overlap between pump and probe was wavelength dependent [15], due to the chirp
of the white light [16]. A procedure of chirp correction of the 2D data set was needed in order to access
a correct visualization of transient spectra at a fixed delay. Here we employed a numerical correction of
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the measured spectra through a calibration of the chirp by cross correlation of the continuum with the
pump pulse. In practice the chirp needed to be measured independently under the same experimental
conditions of the uncorrected data but in absence of the sample. For samples deposited (thin films or
few atomic layers of 2D materials) on transparent substrates, we measured the change in transmission
of the bare substrate, for nanoparticles dispersed in solution we measured that of the neat solvent in
place of the nanocrystal solution.

In Figure 2 we report the raw transient spectra corresponding to the measurement of
supercontinuum chirp by cross-correlation with 1150 nm pump pulse in a 0.2 mm fused silica
substrate. Panel (a) shows the 2D data set of transient absorption in function of time delay and probe
wavelength, from which it is well clear that the temporal pump-probe overlap changes with the probe
wavelength with the red portion of the spectrum arriving earlier (note that a longer time in panel (a)
corresponds to a shorter optical path of the pump following the scheme of Figure 1). There was about
0.6 ps temporal dispersion between 850 and 1450 nm. It is worth noticing that the effect of the pump
scattering was almost canceled by the crossed polarization configuration.

An accurate determination of the time zero t0(ω2), i.e., the time at which the ω2 component of the
supercontinuum best overlaps with the pump pulse, was needed for a proper chirp correction.
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Figure 2. (a) Chirp of the supercontinuum probe measured by cross correlation with a pulse at 1150 nm
in 0.2 mm fused silica substrate. Since the pump lies on the spectral region of the probe pulse, we employ
a crossed polarization configuration with pump s-polarized and probe p-polarized. (b) Extracted time
dependent kinetics at 940 nm probe wavelength (the blue circles are experimental data, the solid red
line is the gaussian fit described in the text).

An example of the time dependent kinetic trace is shown in panel (b). The temporal overlap of a
certain component of the supercontinuum with the pump pulse results in a coherent artifact [17,18].
The shape of the curve presents a positive maximum and two (left and right) wings.

This is typical of transparent media [19,20] where the electronic part of the transient signal is
usually 5–6 times higher in magnitude than that from low-frequency nuclear vibrations (phonons) [21].
In the case of fused silica, which is a widely used window or substrate in femtosecond experiments,
high-frequency modes may also be weak. Therefore its transient response contains mainly the
instantaneous coherent electronic contribution [22].

In case of linearly chirped probe pulses, the frequency dependent transient signal can be modeled
with a superposition of a function, which represents the cross-correlation between the pump and the
supercontinuum probe, and its first and second derivatives [22], i.e.,

∆A(ω2, td) = c0Fcc(ω2, td) + c1
∂
∂td

Fcc(ω2, td) + c2
∂2

∂t2
d

Fcc(ω2, td), (2)
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where the cross-correlation function Fcc(ω2, td) reads [23]

Fcc(ω2, td) =

∣∣∣∣∣∫ dt exp(−iω2t) E2(t)E1(t− td)

∣∣∣∣∣2. (3)

E1(t) and E2(t) being the electric field of the pump pulse and of the supercontinuum probe.
For Gaussian temporal shapes, as assumed here, Fcc(ω2, td) ≈ exp

{
−[td − t0(ω2)]

2/ τ2
}
. By fitting

the kinetic traces with such Gaussian function and its first and second derivatives, it is possible to
retrieve time zero function t0(ω2) which represents the delay at which the spectral component ω2 of the
supercontinuum interacts (has zero delay) with the pump.

We extracted a significant number of kinetic traces (at least 10 traces for a robust sampling) and for
each one we estimated (by the fitting procedure) the time zero at which pump and probe best overlap.
The results of this fitting procedure are shown in Figure 3a for a number of probe wavelengths (blue
circles). These data can be well modelled by a low-order polynomial function [16]. The solid red curve
is a function Delay(λ) = A + Bλ+ Cλ2 (A = −1.8 ps, B = 4 × 10−3 ps/nm and C = −1.4 × 10−6 ps/nm2).

Based on this model we can perform, in the post-processing of the data, the chirp correction
at each probe wavelength of the measured 2D data set, in order to obtain the same relative delay
across the entire spectrum. The correction consists in shifting back in time the kinetic trace at ω2 of
an amount equal to t0(ω2) = Delay(λ(ω2)). Only after this correction the proper carrier dynamics of
the investigated samples can be visualized and available for modeling. This fit typically introduces
an error of less than ±5 fs into the chirp correction as shown in Figure 3a. As discussed in the following
this is well below the time resolution of our setup.
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probe 𝜏(𝜔 ). In condition of a fast chirp rate [2𝛽𝜏 ≫ 1] it essentially reduces to 𝜏  [22,25] and the 
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Figure 3. (a) Relative delay of the overlap pump-probe: the blue points are the results of the fitting
procedure for the kinetic traces extracted from the 2D data set in Figure 2a. The solid red curve represent
a polynomial (of order 2) fit of the data. (b) Time resolution as a function of the probe wavelength. The
red circles represent the Full Width at Half Maximum (FWHM) extrapolated by the gaussian fit of the
kinetic traces. The red solid line is a guide for eye.

An estimate of the temporal resolution in the hyperspectral transient absorption experiment can
be obtained by the fitting procedure of the kinetic traces too. We define [24] the time resolution of
the technique as the Full Width at Half Maximum (FWHM = 2

√
ln2τ) of the gaussian fitting function

[Fcc(ω2, td)] of the kinetic traces, which are the results of the cross-correlation between the pump and
the supercontinuum. The results are reported for a number of probe wavelength in Figure 3b and
demonstrate that our setup provides sub-100 fs time resolution (over a 3 ns time window). The width
τ of the cross-correlation function [Fcc(ω2, td)] depends on the width of the pump τp and that of the
probe τ(ω2). In condition of a fast chirp rate [2βτ2

2 � 1] it essentially reduces to τp [22,25] and the time
resolution of the technique is driven by the FWHM of the pump pulses. The resolution is affected by
the thickness of all the dispersive optical component of the apparatus due to the pulse lengthening
introduced by their group-delay dispersion. The substrates of the samples under investigation (for
thin films or few-layers of 2D materials) or the cuvettes (for solution-based samples) may also elongate
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the measured FWHM of the coherent artifact. This means that the intrinsic time resolution of the
technique lies below the width of the artifact measured in the presence of substrates. However, it is
reasonable, for sake of comparison with the sample data, to estimate it by measuring the artifact in the
same substrate alone which supports the sample under investigation.

3.2. Ultrafast Carrier Dynamics in 2D Graphene

Two dimensional (2D) van der Waals (vdW) crystals, such as graphene, are a new class of layered
materials with novel and intriguing optical and electronic properties when reduced to single atomic
layer. Due to their remarkable properties, these systems are suitable candidates for the realization of
novel electronic, photonics, photovoltaics, and sensing devices [26–33].

Single layer graphene (SLG) is a characteristic honeycomb arrangement of carbon atoms in their
sp2 hybridization [34]. The constituent atoms form strong in plane covalent bond and weak out of
plane van der Waals bond making possible to isolate the single layer whose lateral dimensions depend
on the particular preparation method.

Interestingly graphene and two-dimensional materials can be recombined to form vdW
heterostructures where layers of different materials can be assembled in a tailored sequence showing
novel functionalities [35–41].

Sample of two-dimensional materials can be nowadays produced with several methods.
The micromechanical exfoliation [42] (tape method) is still widely employed and allows producing 2D
samples of high quality but of limited dimensions (tens of microns at the most) which are useful for
fundamental studies. Liquid phase exfoliation [43,44] provides samples of 2D nanoflakes dispersed in
several solvents and it is suitable for large scale and cost-effective production, but with low yield of
monolayers. Chemical vapor deposition (CVD) is a growth technique producing high quality samples
of 2D materials on several substrates. Single-atom thick graphene sheets can now be produced by
CVD [45,46] on large scale and is commercially available. In this section we apply the hyperspectral
TA technique to the investigation of carrier dynamics in CVD-grown single layer graphene (SLG)
deposited on 0.2 mm fused silica substrate (purchased by Graphene Supermarket).

We use Raman spectroscopy (not shown) to confirm the nature of our CVD grown SLG. It is
a widely employed method to study the vibrational properties of several nanomaterials [47–50] and
particularly useful for carbon-based nanostructures such as few-layer graphene [51,52]. Indeed it has
been well established that Raman spectroscopy represents a robust metrics of the number of layers to
be used in place of or in combination with AFM [53,54].

The 2D data set showing the transient absorption spectra in SLG is reported in Figure 4. It is
obtained by exploiting an excitation wavelength of 1150 nm (1.08 eV) with an optical pump fluence
of 180 µJ/cm2. Panel (a) corresponds to the chirp-corrected data, panel (b) to the measured raw
data. The uncorrected 2D data (Figure 4b) are plotted in function (Y-axis) of the time of the setup as
measured from the change in the optical path length due to the movement of the mechanical delay
stage. The chirp-corrected data (Figure 4a) are instead plotted in function of the pump-probe relative
delay which is obtained (as detailed in previous section) subtracting the fitted Delay(λ) from the time.
The crossed polarization configuration substantially cancels the effect of the scattering of the pump
beam. Indeed, the presence of scattered pump light would result in an increase of the transmission
and a reduction in absorption. The effect would be a narrow negative spike at the pump wavelength
which is clearly absent in our data.

A broadband negative differential absorption (∆A) is measured, indicating a fast increase of
graphene transparency (bleach). This bleach is on the order of 10−3 in agreement with previous
pump-probe studies on single and multilayered graphene [55,56].

The chirp-corrected data show the same time zero of the kinetics for all the wavelengths of the
probe. In the raw data there is a dispersion of the onset of the kinetics with the relative delay shifted at
longer times in the red portion of the spectrum, leading to a distortion of the 2D spectrograph and
producing a wrong interpretation of the data.
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Figure 4. 2D spectrograph of time resolved absorbance change in single layer graphene (SLG) with
pump energy of 1.08 eV at a fluence of 180 µJ/cm2 (a) after the numerical procedure of chirp correction
and (b) before chirp correction. (c) Differential spectra ∆A of corrected dataset at maximum bleach.
(d) Time resolved differential absorbance ∆A at red-shifted probe energy of 0.934 eV (1327 nm). The blue
circles represent the experimental results and the red line is a biexponential fit of the data with the two
decay constants reported in the inset.

The differential spectra (∆A) registered at a delay immediately after the pump-probe overlap,
shows a maximum of the bleach at (1327−1345) nm (see panel c). The time-dependent behavior
(Figure 4d) is fast with the overall bleach decaying in few a picoseconds. We report the time resolved
∆A, at a fixed probe wavelength of 1327 nm, for a pump fluence of 180 µJ/cm2. The data can be modeled
with a biexponential fit which is in well agreement with the experimental data. The decay dynamic
presents two characteristic lifetimes, τ1 = 231 ± 40 fs and τ2 = 2.5 ± 0.8 ps.

We do not observe anisotropy in our data, i.e., difference (in the amount of signal and in the
lifetimes) from perpendicular to parallel configurations. Several studies [57,58] have demonstrated that
in degenerate pump-probe experiment, with linearly polarized pump and probe beams, an anisotropy
in the early stages of the ultrafast response of graphene can be observed. The linearly polarized
pump beam produces an instantaneous anisotropic distribution of carriers with electrons occupying
preferentially states in the direction perpendicular to the direction of the electric field of the radiation.
Such anisotropic distribution thermalizes due to non-collinear Coulomb scattering and optical phonon
emission, while collinear Coulomb scattering rapidly thermalizes the carrier distribution in k directions
pointing radially away from the Dirac point but does not significantly redistribute carriers into states
of different angles. However such experiments are performed either in regime of low pump and
probe energy (<100 meV) with anisotropy lasting for few ps [59] or in the NIR region in regime of low
fluence (4 µJ/cm2) and with anisotropy lasting for 150 fs [60]. For these reasons we do not expect to
observe anisotropy for energy of the probe too far from that of the pump. Moreover, our experimental
conditions (larger fluence 180 µJ/cm2 and 100 fs time resolution) prevents to observe it probing at the
same energy of the pump.

Following classical interpretation scheme [55,61,62], the bleach distribution peaked in the
0.9–1.02 eV energy range, represents an hot (quasi-equilibrium) exciton distribution which the
system reaches on a timescale of tens of fs. The early stages of the formation of such distribution are too
fast and cannot be visualized with our technique. However, what our results show is that this exciton
distribution cools down by transferring energy to the lattice via optical phonon and electron-hole
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recombination in few hundreds of fs. Then the system reaches the equilibrium via interaction of
carriers with acoustic phonons in few ps.

It is worth noticing that we observe a substantial independence of the time-resolved absorbance
change from the energy of the pump photon, even for blue-shifted probe, i.e., probe energy range
higher than that of the pump. This observation is in line with recent reports [56,63] where graphene
carrier dynamics can be revealed by means of sub-100 fs time resolution spectroscopies which allow
the direct observation of the fast Coulomb carrier-carrier scattering processes.

The initial peaked carrier distribution produced by the pump laser broadens towards a hot
Fermi-Dirac (FD) distribution in a timescale shorted than out time resolution due to carrier–carrier
scattering. These Coulomb-mediated processes include intra- and inter-band scattering [64,65], carrier
multiplication (i.e., increase in the number of carriers in conduction band from valence-band-assisted
Coulomb scattering), and Auger recombination (i.e., decrease in the number of carriers in conduction
band from valence-band- assisted Coulomb scattering).

Recent observations suggest that, during the early stages of the dynamics of photogenerated
carriers, which cannot be accessed with our technique, Auger processes, such as Auger recombination
and carrier multiplication, play a significant role [63,66–68].

4. Discussion and Conclusions

We describe, in this work, the basic principles and the experimental implementation of
hyperspectral transient absorption technique. We discuss the sources of the noise, the time resolution
and the need to correct the data for the chirp of the supercontinuum. This pump-supercontinuum
probe scheme has the ability to probe an entire energy spectrum and allows for retrieving the full
spectral dependence of dynamics in several materials. Moreover, the technique permits new analytic
methods such as global fits of the data for a quantitative understanding of the charge carrier dynamics.

We applied the technique to the investigation of charge carrier dynamics in single layer graphene.
We showed, in the limit of the temporal resolution of our setup, that the numerical correction
of the supercontinuum chirp is essential in order to understand the underlying photo-physics.
The cross-polarization scheme permits to probe a wide spectral range above, below and containing
the pump energy for a complete visualization of the several processes governing the ultrafast exciton
dynamics of graphene.
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