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Abstract: The distances optical interconnects must cover are decreasing as Internet traffic continues
to increase. Since short-reach interconnect applications require many transmitters, cost and power
consumption are significant issues. Directly modulated lasers with a wavelength-scale active volume
will be used as optical interconnects on boards and chips in the future because a small active
volume is expected to reduce power consumption. We developed electrically driven photonic crystal
(PhC) lasers with a wavelength-scale cavity in which the active region is embedded in a line-defect
waveguide of an InP-based PhC slab. We call this a λ-scale embedded active region PhC laser,
or a LEAP laser. The device, whose active region has six quantum wells with 2.5 × 0.3 × 0.15 µm3

active volume, exhibits a threshold current of 28 µA and provides 10 fJ/bit of operating energy to
25 Gbit/s NRZ (non-return-to-zero) signals. The fiber-coupled output power is 6.9 µW. We also
demonstrate heterogeneous integration of LEAP lasers on a SiO2/Si substrate for low-cost photonic
integrated circuits (PICs). The threshold current is 40.5 µA and the output power is 4.4 µW with a
bias current of 200 µA. These results indicate the feasibility of using PhC lasers in very-short-distance
optical communications.
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1. Introduction

The demand for optical technologies for very-short-distance interconnects such as on boards or
chips is increasing because optical interconnects provide high capacity with lower power consumption
compared with their electrical counterparts [1,2]. Currently, vertical-cavity surface-emitting lasers
(VCSELs) are used in datacenters. This is because VCSELs provide enough output power with
low power consumption to transmit signals at modulation speeds of several tens of gigabits per
second within datacenters, which results in very low operating energy of less than 100 fJ/bit [3,4].
Moreover, modules containing multimode VCSELs can be constructed inexpensively. However, further
reduction of the operating energy is required because the operating energies for on-board and on-chip
interconnects have to be less than 34 and 7 fJ/bit, respectively [1].

Since the operating energy of a directly modulated laser is proportional to its active volume [5,6],
a laser with a wavelength-scale cavity must be developed. Furthermore, the laser has to be compatible
with wavelength division multiplexing (WDM) technology that composes high-capacity networks
within a limited space. A photonic crystal (PhC) cavity is a potential solution, because it has a high
Q-factor with a wavelength-scale cavity [7,8] and it is easy to control its lasing wavelength by varying
the lattice constant of the PhC. In the first optically pumped PhC laser demonstrated at 77 K in 1999,
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a point-defect PhC cavity was created in InP-based multiple-quantum-well (MQW) gain media [9].
However, poor thermal conductivity and efficiency made it difficult to achieve room-temperature (RT)
continuous-wave (CW) operation. To solve these problems, we propose and demonstrate the use of a
buried heterostructure (BH) in a PhC slab, which will be described in Section 2.

Another important issue is the fabrication of large-scale photonic integrated circuits (PICs)
comprising lasers, photodetectors, and waveguides. These PICs must be fabricated economically.
For this purpose, it seems important to use Si wafers as the host substrate because they are much
larger than InP wafers and more robust. Furthermore, Si waveguides made using silicon-on-insulator
(SOI) wafers enable us to fabricate high-performance optical filters and spot-size convertors (SSCs).
They are very important when using WDM technologies and have low assembly costs when the PICs
are connected to fiber. In Section 3, we describe heterogeneously integrated PhC lasers on a SiO2/Si
substrate, where we employ direct plasma-assisted bonding of III-V layers including the active layer
and buried regrowth on a bonded InP layer.

2. λ-Scale Embedded Active Region PhC (LEAP) Laser on an InP Substrate

Figure 1 shows the schematics of our PhC laser, in which the wavelength-scale active region is
buried in an InP-based PhC line-defect waveguide [10–12]. We call this laser a λ-scale embedded
active region PhC (LEAP) laser. We use a lateral current injection structure, which is suitable for
suppressing the degradation of the cavity Q-factor. For constructing an air bridge structure by selective
wet chemical etching, the InAlAs layer is used as a sacrificial layer. As a result, the active region must
be entirely covered with an InP layer to protect it from the wet etchant. Since the refractive index of the
active region is slightly higher than that of InP, an optical cavity is created around the active region
without shifting the positions of the air holes. In addition, the energy bandgap of InP is larger than
that of the active region. Typically, the effective refractive indices of the InGaAsP-based active region
and the InP layer are 2.77 and 2.59, respectively. Therefore, a BH in a line-defect waveguide provides
good confinement for both carriers and photons, which is important for achieving high efficiency.
Furthermore, the InP layer, owing to its large thermal conductivity compared with the quaternary
gain media, plays a key role in reducing the temperature increase of the active region when heat is
generated through current injection. Thanks to these advantages, we have achieved an extremely low
threshold input pump power of 1.5 µW, high output power of 100 µW, and 20 Gbit/s direct modulation
by optical pumping [13]. The electrically driven LEAP laser has a 4.8 µA threshold current and 4.4 fJ/bit
operating energy for 10 Gbit/s NRZ (non-return-to-zero) signal modulation [14].
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Figure 1. Schematics of the λ-scale embedded active region photonic crystal (LEAP) laser: (a) top view;
(b) cross-sectional view. The wavelength-scale active region is embedded in a line-defect waveguide of
InP-based photonic crystal (PhC). Since the refractive index of the active region is slightly higher than
that of InP, an optical cavity is created around the active region without shifting the positions of the air
holes. Typically, the effective refractive indices of the InGaAsP-based active region and the InP layer
are 2.77 and 2.59, respectively.
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The remaining issues of electrically driven LEAP lasers regard improvements to the wall-plug
efficiency and output power. To improve them, we increased the number of QWs and improved the
doping process, thereby achieving an output power of 38 µW [15]. However, the threshold current
increased to 36 µA due to the leakage current. To solve this problem, we introduced current blocking
trenches [14], as shown in Figure 2, which are constructed in the line-defect waveguides. Figure 2 also
shows an optical mode, which was calculated by the finite-difference time-domain method. Since the
optical mode field of the PhC cavity extends in the Γ–M directions, we can expect a cavity Q-factor of
more than 104 even when we construct current blocking trenches.
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Figure 2. Schematic of a fabricated LEAP laser with a current blocking trench. An optical mode,
calculated by the finite-difference time-domain method, is overwritten on the schematic.

Figure 3 shows the fabrication procedure for an electrically driven LEAP laser. First, we grow
an InAlAs sacrificial layer and active region, which is sandwiched by thin InP layers (Figure 3a).
A wavelength-scale active region is defined with a SiO2 mask, and the MQW layer, except for the active
region, is removed (Figure 3b). Then, the active region is embedded in an InP layer. After the SiO2 mask
is removed, a thin InP layer is grown again to obtain a flat top surface (Figure 3c). Si ion implantation
and Zn thermal diffusion are used to make n- and p-type doping regions (Figure 3d). Air holes are
fabricated by dry etching (Figure 3e), and an air bridge structure is formed by removing the sacrificial
layer (Figure 3f). The active region, consisting of six InGaAlAs QWs, was set to 2.5 × 0.3 × 0.15 µm3.
The diameter of the PhC holes is 200 nm, and the lattice constant is 420 nm. The InP slab thickness is
250 nm. Current blocking trenches with a width of 200 nm are formed on both longitudinal sides of
the BHs.

Figure 4a shows the current–light output–voltage (I-L-V) characteristics with RT-CW operation.
By employing the current blocking trenches, the threshold current was decreased to 28 µA. The standard
single-mode fiber (SSMF) coupled output power was 6.9 µW at a bias current of 200 µA. Thus, estimated
output power in the output waveguide (see Figure 2) was 27 µW, when considering the coupling
loss between the output waveguide and the SSMF. Since on-board and on-chip interconnects do not
need fiber connections, it is very important value and it is enough large to receive the signals by
photodetectors. Figure 4b shows the lasing spectrum at a bias current of 100 µA. The lasing wavelength
was 1535 nm with a side-mode suppression ratio (SMSR) of 50 dB.

The dynamic responses of the LEAP laser were also measured. Figure 5a shows the measured
small-signal responses of the device for various bias currents ranging from 36 to 200 µA. Also shown
are fitting curves based on the theoretical curve derived from the laser’s rate equations. The device
exhibited a maximum 3 dB bandwidth of 17.8 GHz with an injected current of 200 µA. Figure 5b plots
the 3 dB bandwidth versus the square root of the bias current above the threshold. The slope shows the
modulation current efficiency (MCEF); we obtained an MCEF of 1.9 GHz/µA0.5, or 60.1 GHz/mA0.5.
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Figure 3. Fabrication of a LEAP laser: (a) Epitaxial growth of the active layer; (b) removal of multiple
quantum wells (MQW), except for the active region; (c) buried regrowth; (d) p-and n-type doping;
(e) air hole fabrication; (f) air bridge structure formation by sacrificial layer etching.
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Figure 4. Static characteristics of a LEAP laser on InP substrate: (a) current–light output (red) and
current–voltage (blue) characteristics under room-temperature continuous-wave (RT-CW) conditions;
(b) lasing spectrum at a bias current of 100 µA.
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Fitting curves based on rate equations are also shown. (b) 3 dB bandwidth versus the square root of the
bias current above the threshold.



Photonics 2019, 6, 82 5 of 8

Next, we directly modulated the device with a 25 Gbit/s NRZ signal. Word length of pseudo-
random bit sequence (PRBS) was 31. Figure 6 shows the eye diagram measured for a bias current
of 150 µA. As shown, we achieved eye opening with 25 Gbit/s NRZ signals. The energy cost was
calculated to be 10.5 fJ/bit by dividing the applied DC energy by the bit rate.

Photonics 2019, 6, x FOR PEER REVIEW 5 of 8 

 

Next, we directly modulated the device with a 25 Gbit/s NRZ signal. Word length of pseudo-
random bit sequence (PRBS) was 31. Figure 6 shows the eye diagram measured for a bias current of 
150 μA. As shown, we achieved eye opening with 25 Gbit/s NRZ signals. The energy cost was 
calculated to be 10.5 fJ/bit by dividing the applied DC energy by the bit rate.  

 
Figure 6. Eye diagram of the LEAP laser for a 25 Gbit/s NRZ signal. Bias current was 150 μA. 

3. LEAP Laser on a SiO2/Si Substrate  

We fabricated a LEAP laser on a SiO2/Si substrate [16,17]. Figure 7 shows the fabrication 
procedure. First, we grew an InGaAs etch-stop layer and active region, which was sandwiched by 
thin InP layers, on an InP substrate (Figure 7a). O2-plasma-assisted bonding was used to directly bond 
epitaxial layers on the SiO2/Si substrate (Figure 7b). Then, the InP substrate and InGaAs layer were 
selectively etched by chemical etching, after which the active layers remained on the SiO2/Si substrate 
(Figure 7c). The MQW layers were removed, except for the active region (Figure 7d). We grew an InP 
layer to bury the active region (Figure 7e). Finally, we fabricated p-and n-doping regions and air holes 
by using the same fabrication method as described in Figure 3 (Figure 7f). The key factor in achieving 
epitaxial growth on a thin InP template is the total thickness of the III-V layers, which should be 
thinner than the critical thickness [18,19]. This fabrication procedure does not require epitaxial 
growth under lattice-mismatch conditions. However, the different thermal coefficients of Si and InP 
remain a problem [20–22], as it will degrade the crystal quality. In our device configuration, the 
critical thickness was estimated to be 450 nm [19]. Thus, the use of a lateral current injection structure 
is quite important. In the future, we will integrate the LEAP laser with a Si waveguide. To make this 
integration possible, precise positional alignment between the BH and Si waveguide is required. 
Therefore, the BH should be patterned and formed after wafer bonding because wafer-scale 
fabrication allows us to make a precise alignment using photolithographical markers on Si.  

 
Figure 7. Fabrication procedure for a LEAP laser on Si: (a) epitaxial growth of the active layer; (b) 
direct bonding of the InP substrate including the active layer and SiO2/Si substrate; (c) removal of the 
InP substrate and sacrificial layer; (d) removal of the active layer except for the active region; (e) 
buried regrowth; (f) selective doping and air hole fabrication. 

Figure 6. Eye diagram of the LEAP laser for a 25 Gbit/s NRZ signal. Bias current was 150 µA.

3. LEAP Laser on a SiO2/Si Substrate

We fabricated a LEAP laser on a SiO2/Si substrate [16,17]. Figure 7 shows the fabrication procedure.
First, we grew an InGaAs etch-stop layer and active region, which was sandwiched by thin InP layers,
on an InP substrate (Figure 7a). O2-plasma-assisted bonding was used to directly bond epitaxial
layers on the SiO2/Si substrate (Figure 7b). Then, the InP substrate and InGaAs layer were selectively
etched by chemical etching, after which the active layers remained on the SiO2/Si substrate (Figure 7c).
The MQW layers were removed, except for the active region (Figure 7d). We grew an InP layer to
bury the active region (Figure 7e). Finally, we fabricated p-and n-doping regions and air holes by
using the same fabrication method as described in Figure 3 (Figure 7f). The key factor in achieving
epitaxial growth on a thin InP template is the total thickness of the III-V layers, which should be
thinner than the critical thickness [18,19]. This fabrication procedure does not require epitaxial growth
under lattice-mismatch conditions. However, the different thermal coefficients of Si and InP remain a
problem [20–22], as it will degrade the crystal quality. In our device configuration, the critical thickness
was estimated to be 450 nm [19]. Thus, the use of a lateral current injection structure is quite important.
In the future, we will integrate the LEAP laser with a Si waveguide. To make this integration possible,
precise positional alignment between the BH and Si waveguide is required. Therefore, the BH should
be patterned and formed after wafer bonding because wafer-scale fabrication allows us to make a
precise alignment using photolithographical markers on Si.
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Figure 7. Fabrication procedure for a LEAP laser on Si: (a) epitaxial growth of the active layer; (b) direct
bonding of the InP substrate including the active layer and SiO2/Si substrate; (c) removal of the InP
substrate and sacrificial layer; (d) removal of the active layer except for the active region; (e) buried
regrowth; (f) selective doping and air hole fabrication.
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Figure 8a shows the I-L-V characteristics of a fabricated device on a Si substrate in RT-CW operation.
The threshold current was 40.5 µA. The maximum output power in the output InP waveguide was
4 µW at a bias current of 200 µA. Figure 8b shows the lasing spectrum at a bias current of 60 µA.
Single-mode lasing was achieved at 1553.2 nm.
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Figure 8. (a) I-L-V characteristics under RT-CW operation. (b) Lasing spectrum at bias current of 60 µA.

4. Discussion

As shown in Section 2, we successfully demonstrated high-speed direct modulation with a low
operating energy, small enough for use in computercom applications, by using a wavelength-scale
cavity. Since the relaxation oscillation frequency fr is proportional to the square root of the carrier density
above the threshold, it is important to suppress heat generation to achieve high-speed modulation.
This is quite difficult to do for lasers with small active regions because, in general, the laser structures
for reducing the active volume are not suitable for current injection. This is because lasers with
small active regions must have the same range of cavity Q-factor as conventional lasers with cavity
lengths of more than 100 µm. Therefore, a large refractive index difference, typically between those
of the semiconductor and air, is required, which results in a high thermal resistance. In this context,
employing the BH is the key to the operation of wavelength-scale cavity lasers because InP has a
thermal conductivity greater than that of the active material and the energy bandgap difference enables
efficient carrier confinement. Furthermore, its strong optical confinement helps to reduce the threshold
current and improves the modulation efficiency. By increasing the number of QWs, we can increase the
output power and wall-plug efficiency; however, the wall-plug efficiency is still small when compared
with conventional in-plane lasers and VCSELs. Here, a further increase in the number of QWs would
improve injection efficiency. In addition, the distance and the number of air holes between the active
region and the electrodes must be reduced in order to lower the series resistance of the device.

We achieved RT-CW operation with LEAP lasers on a Si substrate, which is promising for
integrating them with compact Si photonic devices. On the other hand, the device characteristics were
degraded in terms of the threshold current and output power. We believe there are current leakage
paths at the interfaces between the InP and SiO2. Therefore, we have to optimize the interface materials
and direct bonding fabrication. Furthermore, as shown in [17], the FWHM at threshold was increased
compared with that of a device on an InP substrate (air bridge structure). This means we need to
further optimize the design of the PhC cavity embedded in the SiO2 layer.

Integration of Si photonic devices will open new application areas for PhC nanodevices, or PICs,
for optical computing in deep learning, neuromorphic computing, and so on. This is because such
computing requires sophisticated optical circuits based on Mach–Zehnder interferometers which
are integrated with low-power-consumption PhC devices made with III-V materials, such as lasers,
switches, and nonlinear components.
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Recently, we successfully demonstrated the fabrication of a LEAP laser in which the active region
is a single lattice constant (~420 nm) [23]. By expanding this, we can fabricate periodic buried active
regions, which will enable us to improve the device performance by introducing interesting phenomena
such as parity-time (PT) symmetry [24].

5. Conclusions

We obtained a small-signal 3 dB bandwidth of 17.8 GHz and an eye diagram at 25 Gbit/s, thanks to
using a combination of a 6 QW wavelength-scale active region and a p-i-n junction position optimized
for the BH. The use of a current blocking trench suppressed the leakage current and resulted in a
threshold current of 28 µA. The energy consumption of the LEAP laser was as low as 10.5 fJ/bit even
when we drove it at 25 Gbit/s with a bias current of 150 µA. These results show that a LEAP laser is
suitable as a light source for interconnects on boards and chips. We also demonstrated heterogeneous
integration of LEAP lasers on a SiO2/Si substrate. The threshold current was 40.5 µA, and the maximum
output power in the output InP waveguide was 4 µW at a bias current of 200 µA. These results are
promising for constructing computercom networks using LEAP lasers.
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