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Abstract: InP-based InGaAs/GaAsSb ‘W’-type quantum well (QW) photonic-crystal (PC) surface-
emitting lasers (SELs) of 2.2 µm wavelength range are fabricated and room-temperature lasing
emissions by optical pumping are demonstrated for the first time. Photonic-crystal surface-emitting
laser (PCSEL) devices are investigated in terms of PC parameters of etch depth, lattice period, and
filling factor. The lasing emissions cover wavelengths from 2182 nm to 2253 nm. The temperature-
dependent lasing characteristics are also studied in terms of lattice period. All PCSELs show consistent
lasing wavelength shift against temperature at a rate of 0.17 nm/K. The characteristic temperatures
of PCSELs are extracted and discussed with respect to wavelength detuning between QW gain peak
and PC cavity resonance.
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1. Introduction

Semiconductor lasers emitting a mid-infrared (MIR) range of 2–3 µm find promising applications
in gas sensing and detection based on laser spectroscopy. Two common gain media for these lasers are
type-I quantum wells (QWs) grown on GaSb substrates as well as type-II QWs grown on InP substrates,
excluding cascaded configurations of interband or intraband transitions [1–5]. However, GaSb-based
type-I QW lasers, which consist of complex quaternary or quinary compounds, are subjected to critical
growth parameters and low thermal stability of crystalline [3]. InP-based type-II QW lasers, on the
other hand, benefit from stable growth of ternary alloys and reliable process technology. Since optical
gain may diminish because of a spatially indirect recombination in type-II heterostructures, ‘M’-type
and ‘W’-type QWs are devised to enhance electron-hole wavefunction overlap [4,5].

For the application in tunable diode laser absorption spectroscopy (TDLAS), MIR lasers have to
meet the key requirement of single spectral mode. Conventional edge-emitting lasers (EELs), which
exhibit mutli-longitudinal-mode emissions, combine external-cavity grating to achieve single-mode
operation. GaSb-based external-cavity lasers (ECLs) operating around 2.13 µm were one of the
examples [6]. The standard approach toward single-mode emissions is the introduction of Bragg
gratings or one-dimensional (1D) photonic-crystal (PC) gratings beside or atop laser waveguides to
yield distributed feedback (DFB) lasers. GaSb-based DFB lasers covering the wavelength range of
1.8–3.0 µm were therefore demonstrated with lateral metal grating [2]. To facilitate surface emission,
advanced vertical-cavity surface-emitting lasers (VCSELs) exhibit single-mode emissions by monolithic
incorporation of distributed Bragg reflectors (DBRs) or 1D-PC reflectors. For example, MIR VCSELs
based on GaSb and InP substrates demonstrated a single-mode operation with a side-mode suppression
ratio (SMSR) over 25 dB at a wavelength range of 2.5–2.6 µm [7,8].
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Recently, novel photonic-crystal surface-emitting lasers (PCSELs) draw increasing attention
because of their single-mode operation, high optical output, and narrow beam divergence [9–12].
Based on the band-edge effect of two-dimensional (2D) PCs, light emissions from gain media strongly
couple with PC structure to construct 2D cavity mode where in-plane multi-directional distributed
feedback (DFB) diffracts vertically. PCSELs have advantages over VCSELs in terms of epitaxial
complexity and thickness. These advantages become more obvious in immature material systems
and very long emission wavelengths. A clear example is GaSb-based PCSELs of 2.3-µm wavelength
range [10]. Although electrical injection of MIR PCSELs is not yet realized, it can be expected soon
with the dawning demonstration of electrically injected near-infrared (NIR) PCSELs [11,12]. In this
work, we report the first InP-based MIR PCSELs by optical pumping at and above room-temperature
(RT). Gain media of InGaAs/GaAsSb ‘W’-type QWs exhibit emission wavelength range of 2.2 µm.
Moreover, lasing characteristics of MIR PCSELs of similar wavelength range are compared for both
InP- and GaSb-based material systems [13].

2. Materials and Methods

Our investigated sample was grown on S-doped (001) InP substrate by a Veeco GEN II solid source
molecular beam epitaxy system. The layer structure (exclusive of active region) and growth conditions
were exactly the same as that previously described in Ref. [5]. The schematic structure is shown in
Figure 1a, and band diagram of active region is shown in Figure 1b. Quaternary In0.52(AlGa)0.24As was
used as the separate-confinement layer (SCL). The active region was composed of 6-period ‘W’-type
QWs. Each period consisted of GaAs0.7Sb0.3/In0.72Ga0.28As/GaAs0.3Sb0.7/In0.72Ga0.28As/GaAs0.7Sb0.3

layers in sequence of 5/3/2/3/5 nm. The central layer of GaAs0.3Sb0.7 was hole well, and inner
two layers of In0.72Ga0.28As were electron wells, while outermost GaAs0.7Sb0.3 layers were spacers.
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Figure 1. (a) Schematic structure of the grown sample and (b) band diagram of active region, which
was composed of ‘W’-type quantum wells (QWs).

Before PC fabrication, top contact layer and part of top cladding layer were removed by the
chemical mixture of sulfuric acid, hydrogen peroxide, and de-ionized water. The cladding thickness
remained was about 600 nm. Square-lattice PCs for transverse electric polarization were designed
to operate around the Γ band-edge. We used e-beam lithography and inductively coupled plasma
(ICP) etcher to pattern circular-air-hole PCs on dielectric Si3N4, which was deposited as a hard mask
in thickness of 150 nm by plasma enhanced chemical vapor deposition. Again, 2D-PC structure was
transferred into semiconductor layers by ICP. To estimate the etch depth of the PC holes, 1D waveguide
simulation was performed to obtain a fundamental mode distribution in the vertical direction of PCSEL.
At an etch depth around 500 nm, we have an intensity overlap within the PC region of over 5%.

We patterned a series of lattice periods (p), tested a few etch depths (d), and varied the air-hole
filling factors (FF, which is defined as air-hole area divided by squared period). The fabricated devices,
each with a size of 200 × 200 µm2, were temperature controlled by a thermoelectric cooler and optically
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pumped by a 1064-nm pulsed fiber laser. Pulsed optical pumping was operated in a width of 50 ns
and repetition rate of 5 KHz. The emitted light was collected with a grating monochromator and an
InGaAsSb detector. Resolution as low as 0.05 nm was used in measuring lasing spectra. Table 1 lists
six PCSEL devices as well as their PC parameters. Three lattice periods of 680, 690, and 700 nm are
designated as devices A, B, and C, respectively. The lattice periods and filling factors were as-designed
values, while depths of PC holes were characterized by scanning electron microscopy (SEM). Figure 2
shows the top view and cross-sectional view SEM images of one MIR PCSEL.
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Figure 2. (a) Top view and (b) cross-sectional view scanning electron microscope (SEM) images of a
mid-infrared (MIR) PCSEL.

Table 1. Photonic-crystal surface-emitting laser (PCSEL) devices as well as photonic-crystal
(PC) parameters.

Device No. Period (p in nm) PC Depth (d in nm) Filling Factor (FF)

A0 680 460 0.1
A1 680 586 0.1
A2 680 586 0.05
A3 680 586 0.15
B1 690 586 0.1
C1 700 586 0.1

3. Results and Discussions

Figure 3 shows the RT photo-luminescence (PL) spectrum of the investigated sample pumped by
a 532-nm diode laser. Three arrows are marked in the figure for afterward discussion. The spectral
width at 98% intensity was as large as 27 nm (from 2189.5 nm to 2216.5 nm), while the full width at
half maximum (FWHM) was about 135 nm (from 2125 nm to 2260 nm). The gain peak of ‘W’-type
QW structure (λQW) was determined to be 2203 nm by taking the median wavelength of 98% intensity.
As regards the RT-PL of GaSb-based type-I QW structure in Ref. [13], the spectral width at 98% intensity
was 10 nm whereas the FWHM was about 121 nm. The flat-top feature in RT-PL is characteristic of
InP-based ‘W’-type QWs.

We selected six PCSEL devices with corresponding parameters listed in Table 1 and analyzed
their device characteristics of lasing wavelengths and threshold current densities. Slope efficiencies
were not discussed as they may suffer from large deviation among measurements. These PCSELs
are investigated in terms of lattice periods (A1, B1 and C1), etch depths (A0 and A1), and filling
factors (A1, A2 and A3). Figure 4 shows the lasing characteristics of light-in versus light-out (L-L)
and the normalized emission spectra for six PCSEL devices at 20 ◦C. As shown in Figure 4b,c, lasing
wavelengths of PCSEL devices are a function of lattice period, etch depth, and FF.
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Figure 4. Lasing characteristics of PCSELs at 20 ◦C. (a) L-L curves of six devices, (b) lasing spectra of
device A0, A1, A2 and A3, (c) lasing spectra of device B1 and C1.

The effect of lattice period is revealed by device A1, B1, and C1 with respective lasing wavelengths
of 2188.7, 2221.1, and 2253.1 nm. The wavelength shift is proportional to period change with factor of
3.2; i.e., 3.2 nm red-shifts in wavelength per nm increase in period. All lasing linewidths are around
0.2 nm, which is much smaller than those of edge emitting lasers [5]. The nearly single-wavelength
lasing emissions are attributed to wavelength selection mechanism of multi-directional DFB effect [9].
In Figure 4a, the threshold power densities are about 1.72, 2.68 and 5.02 kW/cm2 for device A1,
B1 and C1, respectively. That increasing threshold power density with increasing lattice period is
attributed to gain-cavity detuning (∆λ), which is defined by difference between gain peak of QWs
(λQW = 2203 nm) and resonant cavity wavelength of PC (λPC); i.e., ∆λ ≡ λQW − λPC. Referring to the
three arrows marked in Figure 3, device A1 is positively detuned with the smallest magnitude of
14.3 nm, while device B1 and C1 are negatively detuned with magnitudes of 18.1 nm and 50.1 nm,
respectively. The largest detuning magnitude is associated with the lowest material gain, which results
in the highest threshold power density.

The effect of etch depth is disclosed by device A0 and A1. Because their wavelength difference is
small and stronger, and distributed feedback coupling is associated with deeper PC holes, the pumping
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threshold of A1 is less than half that of A0. Theoretical investigation on square-lattice-type PCSELs
with InGaAs/GaAs MQWs revealed that optimized FF was 0.08 [14]. In our experiment, FF of 0.05,
0.10, and 0.15 were designed around this theoretical value and embodied in device A2, A1, and A3,
respectively. The threshold power density of A3 is the highest among three devices and is partly
credited to its large gain-cavity detuning of +20.7 nm. The threshold values of A1 and A2 are within
uncertainty; however, their relative relation is consistent for counterparts with 690-nm period, which
are not shown here. The lasing characteristics of investigated PCSELs are summarized in Table 2.

Table 2. Lasing characteristics of six PCSEL devices.

Device No. (p, d, FF) Wavelength (nm) Threshold (kW/cm2) FWHM (nm) Detuning (nm)

A0 (680, 460, 0.10) 2191.05 3.51 0.21 +12.0
A1 (680, 586, 0.10) 2188.70 1.72 0.22 +14.3
A2 (680, 586, 0.05) 2191.30 1.60 0.21 +11.7
A3 (680, 586, 0.15) 2182.35 3.96 0.21 +20.7
B1 (690, 586, 0.10) 2221.10 2.68 0.21 −18.1
C1 (700, 586, 0.10) 2253.10 5.02 0.19 −50.1

Figure 5a shows the L-L curves of device A1 at heatsink temperature of 20–50 ◦C in step of 5 ◦C.
The near-threshold lasing spectra, normalized in linear scale, and shifted in vertical axis, are shown
in Figure 5b. The lasing linewidths are about 0.2 nm at all temperature range. Moreover, peak lasing
wavelength shifted with temperature at a rate of 0.17 nm/K, which is about one-seventh to one-sixth
smaller than gain-peak shift rate of 1.0–1.2 nm/K (or 0.25–0.3 meV/K) [8,15]. The resonance shift
of PC cavity dominates over bandgap shrinkage of ‘W’-type QWs in temperature-dependent lasing
wavelengths. It is worth it to mention that the temperature shift coefficients of cavity resonance and
gain peak for GaSb-based type-I QW PCSELs in similar wavelength range were about 0.2 nm/K and
1.62 nm/K, respectively [10,13]. InP-based ‘W’-type QW PCSELs exhibit cavity shift rate 15% lower
and gain-peak shift rate about 30% lower than GaSb-based type-I QW PCSELs.
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Figure 5. Device A1 (a) L-L curves and (b) lasing spectra with varying temperature from 20 ◦C to 50 ◦C
in steps of 5 ◦C.

We also measure temperature-dependent lasing characteristics of device B1 and C1. They exhibit a
consistent lasing peak shift rate of 0.17 nm/K. The threshold power density as a function of temperature
for three PCSELs is plotted in Figure 6. At a temperature range below 45 ◦C, the extracted characteristic
temperature (To) is about 25 K, 40 K and 20 K for device A1, B1, and C1, respectively. Small To less than
25 K is typical for ‘W’-type QW edge-emitting lasers and VCSELs [8,16]. The highest To of 40 K for
device B1 is due to its slightly large negative detuning of 18.1 nm at 20 ◦C. Zero detuning is estimated
to be achieved at 40 ◦C; however, neither lowest threshold power density nor negative To is observed
around this temperature [16]. This is possibly due to that device B1 is outside the flat-top region
and in the long-wavelength side of PL spectrum. The associated material gain is not high; besides,
temperature-induced gain decrement dominates over detuning-induced gain increment. Higher To can
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be expected with smaller negative detuning of 10-16 nm based on our previous work of QD PCSELs
in NIR range [17]. For device C1 with largest negative detuning of 50.1 nm at 20 ◦C, its threshold
power density at RT is the highest among three devices as a result of insufficient material gain at
around the upper FWHM wavelength of PL spectrum. Since higher pumping density is more sensitive
to Auger recombination and carrier loss at elevated temperature, lowest To is observed for device
C1. It is worth mentioning that lasing wavelengths cover more than 70 nm, ranging from 2182 nm
to 2253 nm. Moreover, the threshold pumping density is more sensitive to temperature change in
InP-based ‘W’-type QW PCSELs (To = 20–40 K) than in GaSb-based type-I QW PCSELs (To = 45–67 K,
which was revealed in Ref. [13]).
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4. Conclusions

In this paper, InP-based ‘W’-type QW PCSELs in a wavelength range of 2.2 µm are demonstrated
for the first time by optical pumping. The lasing emissions show a broad wavelength range over
70 nm and narrow linewidths of about 0.2 nm, which is promising for TDLAS applications. We have
investigated lasing characteristics of PCSELs in terms of etch depth, lattice period, and filling factor.
The temperature characteristics are also discussed with respect to wavelength detuning between QW
gain peak and PC resonant wavelength. Moreover, InP-based ‘W’-type QW gain media and PCSELs
exhibit rather flat but lower gain, smaller temperature shift coefficients of cavity resonance and gain
peak, as well as lower characteristics temperature in comparison with GaSb-based type-I gain media
and PCSELs.

MIR PCSELs can be electrically pumped if the layer structure is suitably designed and ohmic
contact is cleverly achieved. In our current injected NIR PCSELs [11], we deposited transparent contact
indium-tin-oxide (ITO) to facilitate both electrical current spreading as well as optical light transmission.
However, PC holes of MIR PCSELs are too large and have to be refilled with SU-8 photoresist before
ITO deposition. Moreover, the InGaAs contact layer well as ITO could have significant absorption
and should be taken care of. The last choice is to use the current injection scheme of the buried tunnel
junction commonly used in MIR VCSELs [7,8]; nonetheless, epitaxial regrowth is necessary.
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