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Abstract: In terahertz-band communication using ultra-high frequencies, compound semiconductors
with superior high-frequency performance have been used for research to date. Terahertz communication
using the 300 GHz band has nonetheless attracted attention based on the expectation that an unallocated
frequency band exceeding 275 GHz can be used for communication in the future. Research into
wireless transceivers using BiCMOS integrated circuits with silicon germanium transistors and advanced
miniaturized CMOS integrated circuits has increased in this 300 GHz band. In this paper, we will outline
the terahertz communication technology using silicon integrated circuits available from mass production,
and discuss its applications and future.
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1. Introduction

The data rate of communication has been increasing exponentially year-by-year, as shown in
Figure 1 [1]. In particular, the improvement of the data rate of wireless communication has been
remarkably rapid compared with wired communication. If the data rate continues to improve with
this rate of advancement, rates of 100 gigabits per second—which cannot currently be realized except
via optical communication—could be realized by wireless communication in 2020. In the field of
ultra-high-speed wireless communication, wireless transceivers with data rates exceeding 100 gigabits
per second have recently been released as if to support this. Extrapolating the graph as if this data
rate growth will continue in the future allows the possibility that the wireless data rate will catch up
with the wired data rate in 2030 [2]. Of course, there are many remaining technical challenges that will
prevent wireless data rates catching up with the wired data rate, and equivalence cannot simply be
realized. However, the era of low data rates in wireless communication will soon end.

The key to realizing wireless communication approaching wired data rates is the terahertz band,
which has an intermediate property between radio waves and light with an electromagnetic wave
around 1 THz. Terahertz wireless communication is one of the important applications covered by the
terahertz photonics field [3]. Signals in this frequency band are generated and detected by photonics
devices and electronic devices but, because of their significant technical difficulties, they are not yet
widely used. However, communication using the terahertz band has attracted attention in recent years.
This is because, unlike microwave and millimeter waves, the overwhelmingly wide frequency band
near 100 GHz can be used. Such a wide frequency band is typically used in optical communication,
in which high data rates have been realized, but has also become available for wireless communication.

The 300 GHz band corresponding to the low frequency band in the terahertz band is considered
promising in wireless communication. Since this frequency band is included in the 220–330 GHz band
of the WR-3 (3.4-inch rectangular waveguide, one of the specifications of a rectangular waveguide)
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waveguide standard, communication in this frequency band has been actively studied in recent years.
In this paper, we will refer to communication using this WR-3 band as 300 GHz band communication.

Figure 1. Evolution of data rate of wired communication and wireless communication. The evolution
of the data rate of wireless communication is faster than that of wired communication, and is expected
to reach 100 gigabits per second in 2020. Furthermore, if we continue evolving at this speed, the data
rate of wireless communication will be equivalent to wired communication in 2030.

Why is the 300 GHz band promising for communication? The most significant reason is the
frequency allocation rule. Since radio waves are finite resources and the usage of each frequency is
determined, the frequency band that can be used for communication is limited. Although a wide
frequency band exists in the ultra-high frequency band higher than the millimeter wave, the frequency
is allocated to various applications related to space observation, and it is difficult to use the continuous
broadband for communication. A band of 252 GHz to 275 GHz has already been allocated to mobile
and fixed wireless communications [4]. Further, a discussion on utilizing the frequency band exceeding
275 GHz, which is currently unallocated, for communication is underway within the International
Telecommunication Union Radiocommunication Sector (ITU-R) [5]. Since the terahertz band has
strong directivity and interference is not stringent, sharing of communication and observation is being
considered. Therefore, the possibility of using the 300 GHz band for communication is increasing.
As a result, it is expected that a continuous wide frequency band exceeding 252 GHz and extending
over 275 GHz will be available soon for wireless communication.

In this paper, we discuss the silicon integrated circuit technology that realizes 300 GHz band
communication, and new applications of terahertz communication, including using the 300 GHz band.

2. 300 GHz Band Transceiver Using Silicon Integrated Circuits

Here we introduce the features of silicon integrated circuits in comparison with compound
semiconductor integrated circuits and introduce the technology of silicon integrated circuits which
realizes a 300 GHz band communication transceiver.

2.1. Integrated Circuit Realizing Terahertz Transceiver and Its Characteristics

The frequency used for 300 GHz band communication is 100 times higher than that of widely
used microwave communication. Therefore, it is necessary for the circuit to operate at ultra-high
frequency. The realization of terahertz wireless communication has two approaches: all electronic
and photonic-electronic hybrid. The latter covers the frequency band exceeding 500 GHz that is
unachievable with the all-electronic approach, and which is desirable for downsizing and power
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reduction of the total communication system [6]. For this reason, the photonic-electronic hybrid
approach has been studied previously to generate terahertz signals. However, research using integrated
circuits, which is based on the all-electronic approach, has been undertaken recently. Integrated circuits
are broadly classified into compound semiconductor integrated circuits using indium phosphide
and gallium arsenide, and silicon integrated circuits fabricated on silicon substrates. In addition,
silicon integrated circuits include silicon germanium (SiGe) BiCMOS (integrated circuits integrate
bipolar-junction transistors and CMOS transistors in a single device) integrated circuits and CMOS
integrated circuits. The difference between these integrated circuits is the maximum oscillation
frequency fmax of the transistor and the degree of integration. In accordance with Moore’s law,
the performance of devices using compound semiconductors as well as silicon has been improved
with the benefit of miniaturization. If capacitance and resistance are reduced by reducing the gate
length (or base thickness) of the transistor, the high frequency performance is improved. The fmax

of the latest compound semiconductor transistor exceeds 1 THz [7,8], and fmax of the SiGe bipolar
transistor exceeds 500 GHz [9]. However, since the influence of the tunnel current and the variation
due to the reduction of the power supply voltage becomes large, it is impossible to reduce the simple
three-dimensional size, and the influence of the parasitic capacitance and the parasitic resistance
prevents the high frequency performance of the transistor from being further improved. In the digital
circuit, even if the performance of the transistor is not improved, the circuit performance is improved
because the wiring length is shortened due to miniaturization of metal layers. On the other hand,
fmax of a transistor is important in a circuit handling high frequencies, especially terahertz frequencies.
In the CMOS integrated circuit, fmax remains at around 300 GHz after the 65 nm process, and the
performance of the transistor is not significantly improved.

On the other hand, digital baseband logic can be integrated in BiCMOS integrated circuits and
CMOS integrated circuits, whereas digital circuits cannot be integrated in compound semiconductor
integrated circuits. In particular, large-scale digital circuits can be integrated in CMOS integrated
circuits, which are becoming more miniaturized than BiCMOS circuits, so there is a possibility to
realize a single chip terahertz transceiver device in the future. Although performance is inferior to that
of compound semiconductors and SiGe integrated circuits, if the terahertz transceiver can be realized
with CMOS integrated circuits, the application range will extend to portable devices.

However, CMOS transceivers made of transistors with fmax around 300 GHz cannot integrate
power amplifiers in transmitters and low-noise amplifiers in receivers, which are generally essential
for transceivers. As will be described later, it is the transmission power of the transmitter and the
noise figure of the receiver that determines the communication performance, but the absence of the
power amplifier and the low-noise amplifier is extremely disadvantageous in wireless communication.
How can we overcome this disadvantageous condition? In the high-frequency front end of the
transmitter or the receiver, the basic function is to convert the modulated baseband signal to the radio
frequency signal. If an amplifier cannot be used, the mixer responsible for frequency conversion
must be the last stage of the transmitter and the first stage of the receiver. As a result, performance
improvement of this mixer is a key technology for realizing wireless transceiver under disadvantageous
conditions. It is necessary to realize an ultrahigh-frequency circuit by a technology that does not rely
on transistor miniaturization [10].

2.2. 300 GHz Band Transmitter Using Silicon Integrated Circuit

Even for the same silicon integrated circuit, the architecture of 300 GHz band transmitter differs
according to fmax. In the SiGe integrated circuit, as in the usual transceiver, as shown in Figure 2a, a power
amplifier can be used for a 300 GHz band transmitter [11,12]. On the other hand, in CMOS integrated
circuits, power amplifiers normally included in transceivers are not available. Therefore, to realize a 300 GHz
band CMOS transmitter, a method shown in Figure 2b was proposed in which a modulated signal with
an intermediate frequency of 80 GHz is multiplied by 3 in the final stage to generate a 240 GHz signal [13].
However, as shown in Figure 3a, not only the center frequency but also the frequency band expands three
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times in the multiplier, so the wide frequency band is not fully utilized even in the 300 GHz band. To fully
utilize the wide frequency band, it is necessary to use a mixer for up-converting the center frequency without
changing the frequency band (as shown in Figure 3b) at the final stage of the transmitter.

Figure 2. Comparison of 300 GHz band transmitters. (a) Since the maximum oscillation frequency ( fmax) of
transistors used in state-of-the-art compound semiconductor integrated circuits and SiGe integrated circuits
exceeds 300 GHz, the signals in the 300 GHz band can be amplified. (b) The power amplifier cannot be
fabricated because the fmax of transistors used in CMOS integrated circuits are 300 GHz or less. A 300 GHz
band signal is generated by a multiplier. CMOS: complementary metal-oxide-semiconductor.

Figure 3. Comparison of the cases using a multiplier and a mixer in the final stage. (a) When the
N multiplier is used, both the center frequency and the bandwidth is multiplied by N. (b) When
using a mixer, the frequency shifts upward (up-converted) by the local oscillation frequency (LO).
IF: intermediate frequency, RF: radio frequency, BW: bandwidth.

However, since the fmax of the metal-oxide-semiconductor field-effect transistor (MOSFET) of
the CMOS integrated circuit is low, the conversion gain of the mixer is below 0 dB and the output
power is not large. It is noted that even if a power amplifier is not used, the output power can
theoretically be increased when multiple mixers are connected in parallel for power combination.
However, parallel connection of the mixers is not easy. This is because the mixer, which multiplies
the frequency-converted signal by the local oscillation signal (LO), has two inputs and one output.
These three signals must be divided and combined in parallel as shown in Figure 4 to connect mixers
in parallel. When binary trees are used for each of the three input/output signal lines, the intersection
of the signal lines necessarily occurs. This not only complicates the layout but also degrades the signal
due to the intersection, so that performance improvement cannot be expected.

Therefore, in order not to degrade the signal, a mixer with two superimposed signals as the input
at the final stage of the transmitter was used [14,15]. A frequency doubler circuit, called a square mixer
since input signals are squared, is used for this mixer. Figure 5 shows the transmitter architecture
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using a square mixer [16]. If the frequencies of the two superimposed signals are close to each other,
the two signals can be simultaneously amplified by the identical amplifier. It enables division and
combination with a binary tree without complicating the layout. In the square mixer, the sum of the
superimposed intermediate-frequency (IF) signal and the LO signal is squared. The generated output
includes a desired signal which is the product of the two superimposed signals. On the other hand,
besides the desired signal, an undesired signal consisting of the square of the IF signal and the square
of the LO signal is simultaneously included. Since frequencies of these desired signals and undesired
signals are close to each other, it is difficult to remove only undesired signals by using a bandpass
filter. Therefore, as shown in Figure 6, two signal paths, an “IF− LO” signal and an “IF + LO” signal,
are generated and given to the square mixer after being amplified. Then, these outputs are given to the
balun. Finally, only the desired signal remains, and undesired signals are canceled by extracting the
differential signal.

Figure 4. Issues for connecting the final-stage mixers in parallel in a 300 GHz band CMOS transmitter.
For a two-input one-output mixer, the layout becomes complicated, making parallel connection difficult.

Figure 5. 300 GHz band CMOS transmitter using mixers in the final stage. Power amplifiers cannot be
used in 300 GHz band CMOS integrated circuits, but output power can be increased by connecting the
final-stage mixers in parallel. The parallel connection in the integrated circuit can be laid out easily by
superimposing the local oscillation signal (LO) on the modulated intermediate frequency signal (IF) in
the final stage mixer.
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Figure 6. Suppression of undesired signal generated by square mixer. In the square mixer, the square
of the superimposed IF and LO signals is generated. Undesired signals are canceled by extracting the
difference between the output signals generated by two types of square mixers given “IF− LO” and
“IF + LO” signals.

A 300 GHz band transmitter was fabricated in a 40 nm CMOS process. The chip micrograph of the
transmitter and the measurement results are shown in Figure 7a. The fabricated 300 GHz band CMOS
transmitter achieves a maximum data rate of 105 Gbit/s with 32 quadrature-amplitude modulation (QAM)
at 21 Gbaud (gigabaud). With 128 QAM at 3.52 Gbaud, on the other hand, 24.64 Gbit/s can be generated
using the 4.5 GHz frequency bandwidth. A graph superimposing spectrum obtained when six channels
of signals of 4.5 GHz bandwidth are generated at different frequencies is shown in Figure 7b. As a result,
the transmitter can generate a signal having a total bandwidth of 27 GHz (= 4.5 GHz× 6 channels) by
limiting the channel band. This corresponds to 12.5 channels of the 2.16 GHz bandwidth used in the 60 GHz
band. The maximum output power of the fabricated CMOS transmitter is−5 dBm.

Figure 7. (a) Chip micrograph of 300 GHz band CMOS transmitter, and (b) measurement results of
constellation and output spectrum.

2.3. 300 GHz Band Receiver Using Silicon Integrated Circuit

As shown in Figure 8a, the receiver of the SiGe integrated circuit can use a low-noise amplifier [11,12].
Furthermore, in recent receivers of SiGe integrated circuits, by using a 300 GHz band driver amplifier
as an LO signal, it is possible to improve the conversion gain of the fundamental mixer and to remove
the low-noise amplifier. As a result, conversion gain of +7 dB and a noise figure of 17 dB are realized
without a low-noise amplifier [16]. In a receiver of a CMOS integrated circuit, however, since a low-noise
amplifier cannot be used as shown in Figure 8b, the down conversion mixer must be used for the first stage.
Figure 9 shows a block diagram of a 300 GHz band CMOS receiver [17,18]. How can the noise figure of the
receiver be lowered without using a low-noise amplifier?
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Figure 8. Comparison of 300 GHz band receivers. (a) In the compound semiconductor integrated
circuit and the SiGe integrated circuit, since the received signal is amplified by a low-noise amplifier
and then converted into the low frequency signal by a down conversion mixer, the influence on the
receiver performance by the noise figure of the mixer is small. (b) Since the CMOS integrated circuit
cannot use a low-noise amplifier, a fundamental mixer becomes the first stage of the receiver, which has
a significant influence on the performance of the receiver. When a fundamental mixer with small
conversion loss is used, the local oscillation signal cannot be amplified.

Figure 9. Block diagram of 300 GHz band CMOS receiver. For CMOS integrated circuits, 300 GHz
band low-noise amplifier (LNA) and LO driver cannot be used.

To lower the noise figure of the receiver, not only the noise figure but also the conversion loss
of the first-stage mixer must be reduced. In general, harmonic mixers are often used for ultra-high
frequency down-conversion mixers to lower the frequency of the LO. However, since a harmonic mixer
has large conversion loss and high noise figure, performance of the receiver deteriorates. To suppress
performance degradation of the receiver, it is necessary to use a fundamental mixer, in which the
frequency of the local oscillator is the same as the input 300 GHz band. On the other hand, since the
conversion gain of the mixer is proportional to the power of the LO, a LO with sufficiently large output
is required to suppress the conversion loss. However, in CMOS integrated circuits, driver amplifiers
for LO are unavailable. Therefore, the 300 GHz band CMOS receiver utilizes a LO generating the
output power required for the fundamental mixer by parallel combination like the transmitter as
shown in Figure 10 [17,18].

As with the transmitter, a 300 GHz band receiver was fabricated with a 40 nm CMOS process.
The chip micrograph is shown in Figure 11a. The LO block occupies a large area of the chip by
the parallel combiner. The measurement result of the receiving circuit is shown in Figure 11b.
The modulation signal of the 300 GHz band given to the receiver was generated by the 300 GHz band
CMOS transmitter shown in Figure 7. In the fabricated 300 GHz band CMOS receiver, the maximum
data rate of 32 Gb/s is obtained at 16 QAM.
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Figure 10. 300 GHz band CMOS receiver using a fundamental mixer as the first stage. To use a fundamental
mixer with small conversion loss, 300 GHz is required for the local oscillation frequency. Since the 300 GHz
signal cannot be amplified by the CMOS circuit, a 300 GHz signal with the output power required for the
fundamental mixer is generated by connecting the outputs of the doubler in parallel.

Figure 11. (a) Chip micrograph of 300 GHz band CMOS receiver and (b) measurement results of
constellations of received signal. The input signal of the receiver was generated by a 300 GHz band
CMOS transmitter. EVM: error vector magnitude, BER: bit error rate.

2.4. 300 GHz Band CMOS Transceiver Module

In Sections 2.2 and 2.3, the technology of the CMOS integrated circuit that is the core of the 300 GHz
band transceiver was introduced. In the measurement of the CMOS chip introduced in these sections,
a waveguide probe attached to the wafer prober was used. Although wireless communication is possible by
attaching an antenna to the waveguide probe, transceivers are not practical for wireless communication
using a wafer prober. It is important to connect an antenna that converts space radio waves and electric
signals in the CMOS chip without using a wafer prober and waveguide probes. Here, on-chip antennas are
sometimes used for millimeter-wave CMOS transceivers [19]. However, the gain of the on-chip antenna is
small, and its application is limited to short-distance wireless communication of several centimeters. On the
other hand, it is necessary to use an antenna with high gain to extend the communication distance. Since the
interface of the high gain antenna is generally a waveguide, an interface connecting the CMOS chip and
the waveguide is required. In consideration of practical application, a CMOS-to-waveguide interface is
proposed using a conventional multi-layer glass epoxy printed board as shown in Figure 12 [20]. The CMOS
chip is flip-chip mounted on a multilayer printed circuit board. The 300 GHz band signal generated by
the CMOS chip is transmitted using a microstrip line as short as 200 µm on the printed circuit board.
A waveguide conversion probe similar in shape to the patch antenna was formed at the tip of the microstrip
line. A quarter wavelength back-short structure required for waveguide conversion was formed in the
multilayer substrate and a metal waveguide flange was mounted on the surface of the printed circuit board.
This realizes CMOS waveguide conversion.
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Figure 13 shows the reflection characteristics at the opening of the waveguide flange and the
photograph of the module. CMOS waveguide conversion using a printed circuit board was realized.
However, the minimum value of the reflection characteristic shifts downward from 300 GHz to 250 GHz
due to the estimation errors in the material constant of the substrate and the output reflection characteristic
of the CMOS chip.

Experiments of wireless communication were carried out using the fabricated CMOS transmission
module. To compare and evaluate the performance of this module, it is necessary to compare
with the result of other terahertz communication experiment. On the other hand, in each piece
of communication experiment, it is not valid to simply compare the data rate and the communication
distance because the modulation scheme, antenna gain, frequency (wavelength), and allowable bit error
rate are different. The communication distance dn in which these parameters are normalized [20,21] is:

dn ≡
d
λ

√
SNR
GtGr

(1)

where d is the communication distance, λ is the wavelength, SNR is the signal-to-noise ratio of the receiver,
and Gt and Gr are the antenna gain of the transmitter and the receiver, respectively. By using dn, the noise
power spectral density Np (= −174 dBm/Hz) and the symbol rate rs, the figure of merit (FOM) is

FOM ≡ Np(4πdn)
2rs =

(
4πd
λ

)2(SNR · Np

GtGr

)
rs ≤

Pt

NF
(2)

The FOM is determined by the ratio between the transmission power Pt and the noise figure NF of
the receiver. The comparison result is shown in Figure 14. The results of the communication experiment
using our CMOS transmitter are not inferior to the results using other compound semiconductors.

Figure 12. CMOS waveguide (WG) interface using multilayer printed circuit board (PCB). A waveguide
back-short structure is made in the multilayer substrate.

Figure 13. Reflection coefficients (left) and a photograph (right) of module with built-in CMOS
waveguide interface using a printed circuit board.
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Figure 14. Performance comparison of terahertz transceivers. The communication distance is normalized
by the wavelength, the received signal-to-noise ratio, and the antenna gain, where d is communication
distance, λ is wavelength, SNR is received signal-to-noise ratio, Gt is transmitter antenna gain, and Gr

receiver antenna gain.

3. Features and Applications of 300 GHz Band Communication

Practical application of terahertz communication depends on communication characteristics, including
communication distance. Therefore, we first consider its characteristics and suitable applications.
Then, we introduce recently standardized channel allocation in the 300 GHz band, and finally consider the
possibility of application to space.

3.1. Characteristics of Terahertz Band Communication

You may imagine that the terahertz band has a large atmospheric attenuation and is limited to
near-field communication. How large is the effect of atmospheric attenuation? Figure 15 shows atmospheric
attenuation from 30 GHz to 3 THz [22,23]. If the atmospheric attenuation is less than 10 dB, the effect is
relatively small. On the other hand, for example, if the atmospheric attenuation at 1 km exceeds 10 dB,
kilometer-class communication may become difficult. Such frequencies are 60 GHz, 183 GHz, 325 GHz and
above 351 GHz. Apart from these frequency bands, the influence of atmospheric attenuation is relatively
small for medium-range communications of at least about 1 km. In Figure 16, to estimate the communication
distance, the distance at which the atmospheric attenuation is 10 dB is shown. There is a wide radio-wave
window with a communication distance of 2 km from 192 GHz to 298 GHz [24]. This is one reason why the
300 GHz band is attracting attention as a communication application.

On the other hand, it is necessary to consider free space propagation loss besides atmospheric
attenuation. Using received power Pr, transmit power Pt, transmitter antenna gain Gt, receiver antenna
gain Gr, wavelength λ, and communication distance d, propagation loss is given by:

Pr

Pt
= GtGr

(
λ

4πd

)2
. (3)

Equation (3) is known as the Friis transmission equation. According to (3), as the wavelength λ

decreases, the received power Pr decreases and the propagation loss increases. On the other hand, if the
effective areas of the transmitting and receiving antennas are At and Ar respectively, the antenna gain is
given by:

Gt =
4π

λ2 At, and (4)

Gr =
4π

λ2 Ar. (5)

The antenna gain is proportional to the effective area and increases in inverse proportion to the
square of the wavelength λ. Substituting (4) and (5) into (3) gives:

Pr

Pt
=

At Ar

(λd)2 . (6)
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Equation (6) is nothing other than the equation shown in Friis’ original paper [25]. Equation (6)
shows that if the effective area of the antenna is constant, the received power increases in inverse
proportion to the square of the wavelength, and the propagation loss decreases. In terahertz
communication, it is important not to reduce the antenna area to realize medium to long distance
transmission. Since the antenna gain increases as the frequency increases with the antenna area
constant, terahertz communication is more suitable for one-to-one communication than broadcasting.

Figure 15. Atmospheric attenuation of radio waves from 30 GHz to 3 THz. There are atmospheric
attenuation peaks greater than 10 dB with a 1 km distance at 60 GHz, 183 GHz and 325 GHz. Also,
the atmospheric attenuation exceeds 10 dB/km at all frequencies above 351 GHz. The influence of
atmospheric attenuation at 1 km is not significant at other frequencies.

Figure 16. Communication distance from 100 GHz to 350 GHz. The communication distance is
calculated from the distance at which the atmospheric attenuation reaches 10 dB. In the frequency band
from 192 GHz to 298 GHz, the communication distance is over 2 km, and in the frequency band from
121 GHz to 154 GHz, the communication distance is over 8 km.

3.2. Application Examples of 300-GHz-Band Communication

Since the data rate equivalent to optical communication can be realized in the 300 GHz band,
PAR (Project Application Request) of IEEE 802.15.3d shows application examples for replacing optical
communication with wireless communication, such as a wireless backhaul/fronthaul, intra-device
wireless communication, point-to-point switch connections for data centers, and proximity wireless
applications including kiosk download [26].
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On the other hand, low latency is one of the advantages of wireless communication over optical
communication. The propagation velocity of the electromagnetic wave is inversely proportional to
the square root of the dielectric constant of the medium. For this reason, the propagation speed
of atmospheric electromagnetic waves is about 50% faster than that of optical fibers, and wireless
communication is excellent for real-time applications. Utilizing this property, a microwave line
dedicated to high-speed trading was laid at a cost of USD 250 million between New York and
Chicago [27]. In terahertz communication, the same communication capacity can be transmitted
as optical communication with low latency. In the case of 8K video images, which will be broadcast in
Japan in 2018, communication capacity of up to 144 gigabits per second for uncompressed streaming is
required. 144 gigabit per second wireless communication can be realized with 16 QAM and a roll-off
coefficient of 0.25 when a bandwidth of 45 GHz is available. This frequency bandwidth can be allocated
in the 300 GHz band. For example, by using a drone equipped with an 8K camera, the situation of
a disaster site or a distress location can be quickly observed in real time. This is a new application
which cannot be realized by conventional microwave communication or optical communication.

3.3. Application Example of 300 GHz Band Communication

In IEEE 802.15.3d, the standard for channel allocation in the 300 GHz band has been established [28].
In this standard, channels are allocated to frequency bands close to 70 GHz from 252 GHz to 321 GHz
(Figure 17), which are composed of frequencies already allocated for communication and frequencies
expected to be allocated to communication in the future. To maintain compatibility with the conventional
60 GHz band standard, a plurality of channel bands that are multiples of 2.16 GHz, as shown in Figure 17a,b,
are allocated to this frequency band. On the other hand, considering that the data rate of wireless
communication is close to optical communication, it is preferable to consider compatibility with wired
communication standards. For example, the 28 Gbit/s standard is widely used in NRZ (non-return to zero)
transmission called CEI-28G (Common Electrical Interface 28 Gigabit-per-second) for electrical interfaces of
FPGAs (field programmable gate arrays) and optical fiber. Assigning these two NRZ signals to the I/Q
signals used for quadrature phase shift keying (QPSK) results in 56 Gbit/s wireless communication. Since the
symbol rate is 28 Gbaud (gigabaud), when it is modulated with a roll-off coefficient of 0.2, it becomes
a bandwidth of 33.4 GHz. According to the IEEE 802.15.3 d standard, a channel suitable for this band is not
currently defined. However, allocating 34.56 GHz, which is 16 times 2.16 GHz, to one channel is suitable
for connecting the 28 Gbps NRZ wired signal to the 56 Gbps QPSK radio signal. As long as the channel
bandwidth is 34.56 GHz, as shown in Figure 17c, two channels can be allocated to the entire frequency
band specified by IEEE 802.15.3 d. Assigning channels in this way, the channel on the low frequency side
from 252 GHz to 287 GHz has a long distance of about 2 km as the atmospheric attenuation becomes 10 dB,
which is suitable for medium- to long-distance communication.
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Figure 17. In IEEE3 802.15.3d, channels in multiple bands are allocated in the frequency band from
252.72 GHz to 321.84 GHz. (a,b) are examples of channels allocated in IEEE 802.15.3d. (c) Assigning the
channel of the 34.56 GHz band facilitates connection with the wired communication interface CEI-28 G
(Common Electrical Interface 28 Gigabit-per-second).

3.4. The Future of Terahertz Communication Spreading in Space

Inter-server communication for data centers, backhaul and fronthaul of networks, and high-speed
communication in electronic devices are assumed applications of terahertz communication but these
are forms of fixed wireless communication that have been realized by the conventional optical
fiber network. Merely replacing fixed communication, however, does not achieve the maximum
potential of terahertz communication. On the other hand, since terahertz air attenuation is large,
it may be thought that it is unsuitable for long distance communication. However, as mentioned in
Section 2, there is an atmosphere window in the 300 GHz band. In addition, if the antenna size is
maintained, even if the wavelength is short, the directivity increases but the propagation loss decreases.
The received power increases as the frequency increases if the effective area of the antenna is constant,
so ultra-high-speed terahertz communication may be utilized in the universe without atmospheric
attenuation if a high-power terahertz transmitter and a high-gain antenna are available. In the 300 GHz
band, the gain of a parabola antenna with a 1.2-m diameter will be 70 dBi from Equation 5 if the
aperture efficiency is 70%. The diameter φ of the beam produced by the antenna with the gain G at the
distance d is given by:

φ ' 4d√
G

(7)

regardless of the frequency. With a 70 dBi antenna, the diameter of the beam 1000 km ahead will
be 1.3 km. Terahertz communication in which the beam diameter is wider than the laser beam
helps alleviate the requirement of position control of the antenna. Furthermore, in the terahertz
communication in the universe without atmospheric attenuation, a frequency band exceeding 300 GHz
can be utilized. Although not in the 300 GHz band, as shown in Figure 16, in the frequency band from
121 GHz to 154 GHz, the distance at which the atmospheric attenuation becomes 10 dB exceeds 8 km.
If this wide frequency bandwidth that is not currently allocated to communication is available, stable
high-speed communication to the universe is possible in the desert without rain attenuation located at
an altitude of 5000 m at which the air density is about half that of the sea level.
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In the future, can we use terahertz communication to solve social problems? For example,
to simulate various phenomena in the real world accurately on a large scale, it is indispensable
to improve the performance of supercomputers. What are the challenges that must be solved when
performance improvement of supercomputers is expected in the future? The computing performance
of the supercomputer has improved exponentially, by 1000 times in about 10 years [29]. Currently,
development is progressing toward the realization of an exascale computer that performs floating-point
calculations 1018 times per second in 2020. If the computation speed continues to improve after
2020, a zettascale computer will be created in 2030 that will perform floating point calculations at
a tremendous rate of 1021 times per second. One problem here is power consumption. It is foreseen that
the power consumption of an exascale computer will be 20 MW [29]. On the other hand, in a zettascale
computer with 1000 times higher computing capacity, the power consumption will be 20 GW if the
hardware scale is simply multiplied by 1000. Even if low-power technology is developed, the power
consumption of the zettascale computer will be around 1 GW. The power consumption of 1 GW is
roughly equivalent to the output of one nuclear power generator. How can we maintain a sustainable
society while covering the enormous power consumption of such supercomputers? Research on
space photovoltaic power generation using a 2.5-km-square solar panel on a geostationary orbit is
proceeding as one of stable candidates for renewable energy [30]. This solar panel can generate 1 GW.
Electricity produced by space photovoltaic power will be transmitted to the ground using microwaves.
The target efficiency of power transmission is 50%. If a supercomputer is built together with the space
photovoltaic panel, and electric power generated by space photovoltaic power is used in place, power
can be effectively utilized without transmission loss [30]. Ultra-high-speed terahertz communication
can be used for large-volume data exchange for space supercomputers that cannot lay optical fiber.

On the other hand, it will be an era of monitoring the real world with enormous sensors exceeding
1 trillion units and processing that information with artificial intelligence. Although the information
obtained from the sensor cannot be stored as it is, the amount of stored data will exponentially increase.
On the other hand, cold data in which access frequency decreases with time will also increase. Since the
access frequency of cold data is low, the access speed is not important. When slow access is allowed,
it may be possible to construct a cold storage data center on the moon, for example, rather than on
Earth [31]. Since the light propagation time to the moon is 1.3 s, the access speed will be about 3 s in
a round trip. Nonetheless, a lunar cold storage data center will be one of the candidates for utilization
on the moon.

Furthermore, manned exploration of Mars and migration of mankind are currently being
studied [32]. The means of communication of the migrants to Mars is limited to radio. It is noted that
one petabyte can be transmitted per day when information can be sent at a data rate of 100 gigabits per
second. When Mars is furthest from Earth it takes 21 min to propagate electromagnetic waves. Hence,
although communication will not be real time, terahertz communication makes it possible to exchange
large volumes of information between Earth and Mars.

It is noted that the moon’s atmosphere is very low (i.e., almost vacuum). The atmospheric
pressure of Mars is about 0.6% of the Earth, and most of the atmosphere is carbon dioxide. Carbon
dioxide absorbs infrared to cause a greenhouse effect but does not absorb terahertz. Therefore,
terahertz absorption on the moon and Mars is negligible. Performance required for achieving terahertz
communication with geostationary orbits of the moon and Mars is estimated in Figure 18. Although it
may not be a technology that can be realized immediately, the space utilization of ultra-high-speed
terahertz communication will be a meaningful challenge to overcome for the sustainable development
of mankind.
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Figure 18. Estimates of the performance required when 300 GHz band communication is realized in
space. If the transmission power of terahertz communication increases, a broadband communication
link toward space becomes possible.

4. Conclusions

Since atmospheric attenuation is relatively small in the 300 GHz band, it is the last remaining
frequency band where a wide frequency band near 70 GHz can be used. It was shown that
a 300 GHz band transmitter and receiver can be realized with a silicon CMOS integrated circuit
with lower frequency performance than of a compound semiconductor. When a commercial CMOS
baseband signal processor for optical communication is combined with a terahertz front end, terahertz
communication can be put to practical use at an early stage. However, the performance of a terahertz
transceiver using a CMOS integrated circuit is still insufficient. It is necessary to further improve
the performance by combining a power amplifier and a low-noise amplifier with a compound
semiconductor with a CMOS integrated circuit. A traveling-wave tube is also conceivable for
applications requiring watt-class power [33]. Heterogeneous integration of CMOS integrated circuits
with compound semiconductors and traveling wave tubes may be the key to solving future challenges.

High-power signals have been generated in the UHF band since the first magnetron was invented
in 1921, and research on microwaves such as radar became popular. Fifty years after the invention of
the magnetron, in 1970, single mode fiber was invented, and optical communication was subsequently
actively studied. As a result, large-volume long-distance transmission became possible, and society
changed drastically. There are signs that terahertz communication will open up a new world in
a further 50 years hence, in 2020. Wireless communications in the 300 GHz band that can realize the
same data rates as wired communications have the potential to affect space plans after 2020. The ability
of terahertz communication to connect places that cannot be connected by wired communication,
and enabling the same volume as optical communication, will significantly change the society of
the future.
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