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Abstract: The performance of Al0.3Ga0.7As/InP/Ge triple-junction solar cells (TJSC) at the geosynchronous
orbit of Venus had been simulated in this paper by assuming that the solar cells were put on a
hypothetical Venus orbiter space station. The incoming solar radiation on TJSC was calculated by
a blackbody radiation formula, while PC1D program simulated the electrical output performance.
The results show that the incoming solar intensity at the geosynchronous orbit of Venus is 3000 W/m2,
while the maximum solar cell efficiency achieved is 38.94%. Considering a similar area of the solar
panel as the International Space Station (about 2500 m2), the amount of electricity produced by Venus
orbiter space station at the geosynchronous orbit of Venus is 2.92 MW, which is plenty of energy to
power the space station for long-term exploration and intensive research on Venus.
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1. Introduction

Space exploration and the human effort to find a new place to live in the outer space has never
been weakened since the dawn of NASA in 1958. The observation and exploration of Mars, Europa,
Enceladus or even Gliese 581 g are some of the highlights in our effort to find a new habitable place in
the future. Comparing to Mars, which is located about 0.52 AU (Astronomical Unit) from Earth, Venus
offers a less distance to Earth with only 0.28 AU. The almost similar size of Venus makes this planet
sometimes called Earth’s twin and sheds some hopes for future human colonization. However, the
hostile conditions of Venus’s atmosphere, which is dominated by carbon dioxide and sulfuric acid
droplets, makes its surface temperature reach above 450 ◦C and discounts any possibility of making
this planet a habitable place in the future. There is still some research considering Venus as a promising
place to live done, among others, by Landis et al. [1–7]. Even US National Academies of Science Space
Studies placed Venus exploration as one of the highest priorities for medium-class future missions [8].
Landis et al. proposed some ideas to intensively studying Venus by using a solar airplane, sending
a robotic exploration of the surface and atmosphere of Venus [3,5,6,9–13]. Based on the fact that the
upper atmosphere of Venus at an altitude of 50 km has similar pressure, gravity, density, and radiation
protection to that of the Earth, NASA had proposed a High-Altitude Venus Operational Concept
(HAVOC) project to conduct a 30-day crewed mission into Venus atmosphere. Although this project is
no longer active, more ideas and refinement to this conceptual mission are still ongoing [14,15]. Japan
has also shown interest in studying Venus by sending a Venus Climate Orbiter (VCO) in the year of
2010 [16] to intensively study the climate of Venus. In 2015, Japan Aerospace Exploration Agency
(JAXA) discovered a new phenomenon called the Venusian equatorial jet, a strong wind in the low and
middle cloud layer (45 to 60 kilometers of altitude) of Venus atmosphere [17].
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To conduct a continuous and intensive study on Venus exploration, we propose the development
of an ISS-like station (ISS stands for the international space station) dedicated to studying Venus.
Having this IVOSS (international Venus orbiter space station), more intensive research and missions
can be deployed to this planet, including the one proposed by Landis et al. [3,9]. To power this
hypothesized space station, a high-efficiency solar cell based on the combination of III-V groups solar
cells like GaInP, GaInAs, AlGaAs, InP, and GaAs might be used in the form of multijunction solar cells
(MJSC). The unique electronic structure of III-V based materials had long been known to have a wide
range of applications, such as in quantum wells LED [18–23], laser [24], sensors [25], and also solar
cells [26–31]. Those III-V groups solar cells are known for their ability to withstand harsh conditions in
the outer space, such as energetic particles and high temperature [32–35].

The MJSC is an arrangement of several p-n junctions of semiconducting materials which are
stacked following the order of their bandgap energies. The highest bandgap material is put on top
while the lowest in the bottom. This arrangement will minimize the spectrum loss and increase the
efficiency of MJSC as compared to a single junction solar cell. The typical MJSC on Earth’s surface
can produce above 30% efficiency under one sun solar radiation and almost approaching 50% when
exposed to several hundreds of times of solar radiation by using solar concentrators [36–38]. The closer
distance of Venus to the sun will ensure more power produced by the IVOSS’s solar panels at this
position as compared to the Earth’s geosynchronous orbit. The most common solar cells used for the
space application is GaAs which can produce efficiency of up to 22.08% [39], while InGaP/GaAs/InGaAs
TJSC can deliver 37.9% efficiency [40]. For the latest development and high-efficiency record of MJSC
especially for the space application, one can refer to Reference [41].

In this paper, we simulate the performance of Al0.3Ga0.7As/InP/Ge TJSC for the application in the
hypothetical IVOSS space station. The selection of Al0.3Ga0.7As compound as a first subcell was based
on its higher energy gap (1.817 eV) which allows more spectral energy to be absorbed by MJSC. Most
of the experimental and modeling reports were based on GaInAs and GaInP ternary compounds and
they rarely discussed the AlGaAs based solar cell [42–45]. This paper was intended to broaden our
perspective in terms of material selection and its consequence to the total efficiency of MJSC, especially
for the extra-terrestrial application. The simulation was done using an ideal (toy) model in which each
subcell was simulated independently without considering the tunnel junction between each subcell.
The solar cell in this simulation is assumed to be an array of the multi-homo-junction solar cell in
which the p and n-type of each subcell were made from the same material. A similar schematic model
has been used by other researchers, such as Reference [46,47]. The temperature of each subcell was
held constant in this simulation (at T = 25 ◦C) by assuming that the solar panels were equipped with a
temperature control system, such as in Reference [48,49]. The effect of cosmic radiation was also not
taken into account in this simulation. The IVOSS was positioned at the geosynchronous orbit of Venus
and cleared from the atmospheric blanket of Venus so that the ideal blackbody radiation formula could
approximate the incoming radiation. The performance of TJSC at the geosynchronous orbit of Venus
will be compared to its performance at the geosynchronous orbit of Earth.

Since this paper emphasizes the simulation approach of MJSC, we do not discuss the specific
fabrication technique of MJSC. We assume that Al0.3Ga0.7As/InP/Ge has a similar fabrication technique
as other III-V MJSC, such as GaP/InGaAs/InGaSb [50] where the IMM (inverted metamorphic
multi-junction solar cells) concept is applied. The growing of subcells in the IMM concept is
started from the top to the bottom-cell using the MOCVD (metal organic chemical vapor deposition)
technique [47] and can produce a 34.2% efficiency in space application [51]. Various fabrication
techniques, such as molecular beam epitaxy (MBE), were able to fabricate InGaAs/GaAs quantum dot
solar cell [52] and InGaP/GaAs/GaInAs monolithic tandem solar cell [53].

2. Materials and Methods

The incoming solar radiation to MJSC was prepared by calculating the spectral irradiance using the
blackbody radiation formula. The response of each junction (subcell) and the amount of the transmitted
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radiation were calculated using the absorption coefficient formula and the Berr–Lambert’s-like equation.
Finally, the electric power produced by each subcell was simulated using PC1D program. The PC1D
program solves the highly nonlinear transport equation of electron (and hole) in a semiconductor
device by discretizing the equation using the finite element method (FEM). The Poisson equation
consisting of the spatial-dependence of local quasi-Fermi potential, conductivity and current density
at each node were linearized iteratively and solved by matrix inversion method until it reached the
convergence. [54].

The distance Rsvg is the distance from the center of the sun to the geosynchronous orbit of Venus,
and defined as:

Rsvg = Rsv −Rvg (1)

where Rsv is the distance between the center of the sun to the center of Venus (Rsv = 1.0748 × 1011 m),
and Rvg is the distance between the center of Venus to its geosynchronous orbit (Rvg = 1.5372 × 109 m).
The schematic of distances is shown in Figure 1.
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The surface temperature of the sun was set to T = 6000 K. The incoming spectral irradiance (the
radiation intensity divided by the wavelength) of blackbody radiation received by the IVOSS in Venus
geosynchronous orbit is expressed as:

I0(λ, T) =
2πhc2

λ5
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(
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)
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(
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)2

(2)

where rs is the diameter of the sun, λ is the radiation wavelength, h is Planck’s constant
(h = 6.626 × 10−34 J.s), and kB is the Boltzmann’s constant (kB = 1.38 × 10−23 J/K). By integrating
the whole spectrum, the total power density (the entire area under the I(λ) vs. λ curve) at a particular
distance from the sun can be found. The same formula was also used to calculate the incoming
spectral irradiance received in Earth’s geosynchronous orbit by modifying all the distance parameters
in Equation (2).

For a terrestrial application on Earth, plenty of accurate spectral irradiance data, such as AM1.5G
and AM1.5D, can be utilized. However, the actual/experimental data on solar radiation intensity
at the geosynchronous orbit of Venus to the best of authors’ knowledge are not readily available.
The High Altitude Venus Operational Concept (HAVOC) project by NASA [15] calculated that the solar
intensity at the altitude of 50 km from the Venus surface is around 1.42 kW/m2. This value is smaller as
compared to the blackbody calculation at the geosynchronous orbit of Venus located at a distance of
about 115 times of the Venus radius. The amount of electric power gained by the space station at the
geosynchronous orbit of Venus can be calculated via a simple blackbody radiation formula.
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The coefficient of absorption of each subcell was calculated using Equation (3) following
Reference [55]:

α(λ) = 5.5
√(

E− Eg
)
+ 1.5

√
E−

(
Eg + 0.1

)
µm−1, (3)

where α(λ) is the coefficient absorption as a function of the wavelength, Eg is the bandgap energy of
the corresponding junction and E is the incoming photon energy at a particular wavelength. Once
we have the spectral irradiance, we can input this to PC1D with several additional steps. There are
several options in preparing the solar radiation input in PC1D program, through the internal source
(monochromatic or blackbody radiation) or the external source. In this paper, we will use the external
radiation source obtained from the calculation of blackbody radiation at the geosynchronous orbit of
Venus and Earth in Equation (2). Those external spectrums must be saved in *.spc format and have two
columns of data, the wavelength and power density F(λ) (in W/m2). The amount of data read by PC1D
program only limited to 200 rows, therefore for more than 200 pieces of data we have to average the
input data by following the scheme as seen in Figure 2. As an example, to average three subsequent
data, the interval of ith wavelength is defined as,

∆λi =
(λi+1 − λi−1)

q
(4)

while the ith power density is, and q is the number data segment considered in the particular range (in
the case above q = 2),

F(λi) =
((F(λi+1) + F(λi−1))

q
(5)

The intensity of the ith data is,
Ii = ∆λi × F(λi) (6)

and the corresponding wavelength λi is

λi =
(λi+1) + (λi−1)

q
(7)

For this TJSC simulation, the wavelength spans from 112 nm to 2500 nm with 1.00 nm data
increment. There is a maximum limit of 200 pieces of data to be included in PC1D program, so in our
simulation, we have to average every 13 pieces of data to become a single piece of data of λ vs. I(λ).
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The incoming intensity to the nth subcell, In depends on the amount of the previous solar radiation
In−1, the thickness of the previous subcell dn−1, and the absorption coefficient of the previous subcell
αn−1(λ), following Equation (4):

In(λ) = In−1(λ)·e−αn−1(λ)·dn−1 ; n = 1, 2, 3 for triple junction solar cells (8)

With α0 = 0 and d0 = 0 representing the open space (vacuum), medium and I0 is obtained from
Equation (2). The thickness of the nth cell, dn was calculated using the PC1D program. Since this
program can only simulate one layer at a time, several simulations depending on the number of
junctions involved must be performed. For each set of simulation, the electrical performance of the
TJSC in the form of the short circuit current (ISC), the open circuit voltage (VOC) and the output power of
each subcell (Pn) was recorded. The total efficiency (η) of a mechanically-stacked TJSC was calculated
by summing up all electric power produced by each subcell:

η =

(
P1 + P2 + P3

P0

)
× 100% (9)

To analyze the individual performance of each subcell, we also define some terms, i.e., relative
efficiency (ηn) and relative loss (Ln) of each subcell:

ηn =
Pn

Pn
0
× 100% (10)

Ln =
Pn_abs − Pn

Pn
0

× 100% (11)

where Pn is the electric power produced by the nth subcell, and Pn_abs is the absorbed power of the
nth subcell, and Pn

0 is the incoming power at nth subcell (Pn
0 = In·A) with A is the area of the solar cell.

The fill factor (FF) of each subcell was calculated via the formula below,

FFn =
Pn

Vnoc·Insc
(12)

where Vnoc and Insc is the open circuit voltage and the short circuit current of the nth subcell, respectively.
The intensity (or power) distribution in each subcell follows this relation below,

Iabs = Iout + Idiss
Iabs = Iout + Idiss

(13)

In which the subscript labels denote incoming, absorbed, transmitted, output, and dissipated
intensity, respectively.

3. Results and Discussions

3.1. The Solar Radiation Spectrums

The spectrum of incoming radiation (blackbody approximation) on the geosynchronous orbit
of Venus and Earth were shown in Figure 3. The total power density (intensity) as calculated by
Equation (6) on the geosynchronous orbit of Venus is 3000 W/m2 and for Earth’s geosynchronous orbit
is 1557 W/m2. If it is assumed that IVOSS has the same solar panel area as ISS has, which is around
2500 m2, the total potential of solar energy available at the geosynchronous orbit of Venus is about
7.50 MW, which is plenty of energy to power the space station.
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The transmitted radiation to the next subcell depends on the absorption coefficient and the
optimum thickness of the solar cell’s materials. The first subcell, Al0.3Ga0.7As, absorbs the solar
radiation from 112 nm up to its cut-off wavelength of 645 nm. The second subcell, InP, absorbs the
radiation in the medium wavelength region up to 868 nm, and the last subcell, Ge, works in the long
wavelength region up to 1765 nm.

3.2. Simulation of the Performance of the Solar Cells at the Geosynchronous Orbit of Venus

The power producing simulations were performed by using the PC1D program using a series
connection model of subcells. By maintaining the same amount of current in each subcell, the optimum
value of subcell’s thickness and the amount of doping were optimized by the quick batch mode in
PC1D program. The input parameters for PC1D program are shown in Table 1. The thickness of the
subcell grows as we move from the first to the third subcell. The first subcell is the thinnest (2.889 µm
for Al0.3Ga0.7As) as compared to other subcells due to plenty of solar radiation received by this subcell.
The next subcells, on the other hand, must be thicker (4.222 µm for InP and 15.56 µm for Ge) to
absorb as much transmitted radiation as possible. The thickness of the subcells in this simulation
is comparable to the result of other III-V MJSC (GaP/InGaAs/InGaSb) by Reference [50] where the
cumulative (emitter and base) thickness of the first, second and third subcell are 10.35 µm, 4.55 µm,
and 14.20 µm, respectively. The n-doping dominates the carrier concentration of each subcell in the
TJSC since the electron plays the role of a charge carrier. The n and p-doping density in this simulation
are also within the same range (1017 to 1019) as Reference [50].

Table 1. Input parameter for PC1D program.

Subcell
Bandgap Energy Thickness p-Doping n-Doping

(eV) (µm) (cm−3) (cm−3)

Al0.3Ga0.7As 1.817 2.889 1.00 × 1017 3.45 × 1018

InP 1.350 4.222 1.36 × 1017 1.73 × 1017

Ge 0.664 15.56 3.00 × 1018 2.13 × 1019

The simulation results on the spectral and electrical performance of TJSC are shown in Table 2.
For simplicity, the unit of intensity in this table was mW/cm2 (not W/m2), since the area of the subcell
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in the PC1D simulation was set to 1.0 cm2. For the first subcell, the incoming radiation is 300 mW/cm2,
with 136.18 mW/cm2 is absorbed and 163.82 mW/cm2 (54.61%) is transmitted to the next subcell. About
65 mW of electricity is produced in each cm2 area of the first subcell (21.67% relative efficiency as
compared to the incoming radiation on the first subcell). The dissipated energy in the first subcell
is 71.18 mW (23.73% relative energy loss). Therefore, the amount of electric power produced in the
first subcell is slightly smaller than the energy loss. In the second subcell, the incoming radiation
power received is 163.82 mW/cm2, of which 60.08 mW/cm2 is absorbed and 103.74 mW/cm2 (63.32%) is
transmitted to the third subcell. The electric power produced by the second subcell is 43.4 mW (about
26.49% relative efficiency), while the energy loss is only 15.48 mW (9.45% relative loss). The amount
of electric power produced by the second subcell is bigger (by a factor of 2.8) than the energy loss.
In the third subcell, the incoming solar radiation intensity is 103.74 mW/cm2. Most of the incoming
solar intensity in the third subcell will be passed to the air (84.2 mW or about 81.16%) and only
18.84% absorbed. The absorbed power in 1.0 cm2 is 19.54 mW, and only 8.42 mW of electric power
produced (8.12% of relative efficiency), while 11.12 mW will be dissipated (10.72% relative energy
loss). The total efficiency of the Al0.3Ga0.7As/InP/Ge TJSC in geosynchronous orbit of Venus is 38.94%.
This amount of efficiency is within the range of some recent results on III-V group multijunction solar
cells [30,37,56–59]. The maximum power gained in 1.0 m2 solar panel at Venus’s geosynchronous
orbit is 1168.2 W. By assuming the total area of solar panel of IVOSS is similar to ISS, which is around
2500 m2, the amount of power produced by Al0.3Ga0.7As/InP/Ge TJSC at the geosynchronous orbit of
Venus is 2.92 MW.

Table 2. Simulation results of TJSC at the geosynchronous orbit of Venus.

Subcell
Incoming
Intensity

Absorbed
Intensity

Dissipated
Intensity VOC Isc Pmax FF Total

Efficiency
mW/cm2 mW/cm2 mW/cm2 (V) (mA) (mW) (%) (%)

Al0.3Ga0.7As 300.00 136.18 71.18 1.491 47.7 65.0 91.39
38.94InP 163.82 60.08 16.68 1.027 47.7 43.4 88.59

Ge 103.74 19.54 11.12 0.2548 47.7 8.42 69.28

Based on PC1D optimization, the amount of current flows in a series connected subcells is 47.7 mA,
while the open circuit voltage VOC in the first subcell is bigger than in the second subcell and the third
subcell. Almost similar current is found in a CuInGaSe (CIGS) based solar cell [60] applied in space
application. The VOC of the second subcell and the third subcell is only 68.87% and 17.09% of the first
subcell, respectively. This gradation of VOC is expected, as those voltages are related to the amount
of electrical power produced by each subcell. The I-V diagram of Al0.3Ga0.7As/InP/Ge TJSC at the
geosynchronous orbit of Venus is shown in Figure 4.
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3.3. Simulation of the Performance of the Solar Cells at the Geosynchronous Orbit of Earth

The same procedure of current producing simulation using PC1D program was done for solar
cells application at the geosynchronous orbit of Earth. The same input parameter set up as in Table 1
(bandgap, thickness, and p and n doping density) is also used in this simulation, and the only difference
is the input spectral irradiance. The simulation results on the spectral and electrical performance of
TJSC at the geosynchronous orbit of Earth are shown in Table 3. Since the distance of this orbit to the
sun is further as compared to the geosynchronous orbit of Earth, the amount of solar radiation and
the electric power produced in this condition is smaller. The first subcell receives 155.7 mW of solar
radiation power for every 1.0 cm2 of the panel area and produces a 33.3 mW of electric power (about
21.39% of relative efficiency). The dissipated power in the first subcell is 37.4 mW (24.02% relative loss
of power), while the transmitted power to the second subcell is 85 mW (54.6% of the incoming intensity
to the first subcell). Similar to the case of Venus’s geosynchronous orbit, the amount of electric power
produced by the first subcell in Earth’s geosynchronous orbit is slightly smaller than the relative energy
loss. In the second subcell, the electric power generated is 22.10 mW (26% of relative efficiency), while
the dissipated power is 9.05 mW (about 10.6% relative loss). The amount of electric power produced
by the second subcell is bigger (by a factor of 2.4) than the energy loss. The amount of transmitted
power to the third subcell is 53.85 mW, about 63.35% of the incoming intensity at the second subcell.
The electric power produced by the third subcell is 4.0 mW (about 7.4% relative efficiency), while the
dissipated power is 6.13 mW (about 11.4% relative loss). The amount of the transmitted power from
the third subcell to free space is 43.72 mW, approximately 81.19% of the incoming intensity at the
third subcell. The total efficiency of the Al0.3Ga0.7As/InP/Ge TJSC at the geosynchronous orbit of Earth
in this simulation is 38.15%. The similar amount of power efficiency of Al0.3Ga0.7As/InP/Ge TJSC in
both orbital conditions might come from the fact that in both cases the only variable is the amount of
incoming solar radiation. For 1.0 m2 solar panel at the geosynchronous orbit of Earth, the maximum
power gained is about 594 W.

Table 3. Simulation results of TJSC at the geosynchronous orbit of Earth.

Subcell
Incoming
Intensity

Absorbed
Intensity

Dissipated
Intensity VOC Isc Pmax FF Total

Efficiency
mW/cm2 mW/cm2 mW/cm2 (V) (mA) (mW) (%) (%)

Al0.3Ga0.7As 155.70 70.70 37.40 1.474 24.8 33.30 91.09
38.15InP 85.00 31.15 9.05 1.011 24.8 22.10 88.14

Ge 53.85 10.13 6.13 0.238 24.8 4.00 67.77

The amount of current flows in a series connected subcells in Earth’s geosynchronous orbit is
24.8 mA. A comparable result of ISC is also found in GainAsP/InGaAs MJSC as a consequence of
current-limiting behavior of subcell as shown by its non-zero slope of I-V curve near the short-circuit
current [61]. The open circuit voltage VOC in the first subcell is bigger than in the second subcell and
the third subcell. The VOC of the second subcell and the third subcell are only 68.59% and 16.14% of
VOC of the first subcell respectively. The gradation of VOC in the Earth’s geosynchronous orbit is similar
to Venus’s geosynchronous orbit condition since those voltages are related to the amount of electric
power produced by each subcell. The I-V diagram of Al0.3Ga0.7As/InP/Ge TJSC is shown in Figure 5.
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4. Conclusions

We have ideally simulated the performance of Al0.3Ga0.7As/InP/Ge triple-junction solar cells
for an application in a hypothetical International Venus Orbiter Space Station (IVOSS). Although
the simulation parameters here are ideal compared to experimentally achievable results, we find
that Al0.3Ga0.7As/InP/Ge TJSC could reach 38.94% power efficiency and can produce 2.92 MW of
electricity to power this space station (assuming a 2500 m2 of solar panel area). As a comparison,
we also showed that the same TJSC (with the same parameter simulation) applied to a space station
at the geosynchronous orbit of Earth only produces 1.48 MW of electric power. The vast amount of
electricity produced by Al0.3Ga0.7As/InP/Ge TJSC in Venus geosynchronous orbit condition opens up
an opportunity to conduct long-term and intensive research on Venus in the future.
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