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Abstract: In this paper, a high sensitivity, polarization preserving photonic crystal fiber (PCF),
based on circular air holes for sensing in the terahertz (THz) band, is presented. The finite element
method, a practical and precise computational technique for describing the interactions between light
and matter, is used to compute the modal properties of the designed fiber. For the designed PCF,
comprising of circular air holes in both the cladding and in the porous core, a relative sensitivity of
73.5% and a high birefringence of 0.013 are achieved at 1.6 THz. The all circular air-hole structure,
owing to its simplicity and compatibility with the current fiber draw technique for PCF fabrication,
can be realized practically. It is anticipated that the designed fiber can be employed in applications
such as detection of biological samples and toxic chemicals, imaging, and spectroscopy.

Keywords: far infrared or THz; relative sensitivity; modal birefringence; fiber sensor; photonic
crystal fiber

1. Introduction

Research in the terahertz (THz) regime, which is the frequency range spanning between
0.1–10 THz in the electromagnetic spectrum, is gaining attention due its promising applications
in significant fields such as biosensing, security, imaging, and spectroscopy [1,2]. While the reported
works in the literature are based on different technologies [3–10], it is only recently that photonic
crystal fibers (PCFs) are being considered for THz sensing applications [11–13]. This is because PCFs
offer tremendous design flexibility over the conventional fibers. In PCFs, through the tuning of
the parameters of the air holes (pitch, radii of air holes, number of rings, etc.), the waveguiding
properties, such as mode properties [14], birefringence [15], dispersion [16], mode confinement [17],
and nonlinearity [18], can be effectively controlled. The guiding properties and applications of PCFs
are further provided in [19–23].

The research so far on PCF-based THz sensors has focused on reducing the propagation losses
in PCFs, as most materials experience a high absorption loss in the terahertz band. Several fiber
structures for enabling low-loss propagation have been reported [11–13,24–26]. Of these, porous core
based photonic crystal fiber (PCF) sensors [11–13] have shown high sensitivity and low absorption
loss. In addition to demonstrating high sensitivity and low absorption loss, maintaining polarization
is of great importance in sensing applications to eliminate polarization mode dispersion (PMD),
which can change the polarization state during the sensing of analytes, leading to inaccurate sensitivity.
An effective approach to maintaining the polarization state in an otherwise symmetric fiber is to
break the symmetry in the core or in the cladding, and creating fiber structures with induced high
birefringence. With an intention to induce birefringence, rectangular slotted core structures were
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reported in [11,12]. Although the design in [12] showed a high sensitivity of 96.8% and a high
birefringence of 0.0154, the presence of rectangular slots in the core makes these PCFs difficult to
realize. Subsequently, a porous core design with elliptical air holes was proposed in [13] to alleviate
the fabrication difficulties of the design reported in [12]; however, at a cost of drastically reducing
the relative sensitivity to 68.8%. Moreover, it is difficult to maintain conditions during the drawing
process that simultaneously preserves circular hole shapes in the cladding and elliptical hole shapes in
the core.

With an aim to further improve fabrication feasibility through the incorporation of circular air
holes throughout the PCF, and to achieve high sensitivity and birefringence, in this paper, we propose
an all circular air hole-based porous core PCF structure. Our simulation results indicate that the design
exhibits a high relative sensitivity of 73.5%, high modal birefringence of 0.013, and low confinement
loss. While the relative sensitivity of the proposed fiber is lower than those reported in [11,12], the all
circular air hole structure can be handled in the state-of-the-art fiber drawing towers.

2. Geometric Structure

In the terahertz regime, every material experiences a certain absorption loss, and for this reason
background material choice is very crucial. Cyclic olefin co-polymer, polymethyl methacrylate
(PMMA), polycarbonate (PC), high-density polyethylene (HDPE), and polytetrafluoroethylene (PTFE)
are all suitable fiber materials due to their low absorption loss in the THz regime. In this work,
we chose cyclic olefin co-polymer, with the trade name TOPAS, because it offered certain advantages
over others, including lower absorption loss [27], humidity insensitivity [28], etc. The refractive index
of the TOPAS used was 1.5258 [29].

A regular hexagonal PCF structure was modified by scaling down the radius of several air holes
in the center of the fiber, to form a porous core PCF structure. The cross section of the proposed fiber
is shown in Figure 1. In order to induce birefringence, additional air holes (shown in orange) were
introduced in the core to break the symmetry. Symmetry of the cladding was broken by removing
four air holes at the top and the bottom corners (shown as red dashed air holes in the outermost ring).
The length of the core was denoted by L and its value was chosen as 480 µm. The center-to-center
distance between two adjacent air holes (also called pitch) of the regular hexagonal structure, both in
the core and in the cladding, were Λ/2 and Λ, respectively, where Λ = 80 µm. The diameter of the
air holes in the cladding (denoted by d) was chosen as 37.6 µm. The overall fiber structure diameter
was 1056 µm. To demonstrate sensor operation, similar treatment as in [11–13] for the structure,
wherein two analytes (water (n = 1.33) and ethanol (n = 1.354)) were used to fill the air holes in the
core, was considered as these analytes are common in our daily life and detection is necessary to avoid
their harmful effects.
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and orange colors in the core are intermediate air holes introduced to induce birefringence).



Photonics 2018, 5, 40 3 of 9

3. Results and Discussion

The modal parameters of the designed fiber were computed using an efficient finite element
method (FEM) toolset available in COMSOL software. The electric field distribution of the fundamental
mode in the fiber is shown in Figure 2 for two orthogonal polarizations at a frequency of 1.6 THz.
The PCF design parameters in Section 2 were chosen so that at 1.6 THz our design exhibited a maximum
relative sensitivity of 73.5% and a high birefringence of 0.013.
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ethanol-filled core; and (d) y-polarization for ethanol-filled core.

3.1. Relative Sensitivity

The extent of the interaction between light and analytes defines the relative sensitivity of the
proposed design. The sensitivity of the designed fiber was investigated by calculating the sensitivity
coefficient, r, which was given by [30]:

r =
nr

neff
× P (1)

where nr is the refractive index of the analyte to be sensed and neff is the effective refractive index
of the fiber material. P is the fraction of useful power in the core air holes, which can be calculated
using [30]:

P =

∫
sample Re(Ex Hy − Ey Hx)dxdy∫

total Re(Ex Hy − EyHx)dxdy
× 100 (2)

where, Ex and Ey are the transverse and the longitudinal electric fields, respectively; and Hx and Hy

are the transverse and the longitudinal magnetic fields, respectively. Higher refractive index material
in the core created a large index difference between the core and the cladding, which in turn assisted
in stronger confinement, leading to increased interaction of light with the material. Figures 3 and 4
show the relative sensitivity in both x- and y-polarizations, when the core air holes were filled with
water and ethanol, respectively. The x-polarization exhibited comparatively higher sensitivity than
the y-polarization, which was due to the larger number of air holes, filled with analytes, that light
interacted with in the x direction compared to the y direction. As can be seen from Figure 3, the highest
relative sensitivity values obtained for x-polarization and y-polarization when the core air holes were
filled with water were 71.5% and 68%, respectively. From Figure 4, it can be seen that the highest
relative sensitivity values obtained for x-polarization and y-polarization when the core air holes
were filled with ethanol were 73.5% and 71%, respectively. The obtained relative sensitivities were
lower than those reported in [11,12]. This is because the designs in [11,12] are based on noncircular
air-holes, both in the core and in the cladding, and they have a higher porosity compared to a strict
circular packing structure. The higher porosity leads to increased interaction of light with the analytes,
thus increasing the sensitivity of the sensor. However, these noncircular air-hole designs are difficult
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to fabricate using state-of-the-art fiber draw processes. A departure from rectangular slots in the air
core was made in [13], wherein elliptical air holes were used in the core. A relative sensitivity of 68.8%
was reported in that structure.
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Figure 3. Relative sensitivity as a function of frequency when the core air holes were filled with water.

Due to the higher relative sensitivity in the x-polarization state in our designed fiber, the discussion
henceforth is focused on x-polarization, unless otherwise stated. For our structure, we also considered
the effect of dimensional deviation in the air hole radii on the sensitivity, as this can happen during
the fiber draw process. We simulated the change in sensitivity when the radius of the core air holes
was changed by ±3%. A change in cladding air hole radius was not considered as the mode is tightly
confined in the core air holes, and any change in sensitivity would be predominantly affected by the
core air holes. It can be seen from Figure 5 that the relative sensitivity for water filled holes changed
from 71.5% to 71.9% and 69.5% when the hole radius was varied by +3% and −3%, respectively,
whereas when ethanol was used as the analyte, the sensitivity changed from 73.5% to 73.9% and 71.1%,
respectively. It can be seen that there were no significant changes in the relative sensitivity for the
variation of the core air holes radius by ±3%. By enhancing the air filling fraction (AFF) in the core,
that is the ratio of air hole diameter to pitch, the relative sensitivity could be increased because it
brings the air holes close to one another, which in turn lets sufficient light pass into the core air holes.
However, increasing AFF would reduce the index difference between two orthogonal polarizations,
leading to a mismatched polarization state.
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Figure 4. Relative sensitivity as a function of frequency when the core air holes were filled with ethanol.
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Figure 5. Relative sensitivity of the sensor when the core air hole radius was varied by ±3% for the
water and ethanol cases.

3.2. Modal Birefringence

The symmetry of the designed fiber was broken intentionally in order to preserve the polarization
state during the interaction between light and analytes. A high birefringence is expected to maintain
the polarization state in sensing applications. The modal birefringence can be calculated using:

B =
∣∣nx − ny

∣∣ (3)

where nx and ny represent the effective refractive indices for the x-polarization and the y-polarization
states, respectively. The calculated modal birefringence is shown in Figure 6 for water-filled core holes
(green) and ethanol-filled core holes (pink), from which it can be concluded that water shows higher
birefringence than ethanol. The obtained birefringence was higher than that reported in [11], and lower
than those reported in [12,13]. It is easy to break the symmetry of the core by using elliptical air holes
and obtain high birefringence [12]. However, it again makes the fabrication of the structure difficult.
The birefringence increased with increasing frequency up to 1.5 THz, saturated up to 1.6 THz, and then
started to decrease beyond 1.6 THz (not shown in Figure). This decrease beyond 1.6 THz was probably
due to increased absorption loss, which affected the mode index.
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3.3. Confinement Loss

Confinement loss is very important in sensing applications and it occurs due to the finite cladding
dimensions. The confinement loss can be calculated from the imaginary part of the effective refractive
index using [29]:

LC = 8.686
2π f

c
Im(neff) (4)

where f is the frequency, c is the light velocity, and Im(neff) is the imaginary part of the effective
refractive index. Figure 7 shows the confinement loss calculated for both analytes. The higher
refractive index difference between the core and the cladding in the case of ethanol-filled core holes led
to tighter confinement, compared to that in water-filled core holes, resulting in a lower confinement
loss. At higher frequencies, light interacted much more with the material, which in turn resulted in
a lower confinement loss. Figure 8 shows the effective refractive index as a function of frequency.
As expected, ethanol-filled core hole PCF exhibited a larger effective refractive index compared to
water-filled core hole PCF.
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Table 1. Comparison of the proposed designed fiber with other reported fibers in the literature for
sensing application.

Ref. Core Air Hole Shape Cladding Air Hole Shape Relative Sensitivity Birefringence Fabrication Feasibility

11 Rectangular slot Kagome structure 85.7% 0.005 difficult
12 Rectangular slot Rectangular slot 96.8% 0.0154 difficult
13 Elliptical Circular 68.8% 0.0176 difficult

Proposed
(this work) Circular Circular 73.5% 0.013 compatible with the

state-of-the-art process

4. Fabrication Methods

Fabrication is an important issue for the practical realization of the fiber sensors. To date, a number
of ongoing fabrication methods, such as extrusion, capillary stacking, and stack and drilling are applied
to fabricate a wide variety of fiber preforms and structures. High porosity, both in the core and in the
cladding, increases the fabrication difficulties of the PCF; however, technologies used for microstructure
fibers have made it easy to some extent. A porous fiber was practically realized in [31]. The designs
reported in [11,12] used rectangular slotted air holes, whereas elliptical shape air holes are used in [13].
However, difficulties arise during the fabrication of noncircular holes in microstructure fibers due to a
lot of reasons, which include the action of surface tension, viscous stresses, heating, and pressure effects
during the fiber draw. If the shape of the air holes is not circular in the preform stage, those effects
subsequently lead to nonuniformly oriented hole deformations [32]. As our proposed fiber consists
only of circular air holes, both in the core and in the cladding, it is expected that the fabrication of the
fiber will be achieved using the stack and draw technique [33], or by drilling holes in the preform and
then drawing it into a PCF.

5. Conclusion

A photonic crystal fiber-based sensor has been proposed for sensing in the terahertz range.
High relative sensitivity for both analytes (water and ethanol) has been reported. Furthermore, high modal
birefringence and low confinement loss are obtained from the designed fiber. High birefringence
preserves the polarization state, whereas low confinement loss provides a stronger interaction between
light and the analytes to be sensed. Compared to other porous core PCF THz sensors reported in
literature, our design is easily realizable using the state-of-the-art fabrication process, as it involves a
single hole shape (circular) in both the core and the cladding.
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paper. N.K. helped with writing and reviewing the paper.

Funding: This research received no external funding.
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