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Abstract: We describe the design of photonic crystal circular defect (CirD) lasers to construct a compact
optical module with a wavelength division multiplexing function for the application of inter-chip or
intra-chip optical interconnects. Subsequently, we investigated the characteristics of CirD lasers including
the quality factor of the cavity, the lasing threshold, and the modulation speed with a three-dimensional
finite-difference time-domain method and two-dimensional rate equations. Finally, we demonstrated the
single mode lasing and wavelength tuning behaviors of the CirD lasers using optical pumping technology
under room-temperature continuous-wave conditions.

Keywords: photonic crystal laser; whispering gallery mode; optical interconnects; wavelength
division multiplexing

1. Introduction

Conventional copper-based electrical interconnects have increasing difficulty keeping up with the
present rate of progress of inter-chip or intra-chip communications [1]. Optical interconnects using
silicon (Si) photonic technology are currently the strongest candidate to address this bottleneck due to
their exceptional potential for higher bandwidth, lower energy consumption, and lower latency [2–5].
For inter-chip interconnects, the required bandwidth density is expected to reach approximately
10 Tbps/cm2 [6]. Recently, a silicon photonics optical transceiver with a high bandwidth density of
0.4 Tbps/cm2 was demonstrated [7], and substantial improvements are expected with more refined
designs and advanced technologies. However, for intra-chip optical interconnects, larger numbers of
CPU cores will be integrated on one chip as complementary metal oxide semiconductor (CMOS) scaling
continues in the future, and it will become necessary to provide high bandwidth of 1 Tbps (10 Gbps ×
100 cores) within a space of approximately 1 × 10−4 cm2 [8]. To meet such bandwidth density demands
of approximately 10 Pbps/cm2, optical components have to offer high capacity, high energy efficiency,
and low cost.

A platform consisting of Si and silicon oxide itself is well suited for constructing various photonic
components, such as waveguides [9,10], modulators [11], and photodetectors [12]. However, achieving
an efficient electrically-driven light source on Si remains challenging due to the indirect bandgap of Si.
A promising solution is the heterogeneous integration of III-V lasers on Si [13]. However, traditional
III–V lasers such as distributed-feedback (DFB), distributed Bragg reflector (DBR), and vertical cavity
surface-emitting lasers (VCSEL) have difficulty satisfying high bandwidth density demand. Photonic
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crystal (PhC), due to its unique physical properties resulting from the photonic bandgap [14], has been
intensively researched [15–17]. PhC-based optoelectrical devices have shown excellent performance in
terms of energy efficiency and operation speed [18–21]. Therefore, the heterogeneous integration of PhC
lasers on Si is an attractive means to achieve a light source for inter-chip or intra-chip optical interconnects.
Recently, using direct bonding and buried regrowth technologies on a silicon-on-insulator substrate,
lambda-scale embedded active-region photonic-crystal (LEAP) lasers showed a low threshold current
of 24 µA and an extremely low energy cost of 7.3 fJ/bit at bit rates of 10 Gbps under continuous-wave
(CW) room-temperature (RT) conditions [22]. The maximum output power of the on-silicon LEAP lasers
was as low as 450 nW at an injected current of 500 µA, which includes approximately 10 dB of optical
coupling loss between the Si waveguide and the fiber [22]. In contrast, the heterogeneously-integrated
DFB and DR lasers on Si exhibited three orders of magnitude higher output power of approximately
0.7 mW [23]. For practical applications to future optical interconnects, increasing the output power is
critical for on-silicon LEAP lasers.

We previously proposed a novel electrically-driven PhC laser structure [24] called the CirD laser
since a circular-defect cavity that forms a whispering gallery mode (WGM) along the cavity boundary is
used to generate the laser light in this structure [25]. By simultaneously employing two AlGaAs/AlGaOx

cladding layers, CirD lasers enable RT-CW operation through vertical current injection. The most important
advantage of CirD lasers is that they can control the lasing wavelength by simply adjusting the radius
of the cavity (R) while maintaining a high quality factor (Q) [26]. Therefore, integrating several cavities
with different R to only one PhC line-defect waveguide can achieve a monolithic integrated laser array
that enables wavelength division multiplexing (WDM) without a conventional optical multiplexer. This
architecture can also be used to construct a CirD photodiode (PD) array. Thus, monolithically fabricating
the laser and PD arrays on one chip can achieve an optical module with an extremely high bandwidth
density. We estimated the operation speed of one CirD cavity at approximately 50 Gbps due to the small
cavity size. Therefore, if 20 cavities are integrated with one waveguide in both the CirD-laser and CirD-PD
arrays, the bandwidth density is expected to reach 10 Pbps/cm2. In addition, due to its small footprint,
millions of such modules can be produced from a 6-inch GaAs wafer. Thus, this optical module can also
address low cost requirements.

In this paper, we report the recent development of CirD lasers. In Section 2, we present a detailed
design of CirD lasers for WDM. Section 3 reports the numerical analyses of CirD lasers using the
three-dimensional (3D) finite-difference time-domain (FDTD) method and two-dimensional (2D) rate
equations. In Section 4, a proof-of-principle experiment of the wavelength tuning of CirD lasers is
conducted using optical pumping. Finally, a brief summary is given in Section 5.

2. Design of Cird Lasers for Inter-Chip or Intra-Chip Optical Interconnects

2.1. Cird Laser Structure

Figure 1 shows a schematic birds-eye-view image of the CirD laser structure. The GaAs core layer
is sandwiched by two AlGaAs/AlGaOx cladding layers, and a GaAs contact layer is placed on top.
The AlGaOx are fabricated by selectively oxidizing the AlGaAs through air holes, and the AlGaAs at the
cavity center are preserved to form a funnel that transports the currents. Using AlGaAs/AlGaOx cladding
layers offers advantages such as efficient vertical current injection, high thermal conductivity [16], and high
mechanical stability, all of which allow the CirD lasers to operate under RT-CW conditions. However, due
to the low index contrast between the GaAs core and AlGaOx cladding layers, the light confinement of
CirD lasers in the vertical direction is weaker than that of other PhC lasers with an air-bridged structure.
This issue is solved by the circular-defect cavity that was formed by 18 symmetrically-distributed air
holes. A WGM that is also observed in micro-disk lasers can be formed along the cavity boundary of the
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CirD lasers. However, micro-disk lasers suffer from the issue of mode selectivity, i.e., several WGMs with
different azimuthal mode numbers can be formed in the micro-disk lasers because there is no limitation at
the pure circular cavity. In contrast, since the cavity boundary of the CirD lasers is in the geometry of a
gear, only one WGM matching this geometry can be generated in the cavity with nine periods (Figure 2).
18 high-intensity WGM lobes were distributed along the cavity boundary, and the WGM’s electromagnetic
energy at the cavity center is almost zero. Thus, AlGaAs/AlGaOx cladding layers provide a unique
approach to the use of WGM: utilizing AlGaOx to cover the lobes and AlGaAs to transport currents.
Considering the trade-off between the vertical photon confinement and the cross-section of the AlGaAs
funnel, the optimized AlGaOx width, i.e., the oxidation width penetrated from the sidewall of the air holes,
is 0.8 a, where a is the lattice constant of the triangular lattice. In addition, due to the modal cancellation
effect, little WGM energy is radiated into the vertical directions. Therefore, CirD lasers offer an adequate
Q for lasing even with AlGaAs/AlGaOx cladding layers.

Figure 1. Schematic of electrically-driven CirD laser.

For optical communications applications, CirD lasers with a GaAs material system aim for the
1.3-µm range. Thus, GaInNAs quantum wells (QWs) and InAs quantum dots (QDs) are suitable material
candidates to provide optical gain. GaInNAs QWs offer a higher model gain relative to InAs QDs, but have
a larger non-radiative recombination rate at the sidewall of the air holes that considerably influence the
lasing operation. In contrast, InAs QDs have the following advantages: a low non-radiative recombination
rate, a low temperature dependence, and a low transparent carrier density.

In CirD lasers, a PhC line-defect waveguide coupled with the cavity is used to output the laser light.
Figure 2 shows a mode profile when the WGM is coupled with the waveguide mode, which is calculated
by the 3D FDTD method. The coupling efficiency η between WGM and waveguide mode is defined as

η =
1
Q −

1
Qs

1
Q

, (1)

where 1
Q indicates the energy loss rate through the cavity and the waveguide and 1

Qs
indicates the energy

loss rate of the solo cavity structure without a waveguide [27]. In the practice design of CirD lasers, η is
tuned to achieve high power and high modulation speed while maintaining a low threshold.
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Figure 2. Magnetic field intensity (|Hz|) distribution of Circular Defect (CirD) lasers. Circles represent
air holes.

2.2. Monolithic Optical Module Architecture

To meet the high bandwidth density requirements of future optical interconnects, WDM technology,
which transmits multiple wavelengths through the same waveguide, will be used to scale up the aggregate
transmission capacity. However, since traditional WDM technology with optical multiplexers needs a
large footprint, novel architecture is required when the regime addresses the chip level. Since CirD lasers
can simply tune the lasing wavelength by adjusting the cavity’s radius, they offer a promising approach to
address this issue. Figure 3a shows a CirD laser array architecture that enables WDM applications without
the need of an optical multiplexer. 20 CirD cavities with different lasing wavelengths are arranged on
both sides of one PhC line-defect waveguide. Since the value of a is approximately 360 nm, the distance
between two adjacent cavities is set to 5 µm. Each cavity is surrounded by more than ten PhC lattice
periods that provide sufficient light confinement in the horizontal direction. The laser array that handles
20 wavelengths only needs a length of 100 µm.

In CirD lasers, the vertically-injected currents are horizontally diffuse to adjacent cavities through the
top GaAs contact layer. They must be electrically isolated to independently control the cavities. Since the
AlGaOx is insulated, the above issue is solved by selectively etching the GaAs contact layer to fabricate a
current blocking trench around the cavity (Figure 3b). Note that the etching must not harm the cladding
layer, because damaging it will cause scattering of the light propagating in the waveguide and lead
to a high optical loss. The details of the selective etching technique will be reported elsewhere. Then
the electrodes are deposited on each cavity. In order to protect the cavity during the bonding process,
a 5 µm × 5 µm area outside of the cavity is used as the bonding pad.
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Figure 3. (a) Schematic of CirD laser array architecture enabled wavelength division multiplexing (WDM).
(b) Schematic of CirD laser array in which each cavity is isolated by current blocking trench. 5 µm × 5 µm
area outside of cavity is used as the bonding pad.

A structure that combines a CirD cavity and a PhC line waveguide can also be utilized to construct a
photodiode (PD), in which the photoelectric effect can be obtained through cavity-waveguide coupling.
Thus, if a CirD PD array is fabricated using the same architecture shown in Figure 3, wavelength division
demultiplexing (WDD) without an optical demultiplexer is achievable. We propose a monolithic optical
module that combines CirD-laser and CirD-PD arrays (Figure 4a). At the ends of both arrays, spot size
converters (SSCs) and phase adjusting areas are added, where SSC modulates the mode size to be coupled
to the Si waveguide, and the phase adjusting area modulates the light propagating to the end. This compact
optical module with WDM and WDD functions needs only an approximately 50 µm × 200 µm footprint
and can be mounted on the Si substrate by flip-chip bonding method (Figure 4b). The laser and PD
arrays are optically integrated with the Si waveguide through SSC to transmit and receive optical signals.
After the optical module is electrically connected to the laser/photodiode control circuit on the Si substrate,
electrical signals can be modulated/demodulated into optical signals with a very short transmission line,
which provides advantages such as low latency and low power consumption.
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Figure 4. (a) Schematic of monolithic integrated optical module combined with wavelength division
multiplexing and demultiplexing functions. (b) Schematic of flip-chip boding of integrated optical module
to silicon substrate.

3. Numerical Analysis of Cird Lasers

In this section, we first investigate the variation of Qs and resonant wavelength (λ) when adjusting
the radius of cavity (R) with the 3D-FDTD method. Then we evaluate the lasing characteristics using
2D rate equations. To simplify the calculations, we employ the solo cavity structure in both kinds of
calculations. The cavity-waveguide coupling behavior is taken into account through coupling efficiency η.

3.1. Resonant Wavelength and Quality Factory

In the CirD laser structure, Qs and λ of the WGM can be found by solving the Maxwell’s equations
through the 3D-FDTD method. The parameters used to construct the 3D model in the numerical
calculations are listed in Table 1. The refractive indexes of the materials used in the model are the
values at the wavelength of 1.3 µm in the database [28]. Here we ignored the gain media because they are
very thin and their influence is negligible. The calculation process is as follows. First, we calculated the
temporal evolution of electric field E and magnetic field H. After that, we found resonant frequency ωc =
(a/λ) of the WGM by calculating the temporal Fourier transformation of the magnetic field and obtained
the Qs of the WGM from

U(t) ∝ exp(
−ωc

Qs
t), (2)

where U(t) is the electromagnetic energy of the entire core layer.
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Table 1. Values of parameters used to construct 3D model of CirD lasers.

Parameters Value

Thickness of GaAs contact layer 180 nm
Thickness of AlGaAs/AlGaOx cladding layers 500 nm
Thickness of GaAs core layer 220 nm
Lattice constant a 360 nm
Radius of air holes 0.3 a
AlGaOx width 0.8 a
Refractive index of GaAs 3.400
Refractive index of AlGaAs 2.924
Refractive index of AlOx 1.761
Refractive index of air 1.000

In Figure 5, the dependence of Qs and λ on R is plotted. The air holes near the cavity were modified
to improve Qs [26]. λ increases monotonically with the increases of R, and a modulation width over 20 nm
is achieved from 2.75 to 2.80 a. High Qs > 5000 are obtained over a range of 20 nm, which is useful for
WDM applications.

Figure 5. Resonant wavelength (λ) and quality factor (Qs) of CirD cavity dependent on radius of cavity (R).

3.2. Lasing Characteristics

The lasing mechanism of the CirD lasers resembles the electrically-driven micro disk lasers due to the
analogous circular cavity and vertical current injection structure. Carriers injected from the cavity’s center
diffuse to the boundary and contribute to laser oscillation. The lasing characteristics of the CirD lasers were
investigated with the following 2D rate equations that are fundamentally identical with reference [29],

dN
dt

=
I

eV
− Γz AmGS|E|2 − N

τc
+ D∇2N, (3)

dS
dt

= − S
τph

+ Γz

∫
GS|E|2dxdy +

β

τc

∫
N|E|2dxdy, (4)

where N(x, y, t) is the carrier density, S(t) is the photon density, I is the injected current, e is the electron
charge, V is the carrier injection area volume, Γz is the vertical optical confinement factor, Am is the
effective modal area, τc is the carrier lifetime, D(x, y) is the carrier diffusion constant, β is the spontaneous
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emission factor, and τph is the photon lifetime. The electric field distribution |E(x, y)|2 of the WGM is
obtained from the 3-D FDTD calculations, and is normalized as∫

|E|2dxdy = 1. (5)

The gain function G is given by

G = vgg0 In(
N
N0

), (6)

where vg is the group velocity, g0 is the gain coefficient, and N0 is the transparent carrier density.
The air holes affect the diffusion of carriers, and their influence is accounted by setting D to 0 at the
air holes position.

The parameters used in the rate equations are listed in Table 2 and are typical for a 1.3-µm-GaAs InAs
QD system at room temperature.

Table 2. Values of parameters for rate equation analysis.

Symbol Parameters Value

Γz Confinement factor at the vertical direction 0.07
g0 Gain coefficient 105 m−1

N0 Transparent carrier density 1023 m−3

D Carrier diffusion constant (out side of the air holes) 2 × 10−3 m2/s
τc Carrier lifetime 1 ns
vg Group velocity 8.82 × 107 m/s
V Carrier injection area volume 2.23 × 10−20 m3

Am Effective modal area 3.52 × 10−13 m2

Lasing threshold Ith is evaluated from the photon density at the steady state. Figure 6 plots Ith as a
function of Q (=2πcτph/λ), where c is the light velocity in vacuum, and λ is set at 1.3 µm. Ith decreases
abruptly as Q increases in the low-Q regime, and the decrease is saturated when Q exceeds 2000. Thus,
for practical applications of CirD lasers, Q should exceed 2000. To achieve sufficient light intensity while
maintaining a low threshold, appropriate value η is estimated at 0.6. Then the CirD lasers have Q > 2000
over a 20 nm wavelength tuning range with η = 0.6, and will exhibit a lasing behavior with a uniform
threshold within this wavelength range.

In a laser system, the photon density performs relaxation oscillation that repeatedly increases and
decreases as the carry injection begins. The period of this relaxation oscillation is described by fr parameter.
When the modulation frequency is beyond fr, the transfer characteristics of the lasers degrade significantly.
The effective modulation bandwidth is given by the output power 3 dB down frequency f3dB, which is
approximately 1.55 times of fr [30]. Therefore, to achieve a modulation speed of 50 Gbps, the target of fr is
approximately 32 GHz. The dependence of fr versus the injection current is given in Figure 7. Here τph is
set to 2 ps, and the corresponding Q is 2900. fr increases as the injection current increases and reaches
36.2 GHz when the injection current is 200 µA. Thus, CirD lasers show the potential of direct modulation
operation at 50 Gbps. Therefore, the optical module architecture depicted in Figure 4 is one promising
approach to meet the extremely high bandwidth density requirement of 10 Pbps/cm2 for inter-chip or
intra-chip optical interconnects.



Photonics 2019, 6, 54 9 of 14

Figure 6. Lasing threshold (Ith) versus Q for CirD lasers.

Figure 7. Relaxation oscillation frequency ( fr) as a function of injection current.

4. Experimental Demonstration of Wavelength Tuning of Cird Lasers

We reported the influence of InAs QDs on the etching process that fabricates PhC structures in
an epitaxial wafer with a heterostructure (Figure 1) [31]. Air holes with minor contractions, etched on
an epitaxial wafer with InAs QDs layers by using a multistep etching recipe, were obtained since we
achieved a good balance between the physical and the chemical etching effects for the core layer [31].
The wavelength tuning of the CirD lasers was demonstrated using optical pumping technology [25,26].
To relax the requirements of the dry etching process, we employed a structure without a GaAs contact
and upper cladding layers. The thicknesses of the GaAs core layer and the underlying AlGaAs cladding
layer were 220 nm and 500 nm, respectively. The GaAs core layer contained three InAs QDs layers,
and the spontaneous emission peak of QDs was designed at around 1290 nm. In addition, the entire
underlying cladding layer was oxidized to AlGaOx. Typical top- and cross-sectional views of the scanning
electron-microscope (SEM) pictures for the fabricated optically-driven CirD laser are shown in Figure 8a,b.
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Fabrication of samples and measurement set-up can be found in the references [25,26]. All experiments
were conducted under RT-CW conditions.

Figure 8. (a) Top-view and (b) cross-sectional view of SEM pictures for fabricated optically-driven
CirD laser.

Figure 9 shows a typical excitation power versus output intensity curve of the CirD laser (a = 345 nm,
R = 2.76 a, r = 0.31 a). Threshold excitation power Pth was estimated as small as approximately 25 µW,
which was almost constant even if the structure parameters of the CirD laser were modified [25]. This
indicates that optically-driven CirD lasers have sufficiently high Q because the threshold hardly varies
when Q is larger than 2000 (Figure 6). Note that it is quite difficult to experimentally measure Q of a
laser cavity due to the co-existence of the spontaneous emission and the stimulated emission. Based on
the rate equations, the linewidth of the microcavity lasers varies depending on photon density even in
the same cavity which has a constant Q [32]. The linewidth varies even below the threshold. In some
cases, Q is estimated from the linewidth at around the threshold, in which the gain material is almost
transparent. However, this method may cause a significant error. (As shown in Figure 17 of reference [20],
the linewidth just below the threshold was approxiamtely 0.05 nm, which corresponding the experimental
Q of approximately 30,000. This value is as large as 10 times the calculated Q.) The threshold current of
the electrically-driven CirD laser was estimated to be 4 µA [25], which agrees with the result calculated
by rate equations (Figure 6). The output intensity increases with the increasing of excitation power up to
about 1 mW without saturation.

Figure 9. Output intensity as a function of excitation power for optically-driven CirD laser.
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Figure 10 shows the spectrum of the CirD cavity (a = 385 nm, R = 2.77 a, r = 0.29 a). The peak at
1311.25 nm corresponds to the lasing wavelength of the WGM. As be expected, we observed the single
mode lasing operation. Its linewidth reached the resolution-limit of the optical spectrum analyzer: 0.07 nm,
which indicates that CirD cavity may has a smaller linewidth. In addition, the side-mode suppression-ratio
(SMSR) is approximately 20 dB within 50 nm wavelength range.

Figure 10. Lasing spectrum at pumping power of approximately 800 µW. (reprinted with permission from
reference [26], IEEE).

Figure 11 shows the dependence of the measured and calculated wavelength of the WGM on R.
Although the experimentl and theoretical wavelengths are slightly different, we obtained a good match
of wavelength tuning rate between experiment and simulation. The above result also confirms that the
lasing mode was the WGM. The lasing wavelength was tuned over 20 nm in the R range from 2.75 a to
2.80 a. Under a high speed modulation at 50 Gbps, the linewidth of CirD laser is expected to increase to
0.3 nm due to the quick phase shift. Therefore, channel spacing of 1 nm is reasonable for the integrated
CirD laser array. Then, the bandwidth capacity of 1 Tbps can be realized by WDM with 20 channles in the
wavelength range of 20 nm.

Figure 11. Measured and theoretically estimated lasing wavelengths of WGM as a function of R. Fabricated
a and r were kept approximately constant at 385 nm and 0.29 a. (reprinted with permission from
reference [26], IEEE).
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5. Conclusions

We described a design of CirD lasers for inter-chip or intra-chip optical interconnects. Compact
laser and PD arrays that enable WDM and WDD without a conventional optical multiplexer and a
demultiplexer can be constructed by integrating several CirD cavities with one PhC line-defect waveguide.
This architecture can be used to achieve an optical module with an extremely high bandwidth density for
future optical interconnects. In the numerical analysis of CirD lasers, we expect Q > 2000, uniform low
threshold lasing, and a modulation speed of approximately 50 Gbps within a wavelength range of 20 nm.
In addition, we demonstrated single-mode lasing behaviors of CirD lasers with a linewidth <0.07 nm,
a SMSR of approximately 20 dB by conducting optical pumping experiments under RT-CW conditions.
The lasing wavelength of CirD lasers was modulated over 20 nm, which shows the potential of CirD
lasers for WDM applications. The above results indicate that CirD lasers are a strong candidate for future
optical interconnects.
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