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Abstract: We use slow-varying amplitude approximation (SVA) for the wave equation to study both
analytically and numerically propagation of an electromagnetic beam in the waveguide structure
with parabolic susceptibility spatial dependence. Such a structure is similar to the harmonic oscillator
in quantum mechanics. We analyze this structure as a single mode guide and introduce the notion
of number of “photons” in the mode. In particular, we pay special attention to the possibility of
effective build-up of the coherent and spatially squeezed vacuum states of the mode that can be of
interest for a number of practical applications. The way to provide these types of mode excitation is
suggested. Several applications for controlling the mode composition of an electromagnetic wave in
the parabolic index-gradient waveguide for various frequency ranges are considered.

Keywords: slow-varying amplitude approximation; Schroedinger equation; coherent and squeezed
vacuum states; integrated photonics; parabolic index-gradient fiber

1. Introduction

To date, a number of hybrid optoelectronic computing devices require transmitting of
electromagnetic wave “packets” along waveguide structures from a nanoscale “source” to a nanoscale
“receiver” [1,2]. In the areas of integrated photonics and nano-electronics, quite complex
multidimensional structures on a chip are available [3,4]. The searches for opportunities to control
such an electromagnetic field that carries information between, for example, the chosen quantum bit
and the chosen single-photon detector are of particular interest.

In this paper, we demonstrate how the well-known analogy between the propagation of light
beams in wave optics and the movement of micro-particles in quantum mechanics can be applied in
optimization procedures for elements and systems of optoelectronic computing devices. We especially
want to draw attention here to the problem of changing the direction of the Poynting vector of
an electromagnetic beam (the “light rotation problem”) at relatively small distances and without
significant losses [5]. The spatially varying dielectric constant (susceptibility) in the required waveguide
structures can be represented in the framework of our central approach with the spatial distribution of
the potential energy for a quantum particle [6–8].

A number of operations in photonic and optoelectronic circuits require the ability to “collect” the
energy of the electromagnetic field in certain areas of the system. The simplest illustrative examples
are the graded-index fibers with a close to parabolic index profile. This form of spatial inhomogeneity
for dielectric constants leads to the fact that a Gaussian input beam (somewhat displaced against the
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center of the fiber core) will oscillate without fully reaching the edges of the core region. This behavior,
which allows us to reduce the energy dissipation and distortion of the wave packet shape, is similar to
the oscillations of a coherent wave packet in a quantum harmonic oscillator. Today, it is possible not
only to put into practice any necessary susceptibility profile due to doping of the dielectric, but also to
realize its local control (e.g., by applying voltages to selected electrodes) [9].

The ability to manage the spatial distribution of the energy density at a higher level will increase
the efficiency and selectivity of interactions between the elements and parts of a large integrated
circuit. We have already demonstrated the methods to control the mode composition of a classical
light in a planar graded index waveguide with nanostructured core. The proposed description was
based on the analogy with quantum Rabi-type transitions in a rectangular potential well. We have
already applied the analysis of the “quantum” behavior of classical electromagnetic waves for the
simplest two-mode waveguide and Y-splitter with planar geometry—the basis for optical computing
systems [10,11].

In this article, we will move from a consideration of a waveguide with a rectangular susceptibility
profile (the case of the extremely non-equidistant spectrum of the Hamiltonian eigenvalues) [10,11]
to analysis of the structure with a parabolic profile of the susceptibility χ(x). Such a waveguide
structure is schematically shown in Figure 1a. The structure with such a susceptibility profile is similar
to the quantum harmonic oscillator that is characterized by the equidistant spectrum of eigenstates.
As a result, temporal evolution of the quantum state in parabolic potential is rather specific. Among
nonstationary states, first of all coherent and squeezed states are of interest. We will see further that
such states can be build-up for the classical electromagnetic field in the waveguide with susceptibility
modulated along the propagation axis z (see Figure 1b). Special attention will be paid to the studies of
the “classical decoherence” of such states in a real waveguide structure.

Photonics 2019, 6, 84 2 of 13 

 

inhomogeneity for dielectric constants leads to the fact that a Gaussian input beam (somewhat 
displaced against the center of the fiber core) will oscillate without fully reaching the edges of the 
core region. This behavior, which allows us to reduce the energy dissipation and distortion of the 
wave packet shape, is similar to the oscillations of a coherent wave packet in a quantum harmonic 
oscillator. Today, it is possible not only to put into practice any necessary susceptibility profile due 
to doping of the dielectric, but also to realize its local control (e.g., by applying voltages to selected 
electrodes) [9]. 

The ability to manage the spatial distribution of the energy density at a higher level will increase 
the efficiency and selectivity of interactions between the elements and parts of a large integrated 
circuit. We have already demonstrated the methods to control the mode composition of a classical 
light in a planar graded index waveguide with nanostructured core. The proposed description was 
based on the analogy with quantum Rabi-type transitions in a rectangular potential well. We have 
already applied the analysis of the “quantum” behavior of classical electromagnetic waves for the 
simplest two-mode waveguide and Y-splitter with planar geometry—the basis for optical computing 
systems [10,11]. 

In this article, we will move from a consideration of a waveguide with a rectangular 
susceptibility profile (the case of the extremely non-equidistant spectrum of the Hamiltonian 
eigenvalues) [10,11] to analysis of the structure with a parabolic profile of the susceptibility 𝜒(𝑥). 
Such a waveguide structure is schematically shown in Figure 1a. The structure with such a 
susceptibility profile is similar to the quantum harmonic oscillator that is characterized by the 
equidistant spectrum of eigenstates. As a result, temporal evolution of the quantum state in parabolic 
potential is rather specific. Among nonstationary states, first of all coherent and squeezed states are 
of interest. We will see further that such states can be build-up for the classical electromagnetic field 
in the waveguide with susceptibility modulated along the propagation axis 𝑧 (see Figure 1b). Special 
attention will be paid to the studies of the “classical decoherence” of such states in a real waveguide 
structure. 

  

Figure 1. The schematic view of the planar waveguide structure with a near-parabolic profile of 
susceptibility 𝜒(𝑥). The core of the waveguide is characterized by susceptibility with values greater 
than the near-boundary layers (a). Such a structure is similar to the harmonic oscillator in quantum 
mechanics and can be used for transportation along the z-direction of electromagnetic beams in the 
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susceptibility (with a period 2𝜋 𝐾⁄ ) can be used for efficient excitation of the transverse beam 
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2. Model and Methods 

Figure 1. The schematic view of the planar waveguide structure with a near-parabolic profile of
susceptibility χ(x). The core of the waveguide is characterized by susceptibility with values greater
than the near-boundary layers (a). Such a structure is similar to the harmonic oscillator in quantum
mechanics and can be used for transportation along the z-direction of electromagnetic beams in
the near-axis area without spatial shape deformation or distortion. The spatial modulation of the
susceptibility (with a period 2π/K) can be used for efficient excitation of the transverse beam structure,
namely to build-up of a coherent or spatially squeezed state (b).
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2. Model and Methods

2.1. Optical–Mechanical Analogy and Transverse Spatial Modes of the Beam

It is known that light propagation in modern waveguide structures can be considered often in
the frames of slow-varying amplitude (SVA) approximation [12,13], when electric field strength in
the wave field of frequency ω is presented in the form E(r, t) = E0(r)exp(i(kz−ωt)) with |∇E0| << kE0

and k = ω/c, c is the speed of light. For the linearly polarized beam propagating in z-direction (see
Figure 1) in a spatially inhomogeneous medium characterized by the susceptibility χ(r) (|∇χ| << kχ),
or permittivity ε(r) = 1 + 4πχ(r) one can write the equation for the amplitude E0(r):

ik
∂E0(r⊥, z)

∂z
= −

1
2
∇

2
⊥E0(r⊥, z) + η(r⊥, z)E0. (1)

Here r⊥ =
{
x, y

}
are the coordinates perpendicular to the propagation direction, ∇2

⊥
is the

Laplace operator over these coordinates and η(r⊥, z) = −2πk2χ(r⊥, z). Equation (1) is known as the
Schroedinger equation in optics and is mathematically identical to the equation for the quantum
particle motion in two-dimensional space r⊥ =

{
x, y

}
with variation in time potential field V(r⊥, t):

i}
∂ψ

∂t
= −

}2

2m
∇

2
⊥ψ(r⊥, t) + V(r⊥, t)ψ(r⊥, t). (2)

The mathematical similarity of Equations (1) and (2) is the basis of the optical–mechanical analogy
and can be applied for analysis of different problems both in quantum theory and wave optics. We can
see from Equations (1) and (2) that the coordinate z along which the light beam propagates is analogous
to the time in quantum theory, while the function η(r⊥, z) determined by the susceptibility of the media
has the meaning of an inverted potential −V(r⊥, t) varying in time. In particular, if the susceptibility
of the medium depends on the propagating electric field strength, Equation (1) becomes nonlinear
one. Such a nonlinear Schroedinger equation is widely used in nonlinear optics [14,15], for example,
to analyze the filamentation phenomenon [16] or multiwave mixing processes in a plasma channel
formed by high-intensity laser pulses [17]. The analogy between optics and quantum mechanics
becomes even more complete if it is possible to study the propagation of the linear polarized beam in
inhomogeneous media, when the electric field can be characterized by the single spatial component [14].

In this paper similar to [7,8,10,11] we restricted ourselves to the situation where the linearly
polarized beam propagates along the planar waveguide structure with η = η(x) with the electric field
vector oriented perpendicular both x and z axes. The spatial periodic modulation of the waveguide
structure along the z-direction can cause transitions between transverse field modes with different
distributions of the field energy in space [6–8]. For example, the Rabi-type oscillations between two
lowest transverse field modes in the waveguide with a rectangular profile were analyzed in [10,11].

For the given waveguide profile of susceptibility χ(x) the beam structure in the waveguide can be
presented in the form

E0(x, z) =
∑

n
CnRn(x)exp

(
−i
λ2

n
2k

z
)
, (3)

where Rn(x) and λn (cm−1) obey the eigenvalue problem:(
d2

dx2 + 4πk2χ(x) + λ2
n

)
Rn(x) = 0. (4)

Its solution gives rise to a number of transverse modes of the beam propagating in z-direction.
We use the following normalization condition for eigenfunctions Rn(x):∫ ∣∣∣Rn(x)

∣∣∣2dx =
E2

tot
8π

a. (5)
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Here Etot is the electric field strength in the mode and a is the normalization length.
All eigenfunctions Rn(x) are orthogonal to each other and the decomposition coefficients Cn have the
sense of the amplitude of population probability for the n-th transverse waveguide mode. General
solution (3) gives the spatial distribution of the electric field during the propagation along the z-axis.

In this paper we analyzed the waveguide with the parabolic profile of the susceptibility χ(x) =
χ0(x) = −α(x/x0)

2 (≥ α > 0, x0 is the characteristic transverse scale). As it was mentioned above,
such a structure provides the possibility of beam focusing to the near x = 0 region and is similar to
the harmonic oscillator potential in quantum theory. In this case the eigenfunctions of the transverse
modes are expressed through the Hermitian polynomials Hn(x):

Rn(x) =

√
E2

tot
8π

NnHn(x/a)exp(−x2/
(
2a2

)
), (6)

where Nn = 1/
√

2nn!
√
π is the normalization constant and a2 = x0/

√

4πk2α. As for the spectrum

of the transverse states, it is given by the expression λ2
n = 2a−2(n + 1/2) − 4πk2, n = 0, 1, 2, . . .

The specific feature of this spectrum is its equidistant character, i.e., the distance between any two
neighboring states is the same. This fact allows us to use the quantum field terminology [18] to state
that we have only the transverse mode of the field in our waveguide structure, but this mode has
different levels of excitation given by the quantum number n = 0, 1, 2, . . .. Moreover, the number n
can be considered as an amount of “photons” in only the transverse mode. The spatial distribution of
the field for the definite number of “photons” is given by Equation (6).

If for the initial instant of time C0 = 1 and other coefficients are equal zero, we have the beam
with the Gaussian profile,

R0(x) =

√
E2

tot
8π

1
4√π

exp(−x2/
(
2a2

)
), (7)

propagating along the waveguide. Such a beam represents the ground state of the transverse mode.
In general, the spatial distribution and evolution of the beam in the waveguide with a parabolic profile
of susceptibility can be very different. Among others, two of them are of the most interest, namely,
the coherent spatial state and the spatially squeezed state of the transverse mode.

2.2. Coherent Spatial States of the Beam

We started the discussion from a coherent state [19,20], suggesting the presence of a Poisson
distribution over the squared coefficients |Cn|

2:

wn = |Cn|
2 =
|ζ|2n

n!
exp(−|ζ|2), (8)

where ζ is the complex number, and the value 〈n〉 = |ζ|2 his the “average amount of quanta” in the
coherent state. If ζ = 0 the coherent state is turning to the ground (“vacuum”) state of the oscillator.
For the case 〈n〉 > 0 and real ζ one obtains the transverse spatial oscillations of the beam along the
direction of propagation (see Figure 2):

∣∣∣E0(x, z)
∣∣∣2 ∼ E2

totexp

−
(
x− xampcos(z/ka2

)
)2

a2

.

The amplitude of these oscillations xamp is proportional to
√
〈n〉: xamp = a

√
〈n〉, while the spatial

width of the beam is ∼a . Hence if 〈n〉 >> 1 the amplitude is much greater than the width and these
oscillations of the beam are similar to the classical oscillatory motion.
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Figure 2. Coherent state of the spatial transverse modes of the beam propagating in the waveguide
with the parabolic profile of the susceptibility. (a) Squared amplitude of the electric field strength for
〈n〉 = 3. (b) Distribution over stationary states for different average numbers of quanta 〈n〉 = 1, 3, 5.

2.3. Spatially Squeezed Vacuum State of the Beam

Another state of the quantum oscillator which is of importance for practical applications is the
spatially squeezed vacuum state [21–23]. This state can also be expressed in a Gaussian form, but with
a width different from Equation (7):

Rsq(x) =

√
E2

tot
8π

1
4
√
πβ2

exp(−x2/
(
2a2β2

)
), (9)

where β is the squeezing parameter. Such a state is essentially nonclassical as the average over the
quantum state electric field strength is equal to zero for any instant of the z-coordinate, while “the
average amount of quanta” in the squeezed vacuum state is determined by the expression

〈n〉 =
1
4
(β− 1/β)2 (10)

and can be large if β >> 1 or β << 1. Nevertheless, this state is characterized by the oscillations of the
width of the beam while its shape is still Gaussian (Figure 3). As for the decomposition Equation (3),
only even states have nonzero populations, while for all odd coefficients C2n+1 = 0.
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Squeezed states of light are widely investigated nowadays in quantum optics (see,
for example, [24–27] and a lot of references in these papers) where squeezing is analyzed in the
frames of secondary quantization of the electromagnetic field mode [18]. Hereafter we mean squeezing
in the transverse classical light beam mode in the ordinary (spatial) space.

3. Results

We studied the possibility of exciting the coherent and spatially squeezed vacuum states of the
transverse beam mode. Such control was possible if dielectric waveguide parameters depended also
on coordinates along the propagation direction [10]. It was supposed that the waveguide susceptibility
was slightly modulated over the z-direction. In this case presented the susceptibility of the structure
χ(x, z) in the form

χ(x, z) = χ0(x) + χ1(x, z), (11)

where the first term in the right part determined the parabolic dependence of the susceptibility while
the second one provided the spatial modulation of the susceptibility of the structure. We supposed that

χ1(x, z) = δχ1(x)cos(Kz), (12)

with
∣∣∣δχ1(x)

∣∣∣ << ∣∣∣χ0(x)
∣∣∣ and K was the wave number that determined the spatial period over the

z-direction of the structure z0 = 2π/K. Then the additional term in Equation (11) was considered as
a perturbation that caused the transitions between transverse states of the beam. Really, by substituting
general decomposition Equation (3) to Equation (1) and taking into account that Rn(x) is the solution
of the eigenvalue problem Equation (4), one obtained the following set of equations for the population
of the resonator transverse states

idCn/dz =
∑

m
Cm(z)Mnmexp

( i
2k

(
λ2

n − λ
2
m

)
z
)
cos K z. (13)

We supposed that initial beam structure corresponded to the ground oscillator state. Hence,
C0(z = 0) = 1 and Cm,0(z = 0) = 0 were the initial conditions. Here

Mnm =
8π

E2
tota
· 2πk

∫
R∗n(x)δχ1(x)Rm(x)dx. (14)

3.1. Excitation of the Transverse Coherent Spatial State of the Beam

We supposed that δχ1(x) = γx/x0. Then inequation (14) only integrals with m = n ± 1 have
nonzero values (Mn+1,n =

2πkγaz0
x0

√
(n + 1)/2 = Θcoh

√
(n + 1)/2), and the set of Equation (13) could

be written in the form

iz0dCn/dz = Θcoh

(
Cn+1

√
(n + 1)/2exp

(
−i

z
ka2

)
+ Cn−1

√
n/2exp

(
i

z
ka2

))
cos K z. (15)

If K = 1/ka2 the resonant term appeared to exist in Equation (15). Then, neglecting the oscillating
terms, we rewrote the set of Equation (15) in the form:

iz0dCn/dz = Θcoh × 0.5×
(
Cn+1

√
(n + 1)/2 + Cn−1

√
n/2

)
. (16)

Assuming that initially the system was in the vacuum state (C0(t = 0) = 1, Cn,0(t = 0) = 0)
the set of equations had the analytical solution in the form of a Poisson distribution Equation (8)
with an “average amount of quanta” 〈n〉 = (πkγaz/x0)

2. In our situation 〈n〉 increased along the
z-coordinate that corresponded to the growing of the amplitude of the transverse oscillation of the
beam in the waveguide. The obtained beam oscillations are presented in Figure 4.
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3.2. Excitation of the Spatially Squeezed Vacuum State of the Beam

We excited the spatial squeezed vacuum state of beam propagation in the waveguide. In this case
the waveguide was prepared with spatial modulation of the susceptibility other than Equations (11)
and (12):

χ(x, z) = χ0(x) + χ2(x, z) (17)

with χ2(x, z) = δχ2(x)cos(Kz) and δχ2(x) = γ2(x/x0)
2. In this case from Equation (13) one obtained

iz0dCn/dz =
(
Cn+2Mn+2,nexp

(
−i

2z
ka2

)
+ CnMnn + Cn−2Mn,n−2exp

(
i

2z
ka2

))
cosKz. (18)

Here Mn+2,n =
2πkγ2z0

x2
0

a2
√
(n + 2)(n + 1)/2 = Θsq

√
(n + 2)(n + 1)/2 and Mn,n = Θ2(n + 1/2).

In this case resonant excitation of transverse beam oscillation was possible if K was twice greater than
in Section 3.1, and equal to K = 2/

(
ka2

)
. Then the set of Equation (18) were simplified and rewritten in

the form

iz0dCn/dz =
Θsq

4

(√
(n + 2)(n + 1)Cn+2 +

√
n(n− 1)Cn−2

)
. (19)

The numerical solution of the set Equation (19) for the same initial conditions is presented in
Figure 5 and visually demonstrates the squeezing: only even states (C2n, n = 1, 2, 3, . . .) were populated
along the z-direction beam propagation. As a result, the average position of the beam was equal to
zero, while its spatial width oscillated along coordinate z with increasing amplitude (see Figure 5).
Detailed analysis of the beam structure demonstrated that the beam nevertheless kept its Gaussian
form in the transverse direction; the transverse squeezed vacuum state of the beam was excited during
its propagation. The dependence of “average amount of quanta” on the coordinate z was found to be
the parabolic one: ( 〈n〉 ∼ z2).
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3.3. Decoherence of the Spatial Transverse Beam Structure

In reality, the waveguide has some impurities or/and defects in the structure that result in the
decoherence of the beam during its propagation and destruction of the excited transverse coherent or
squeezed vacuum state. Below we present the simple model of such “classical decoherence” for the
transverse beam state in the non-ideal waveguide. Let us imagine that our waveguide was a non-ideal
one and had the susceptibility profile that slightly disturbed the parabolic dependence χ0(x):

χ(x) = χ0(x) + ∆χ(x),

where ∆χwas considered as a perturbation. Hence we applied the perturbation theory that was similar
to the quantum mechanical one [10,11]. Then one obtained the set of equations for decomposition
coefficients Cn(z):

idCn/dz =
∑

m
Cm · δMnmexp

( i
2k

(
λ2

n − λ
2
m

)
z
)
. (20)

Here δMnm = 8π
E2

0a
· 2πk

∫
R∗n(x) ·∆χ(x) ·Rm(x)dx. In our situation the values δMnm did not depend

on the longitudinal coordinate, hence all the terms on the right hand of Equation (20) oscillated along
the z-coordinate except the term with m = n. It was this term that contributed dominantly for small
perturbations at large distances. Hence, the approximate solution of Equation (20) was

Cn(z) = Cn(z = 0) × exp(−iδMnnz). (21)

It means that for small perturbations only the additional phase shift ∆φ(z) = δMnnz appeared to
exist during the beam propagation, while the probabilities |Cn|

2 did not depend on z. Evidently, this
dephasing of the amplitude probabilities resulted in destruction of the transverse state of the beam.

The term of disturbance ∆χ(x) that is responsible for the dephasing in reality can have very
different structures. For simplicity to be more specific, we assumed that ∆χ = −γ4(x/x0)

4. Then

δφ(z) = −κ(z/z0)
3
2
(n2 + n + 1/2),κ =

2πkγ4a4z0

x4
0

. (22)

From Equations (21) and (22) we see that the more the number of the state n, the faster the
increment of the additional phase shift and the faster the decoherence process. Numerical results
for phase shifts were also obtained by solving the set Equation (20) for the initial coherent state



Photonics 2019, 6, 84 9 of 13

with different values of the average amount of quanta 〈n〉. These data for the given value of the
dimensionless parameter (coefficient of anharmonism) κ = 0.01 and average number of quanta 〈n〉 = 5
arepresented in Figure 6a and were found to be in agreement with the analytical expression Equation
(22). The high-frequency oscillations of phase shift ∆φ(z) pronounced that Figure 6a resulted from the
contribution of non-diagonal elements Mnm in Equation (20). The evolution of the spatial transverse
structure of the beam for the above given parameters is presented in Figure 6b and clearly demonstrates
the beam destruction along the axis of propagation.

We assumed that the length of decoherence Ld was the length for which the additional phase shift
was equal to π for the state with n ≈ 〈n〉. In reality, states with n = 3÷ 6 contributed dominantly to the
coherent state with 〈n〉 = 5. Then one obtained

Ld ≈
2z0

κ(〈n〉2 + 〈n〉+ 1
2 )

. (23)
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For the above parameters the decoherence length was about 9z0 and corresponded to the significant
change of the wavepacket shape. We also noted that the decoherence length was estimated from the
analysis of the z-dependence of the integral of overlapping (IO) of the transverse wavepackets moving
in perturbed and ideal parabolic waveguides

IO(z) =
8π

E2
tota

∫
E∗0(x, z)E(coh)

0 (x, z)dx, (24)

where E0(x, z) and E(coh)
0 (x, z) were transverse wavepackets in the perturbed and ideal waveguides

respectively. The dependence IO(z) for 〈n〉 = 5, parameter κ =
2πkγ4a4z0

x4
0

= 0.01 is also presented

in Figure 6a. It was found that the phase shift ∆φ(Ld) = π for the state n ≈ 〈n〉 − 1 corresponded
approximately to the IO(Ld) ∼ 0.8. Hence, we used this estimation

IO(Ld) =
8π

E2
tota

∫
E∗0(x, Ld)E

(coh)
0 (x, Ld)dx ≈ 0.8, (25)

for the determination of the decoherence length as it was more visual than estimation Equation (23).
The results obtained from Equation (25) in dependence of parameter κ for different average amount of
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quanta in the initial transverse coherent state is presented in Figure 7. It was seen that the Ld ∼ 1/κ as
well as the dependence Ld ∼ 〈n〉

−2 were approximately valid.Photonics 2019, 6, 84 10 of 13 
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4. Discussion

Is it possible to implement into practice the generation of the coherent and spatially squeezed
states described above? For preliminary estimates, we will focus on the features of modern integrated
photonic technology (“µm-range”) and radio-photonics (“mm-range”). The choice of a specific
frequency range is determined by the spectra of the “sources” connected by the waveguide structure
with a parabolic susceptibility profile. In the first case (“µm-range”), we are talking about, for example,
“atomic qubits” and atomic-based computing systems. In the second case (“mm-range”), we mean, for
example, microwave resonators used for control, read-out, and coupling in systems of artificial atoms
based on superconducting heterostructures [28,29].

For the material of the waveguide structure, it is reasonable to put for simplicity ε(x = 0) ≈
10, χ(x = 0) = (ε(x = 0) − 1)/4π ≈ 0.72. The inhomogeneous doping of the structure can form the
parabolic profile of the waveguide permittivity. Really, taking into account that free charged particle
gas contributes negatively to the permittivity of the media, we can estimate the level of the waveguide
doping in the near-boundary region at a level of Nd ~ 1019 cm−3, while in the near-axes area the level of
doping will be small. Moreover, by applying the external DC voltage to the waveguide boundaries one
can control the local level of dopants in the structure volume and create “a force” that causes spatial
beam oscillations in the waveguide during its propagation. Assuming that χ(x = x0) ≈ 0, and hence
X = χ(x = 0) ≈ 0.72, α = X ≈ 0.72, one can get the following set of parameters in the micrometer and
mm spatial range for the model under investigation (see Table 1).

Table 1. Preliminary estimates for waveguide and wave packet parameters for the generation of
coherent and spatially squeezed states.

Parameter µm-Range mm-Range

k, cm−1 104 10
x0, cm ≈2 × 10−3 ≈2

a =

√
x0/
√

4πk2α, cm ≈2.5 × 10−4
≈2.5 × 10−1

K = 1/ka2, cm−1
≈1.6 × 103 ≈1.6

z0 = 2π/K, cm ≈3.9 × 10−3 ≈3.9
Θcoh = 2πkγaz0/x0 1 1

Θsq = 2πkγ2a2z0/x2
0 0.5 0.5

κ = 2πkγ4a4z0/x4
0 0.01 0.01
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It is clear from the data that for both ranges of parameters the characteristic transverse size of

the coherent wave packet a =
(
x0/
√

4πk2α
)1/2

is significantly less than the transverse size of the
waveguide x0. Hence there exist several dozen of eigenstates in the parabolic well. The wave number
determines the spatial period over the z-direction for the waveguide susceptibility profile. For example,
for K = 1/ka2

≈ 104 cm−3 in order to build-up effectively coherent and spatially squeezed states one
needs to create electrodes at the waveguide boundaries in order to control the local concentration in
the near boundary waveguide volume of dopants with a spatial resolution of 1 µm. For reasonable
accuracy in creating of the susceptibility profile, the decoherence length is several times greater than
the length at which the coherent and spatially squeezed states are swung effectively. This means that in
perspective the considered pumping of energy into the transverse mode and compression in space of
electromagnetic beams directly in the waveguide can be used in transmitting signals from a nanoscale
source to a nanoscale radiation receiver.

A simplified scheme of the possible application for the transition of an electromagnetic wave
beam from both the elements Q1 and Q2 to the element Q3 is presented in Figure 8. Let the “sources”
Q1 and Q2 be designed so that the emitted beams are localized in the central part of the waveguide
(the number of “photons” in the transverse mode, n, is zero), which allows one to minimize undesired
dissipation and absorption. Then, in order to send these “signals” to the Q3 element, one needs to
swing the discussed coherent state in the “active area”, as shown in the Figure 8. Thus, the effects
considered in the article can be used to create an optical analogue of the “adder”-element. It should be
emphasized that by rearranging (or disabling) in situ the controlling DC fields in the “active area”,
one can either swing the oscillations of a coherent state with a different spatial period along the Oz
axis, or keep the original state, localized in the center of the waveguide. Moreover, it is possible to
excite the spatially squeezed vacuum states in order to realize the optical prototype of the “splitter”
element, as shown in Figure 8 (here the element Q3 is the “source” and the elements Q4 and Q5 are the
“receivers”). For complex systems of integrated and microwave photonics, the considered concept may
be of interest due to the possibility of rotating beams of electromagnetic waves at small distances and
with small losses.
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Figure 8. General scheme (top view) of the signal transfer and control through the waveguide between
qubits. Q1, Q2, Q3, Q4, Q5 are the elements of the hybrid computing circuit, which are connected with the
considered waveguide structures with parabolic spatial dependence of susceptibility. The susceptibility
modulations in the “active areas” are governed by the applied DC voltage, which can control the local
density of the dopants. As a result, the beam can be forwarded from a given ‘’source” to a given
“receiver” in order to perform a specific operation.
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All the above estimations were performed while neglecting the losses of the energy of the beam.
In reality, losses due to different types of impurities and inhomogeneities obviously exist, as well as
losses resulting from the high level of the dopant concentration. The last will be of importance first of
all for the high excitation level of the transverse mode when the beam in the guide oscillates with the
amplitude of order of its size ∼ x0. Further, we plan to improve the model and introduce the spatially
non-uniform absorption that will allow analysis of the losses in the waveguide in dependence on the
degree of transverse mode excitation more precisely.
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