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Abstract: Microfluidic platforms have received much attention in recent years. In particular, there
is interest in combining spectroscopy with microfluidic platforms. This work investigates the
integration of microfluidic platforms and terahertz time-domain spectroscopy (THz-TDS) systems.
A semiclassical computational model is used to simulate the emission of THz radiation from a GaAs
photoconductive THz emitter. This model incorporates white noise with increasing noise amplitude
(corresponding to decreasing dynamic range values). White noise is selected over other noise due
to its contributions in THz-TDS systems. The results from this semiclassical computational model,
in combination with defined sample thicknesses, can provide the maximum measurable absorption
coefficient for a microfluidic-based THz-TDS system. The maximum measurable frequencies for such
systems can be extracted through the relationship between the maximum measurable absorption
coefficient and the absorption coefficient for representative biofluids. The sample thickness of the
microfluidic platform and the dynamic range of the THz-TDS system play a role in defining the
maximum measurable frequency for microfluidic-based THz-TDS systems. The results of this work
serve as a design tool for the development of such systems.
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1. Introduction

The development of ultrafast pulsed lasers (pulse duration <1 ps) was a significant scientific
achievement, with a plethora of applications including semiconductor characterization [1,2], optical
interferometric studies [3,4], and material analyses [5], and was a key advancement to allow
electromagnetic measurements over the terahertz (THz) spectrum [6–9]. The THz spectrum contains
electromagnetic radiation in a frequency interval from 0.1 to 10 THz (corresponding to wavelengths
from 3 mm to 30 µm, respectively) and is of great interest for science and technology. The THz
spectrum is situated between the infrared spectrum (used in photonics [10]) and the microwave
spectrum (used in electronics [11]). Since initial advancements in ultrafast pulsed lasers, the THz
spectrum has been employed in many contemporary applications. These contemporary applications
include communications [12], chemical and biological sensing [13], security [14], quality control [15],
and biomedical spectroscopic devices [16].

Biomedical spectroscopic devices is a challenging and emerging application of the THz spectrum.
The THz spectrum is valuable for biomedical spectroscopic devices for several reasons: the THz
spectrum is strongly attenuated by water, and therefore is very sensitive to heightened moisture
content associated with disease [17]; the THz spectrum has low photon energies, and therefore has
little to no ionization hazard for biological tissues [18]; and the THz spectrum has a close match
between its photon energies and the conformational modes of biomolecules [19]. Because the THz
spectrum possesses these characteristic properties, there has been an increasing interest in terahertz
imaging and spectroscopy for biomedical spectroscopic devices over the last years [16,18].
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Spectroscopy over the THz spectrum is either implemented through continuous-wave THz
spectroscopy systems using continuous-wave (single-frequency) THz radiation [20] or through THz
time-domain spectroscopy (THz-TDS) systems using pulsed (multiple-frequency) THz radiation [9].
The latter technique is particularly appealing, with both the amplitude and phase being measured,
and allows extensive characterization of biomedical samples in biomedical spectroscopic devices.

Terahertz time-domain spectroscopy systems are currently being explored for biomedical
applications such as oncological diagnostics [18] and protein analyses [21]. However, in these THz-TDS
systems, the high absorption of liquid places restrictions on the volume size of the biomedical samples,
as the dynamic range must be large enough that the THz radiation at each frequency is not attenuated
below the noise floor. In response, microfluidic platforms [22–24] have been integrated with THz-TDS
systems and these studies have begun to appear in the literature. For example, Tang et al. [25] and
George et al. [26] have both initiated work integrating such microfluidic-based THz-TDS systems.
These microfluidic-based THz-TDS systems require careful design considerations due to significant and
fundamental challenges. These challenges are caused by a twofold effect: the maximum measurable
absorption coefficient of a THz-TDS system monotonically decreases from its maximum (scaling
with the logarithm of its dynamic range function); while simultaneously, the absorption coefficient
of most liquids monotonically increases over the THz spectrum [27] (as resonance peaks typically
seen in vapour THz-TDS measurements blur together). These twofold challenges force the maximum
measurable frequency of a THz-TDS system to be much less than the bandwidth of the THz-TDS
system. This challenge is further exacerbated by the fact that the maximum measurable absorption
coefficient scales with the reciprocal of the thickness of the biomedical sample in the microfluidic
platform. As such, thick microfluidic platforms with integrated THz-TDS systems possessing low
dynamic range will have a low maximum measurable frequency (much less than the bandwidth of the
THz-TDS system), whereas thin microfluidic platforms with integrated THz-TDS systems possessing
high dynamic range will have a high maximum measureable frequency (approaching the bandwidth
of the THz-TDS system). This is a significant issue as many applications require absorption coefficient
measurements up to high frequencies within the THz spectrum; e.g., to measure cytidine deaminase
absorption near 2.14 THz for oncology [28]; or to measure L-glucose absorption near 2.12 THz for DNA
analyses [29]. At the same time, it is difficult to scale microfluidic platforms down to micron-scale
thicknesses and it is difficult to produce high dynamic range THz-TDS systems. The dynamic range
can be quite low for such THz-TDS systems as the data acquisition must take place quickly, given the
dynamic nature of microfluidic platforms [30]. (Achieving a large dynamic range value can require
minutes for data acquisition [31].) With this in mind, such microfluidic platforms with integrated
THz-TDS systems must be carefully designed in terms of sample thickness and dynamic range.

This work provides an investigation into the design of a microfluidic-based THz-TDS system.
The effects of dynamic range (in the THz-TDS system) and sample thickness (in the microfluidic
platform) are considered. The analysis begins by defining a semiclassical computational model to
simulate emission from a photoconductive THz emitter (as these are the most common THz emitters
in modern THz-TDS systems [32]). The semiclassical computational model is based on the work of
Rodriquez and Taylor [33]. The analysis continues by superimposing white noise with increasing
noise amplitude into the results of the semiclassical computational model, which corresponds to
a decreasing dynamic range. Finally, the analysis solves for the maximum measurable frequency,
with input parameters of dynamic range and sample thickness, for a nominal fluidic absorption
coefficient. (It is assumed that the absorption coefficient of biofluids possessing high water content
have minimal deviation from the absorption coefficient of water.) Such results can be used to design
microfluidic-based THz-TDS systems.

It should be noted that the connection between sample thickness and maximum measureable
frequency for THz-TDS systems was first noted in the seminal work of Jepsen and Fischer [34]. In Jepsen
and Fischer’s work, a THz-TDS system (with a single dynamic range value) was presented and tested
with two polylactide samples with sample thicknesses of d = 0.58 mm and 2.79 mm. As a result of this
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increased sample thickness, the maximum measurable frequency of the THz-TDS system falls from
1.9 THz to 1.2 THz. In contrast, our work leverages these initial (and fundamental) findings to provide
a thorough analysis for the design of microfluidic-based THz-TDS systems, both in terms of sample
thickness and dynamic range value. This is accomplished through extensive simulation and analysis
with sample thicknesses spanning 30–480 µm (applicable to modern microfluidic platforms [35]) and
dynamic range values spanning 2.8 × 100–5.8 × 103 (applicable to modern THz-TDS systems [8]).

2. Design and Simulation

An exemplary microfluidic-based THz-TDS system is shown in Figure 1. Such a system has
a photoconductive THz emitter based on a GaAs substrate, which is illuminated by a pump laser
pulse. This pump laser pulse will generate a THz reference pulse in the photoconductive THz emitter.
The electric field associated with the THz reference pulse is represented as Eref(t) in the time domain
and Eref(f ) in the frequency domain. The THz reference pulse passes through a microfluidic platform
with sample thickness of d, where it undergoes a transformation into the THz sample pulse, which is
represented as Esam(t) in the time domain and Esam(f ) in the frequency domain. Data representing this
THz reference pulse is generated with a semiclassical computational model.
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Figure 1. A microfluidic-based THz-TDS system is shown. Initially, a pump laser pulse is incident on
the photoconductive THz emitter with a bias voltage applied over the bias electrodes. The outcome of
the interaction between the pump laser pulse and the photoconductive THz emitter is the emission
of the reference THz pulse. This reference THz pulse passes through a microfluidic platform with a
defined sample thickness and is transformed into the sample THz pulse. The relationship between
the reference and sample THz pulses and the sample thickness defines the maximum measurable
absorption coefficient.

The semiclassical computational model is based on the work of Rodriquez and Taylor [33] and
solves semiconductor and optical (electromagnetic) equations for a photoconductive THz emitter.
Here, the photoconductive THz emitter has a gap between electrodes that is illuminated with an
optical pulse which is Gaussian, both temporally and spatially. This optical pulse is represented as

I(x, t) =
Φ
τp

exp[−4 ln 2t2/τ2
p ] exp[−4 ln 2x2/x2

p] (1)

where the temporal full-width-at-half-maximum is τp = 1 ps (being equal to the semiconductor
response time of GaAs), the transverse spatial dimension is x, the spatial full-width-at-half-maximum
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is xp = 150 µm, and the fluence of the illumination pulse is Φ. The semiclassical computational model
also requires the transport equation for the surface electron current, which is

∂ns(x, t)
∂t

=
(1− R)

hν
I(x, t) +

1
q

∂kn(x, t)
∂x

(2)

and the transport equation for the surface hole current, which is

∂ps(x, t)
∂t

=
(1− R)

hν
I(x, t)− 1

q
∂kp(x, t)

∂x
(3)

where the surface density of electrons and holes are ns(x,t) and ps(x,t), respectively; the surface currents
of electrons and holes are kn(x,t) and kp(x,t), respectively; the elementary charge is q; Planck’s constant
is h; the optical frequency of the ultrafast pulsed laser is ν = 365 THz (corresponding to a wavelength
of 800 nm); and the GaAs reflectivity is R = 0.3. These equations can be solved with a finite difference
method along with Poisson’s Equation, which is

∂E(x, t)
∂x

=
q

δεrεo
[ps(x, t)− ns(x, t)] (4)

where the optical penetration depth is δ = 700 nm, the permittivity of free space is ε0, and the relative
permittivity of GaAs is εr = 13. Ultimately, an approximation to a Hertzian dipole antenna can be used,
and the electric field THz pulse in the far-field can be expressed as

E(z, t) =
Ly

8πεoc2z
d
dt

Lx∫
0

kn(x, t)dx (5)

where the y-direction length of the gap is Ly = 300 µm and the x-direction length of the gap is
Lx = 300 µm. This radiation simulates noise-free emission of radiation from a photoconductive THz
emitter. It should be noted that the semiclassical computational model provides a simulation for one
pulse. As such, the repetition rate of the ultrafast pulsed laser is not considered. (Repetition rates of
90 MHz are standard for titanium sapphire or erbium-doped fibre ultrafast pulsed lasers.)

To incorporate noise into the semiclassical computational model of a photoconductive THz emitter
and subsequent THz-TDS system, various noise sources must be considered. These noise sources
include white noise, 1/f noise (i.e., pink noise), mechanical noise from the pellicle beamsplitter, and
others. Of these, the most significant noise processes are 1/f noise associated with the THz emitter and
white noise associated with the THz detector [36,37]. In a THz-TDS system with a sample that has low
absorption (e.g., quartz with a thickness of microns), the 1/f noise associated with the THz emitter
can be larger than or similar to the white noise associated with the THz detector. However, the 1/f
noise drops off considerably at higher frequencies (due to the reciprocal relationship to frequency).
Therefore, for a low absorption sample, 1/f noise need not be considered for the high-frequency
regime, but still could be considered for the low-frequency regime. On the other hand, in a THz-TDS
system with high absorption (e.g., water or biofluids with thickness of tens of microns or greater, as
in the microfluidic platforms considered in this work), the 1/f noise associated with the THz emitter
will be substantially attenuated due to the high absorption when passing through the sample. Here,
the white noise associated with the THz detector, which is not affected by the absorption, takes a
prominent role over both low- and high-frequency regimes. The microfluidic platforms described
in our work represent a high-absorption THz-TDS system. Therefore, white noise associated with
the THz detector is considered in the analysis and 1/f noise associated with the THz emitter is not
considered in the analysis [36].

White noise associated with the THz detector can be incorporated into the semiclassical
computational model through an additive white noise signal, n(t), defined as a uniform random
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noise signal that is centered about zero with a peak-to-peak spread equal to the amplitude of the
electric field THz pulse. This noise signal is superimposed onto the electric field THz pulse at an
arbitrary point in space (i.e., an arbitrary z value) in the far-field to form the reference THz pulse

Ere f (t) = E(z, t) + Ann(t) (6)

where the noise amplitude is An.

3. Results and Discussion

For a representative photoconductive THz emitter with an incident average power of 50 mW and
an external biasing field of 25 V/150 µm, Figure 2a shows the output of the semiclassical computational
model in the time domain, Eref(t), with increasing noise amplitudes of An = 0, 10−3, 10−2, 10−1, 100,
and 101. Figure 2b shows the equivalent output in the frequency domain, Eref(f ), with corresponding
dynamic range values of DR = 5.8 × 103, 5.7 × 103, 2.4 × 103, 3.0 × 102, 2.8 × 101, and 2.8 × 100 (with
DR being defined as the maximum of Eref(f ) divided by the noise floor). It is clear that DR decreases
as An increases. This DR along with the sample thickness, d, will limit the maximum measurable
(intensity) absorption coefficient, αM, according to

αM =
2
d

ln

[
DRF( f )

4n

(n + 1)2

]
(7)

where the dynamic range function is DRF(f ) (being Eref(f ) normalized with respect to its noise floor)
and n is the refractive index of water over the THz spectrum. (This fundamental equation was initially
reported by Jepsen and Fischer [34] and its derivation is given in the Appendix.) A piece-wise equation
for the refractive index of water is fit to data reported by Wang et al. [38]. The piece-wise function for
refractive index is n = −1.8f + 3.1, for f < 0.5 THz with respective slope and intercept uncertainties
of 10% and 1%; and n = −0.1f + 2.3, for f > 0.5 THz with respective slope and intercept uncertainties
of 7% and 1%. Figure 3a shows the maximum measurable absorption coefficient for the dynamic
range values of DR = 5.8 × 103, 5.7 × 103, 2.4 × 103, 3.0 × 102, 2.8 × 101, and 2.8 × 100 and a constant
sample thickness of d = 120 µm, plotted as red, yellow, green, blue, indigo, and violet solid lines,
respectively. The absorption coefficient of water, αwater = 121f + 109 cm−1, is quantified by fitting
data from Wang et al. [38] to a linear fit of R2 = 0.978 with both slope and intercept uncertainties
being 4%, and is plotted as a solid black line. The intersection of the αwater curve with the maximum
measurable absorption coefficient curves defines each of the maximum measurable frequencies of f 0–5,
which correspond to the respective DR values of 5.8 × 103, 5.7 × 103, 2.4 × 103, 3.0 × 102, 2.8 × 101,
and 2.8 × 100. These maximum measurable frequencies range from f 0 = 2.0 THz to f 5 = 0 and decrease
with decreasing DR values. From these results, it is clear that a THz-TDS system with a limited
dynamic range value will severely limit the application of a microfluidic-based THz-TDS system,
and care must be taken in the design of such systems.

Figure 3b shows the maximum measurable absorption coefficient for a constant dynamic range
value of DR = 2.4 × 103 and sample thicknesses of d = 30, 60, 120, 240, and 480 µm, plotted
as blue long-dashed, medium-dashed, solid, short-dashed, and dashed-dotted lines, respectively.
The absorption coefficient of water is plotted as a solid black line. The intersection of the αwater

curve with the maximum measurable absorption coefficient curves defines each of the maximum
measurable frequencies of f 6–10, which correspond to respective sample thicknesses of d = 30, 60,
120, 240, and 480 µm. These maximum measurable frequencies range from f 6 = 2.3 THz to f 10 = 0
and decrease with increasing sample thickness. From these results, it is clear that a microfluidic
platform with a large sample thickness will severely limit the application of a microfluidic-based
THz-TDS system.
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Figure 2. Results are shown from the semiclassical computational model for a representative
photoconductive THz emitter with an incident average power of 50 mW and an external biasing
field of 25 V/150 µm. The results are shown (a) in the time domain as Eref(t) with increasing noise
amplitudes of An = 0, 10−3, 10−2, 10−1, 100, and 101; and (b) in the frequency domain as Eref(f ) with
corresponding dynamic range values of DR = 5.8 × 103, 5.7 × 103, 2.4 × 103, 3.0 × 102, 2.8 × 101,
and 2.8 × 100.
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Figure 3. The maximum measurable absorption coefficient is shown (a) for the dynamic range values
of DR = 5.8 × 103, 5.7 × 103, 2.4 × 103, 3.0 × 102, 2.8 × 101, and 2.8 × 100 and a constant sample
thickness of d = 120 µm, plotted as red, yellow, green, blue, indigo, and violet solid lines, respectively;
and (b) for the dynamic range value of DR = 2.4 × 103 and sample thicknesses of d = 30, 60, 120, 240,
and 480 µm, plotted as blue long-dashed, medium-dashed, solid, short-dashed, and dashed-dotted lines,
respectively. The absorption coefficient of water, αwater, is plotted as a solid black line. The intersection
of the αwater curve with the maximum measurable absorption coefficient curves defines each of the
maximum measurable frequencies f 1–10. These maximum measurable frequencies decrease with
decreasing dynamic range values and increasing sample thicknesses.

These results can be summed up with a set of measurements rastering through the foreseeable
combinations of dynamic range values and sample thicknesses, as presented in Figure 4. Figure 4a,b
plot maximum measureable frequency versus sample thickness and logarithm of dynamic range value,
respectively. The equations for the curves in Figure 4a, from highest to lowest, are: f max = −0.0055
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d + 2.82, f max = −0.0055 d + 2.81, f max = −0.0055 d + 2.63, f max = −0.0075 d + 2.36, f max = −0.0101 d +
1.87, and f max = −0.0094 d + 0.94. The equations for the curves in Figure 4b, from highest to lowest,
are: f max = 0.66 log(DR) + 0.51, f max = 0.63 log(DR) + 0.19, f max = 0.55 log(DR) − 0.09, f max = 0.44
log(DR) − 0.47, and f max = 0.45 log(DR) − 1.34. (All of these linear equations have a fit of R2 ≥ 0.94.)
These results can inform the design of future THz-TDS microfluidic platforms. For example, consider
the THz-TDS system of Venkatesh et al. that is able to achieve a dynamic range value up to 103 [39],
with performance beyond this value being unattainable or unpractical; and the microfluidic platform
of Ng et al. that is able to achieve sample thickness down to 180 µm [40]. Combining these into one
THz-TDS microfluidic platform would yield a maximum measurable frequency of 1.0 THz. As such,
this THz-TDS microfluidic platform would be suited for lysozyme measurements with absorption
over 0.4–0.9 THz. However, this microfluidic-based THz-TDS system would be unsuited for lactose
measurements with absorption at 1.4 THz. In this way, the data set of Figure 4 can be used for the
design of future microfluidic-based THz-TDS systems.
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Figure 4. In (a), a plot is presented with the maximum measurable frequency as the dependent variable
and the sample thickness as the independent variable, with the logarithm of the dynamic range value
identifying the individual curves. In (b), a plot is presented with the maximum measurable frequency
as the dependent variable and the logarithm of the dynamic range value as the independent variable,
with sample thickness identifying the individual curves. From this data, the range of appropriate dynamic
range values and sample thicknesses can be found for a desired maximum measureable frequency.

4. Conclusions

This work explored design considerations for microfluidic-based terahertz time-domain
spectroscopy (THz-TDS) systems wherein microfluidic platforms and THz-TDS systems are integrated.
The critical parameters of sample thickness (of the microfluidic platform) and dynamic range (of the
THz-TDS system) were considered as they greatly influence the maximum measurable frequency of
the overall system. The work developed a semiclassical computational model to simulate the emission
of THz radiation from a GaAs photoconductive THz emitter. This model incorporated white noise
with increasing noise amplitude corresponding to decreasing dynamic range values. Through the
results of this semiclassical computational model and defined sample thicknesses, the maximum
measurable absorption coefficient was found for numerous microfluidic-based THz-TDS systems with
varying dynamic range values and sample thicknesses. The corresponding maximum measurable
frequencies for such microfluidic-based THz-TDS systems were found through the intersection
of the maximum measurable absorption coefficient and a representative absorption coefficient for
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biofluids. These results will serve as a design tool for the development of future microfluidic-based
THz-TDS systems.
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Appendix A

This appendix provides the derivation of Equation (7), which is the same as Equation (3) in Jepsen
and Fischer [34], but for electric field rather than intensity. Figure A1 shows an image of the THz-TDS
of a microfluidic platform of sample thickness d, (intensity) absorption coefficient α, and refractive
index n. The microfluidic platform alters the THz reference pulse (Eref(t) in the time domain and
Eref(f ) in the frequency domain) to become the THz sample pulse (Esam(t) in the time domain and
Esam(f ) in the frequency domain). The left air–liquid interface has a Fresnel transmission coefficient
of t1 = 2/(n + 1) and the right liquid–air interface has a Fresnel transmission coefficient of t2 = 2n/(n
+ 1). (The thickness between liquid and air is assumed to be neglible.) In the frequency domain,
the relationship between the magnitude of the sample and reference electric field is

|Esam( f )| = t1t2

∣∣∣Ere f ( f )
∣∣∣e− α

2 d =
4n

(n + 1)2

∣∣∣Ere f ( f )
∣∣∣e− α

2 d (A1)

This equation can be rearranged to express the (intensity) absorption coefficient as

α =
2
d

ln


∣∣∣Ere f ( f )

∣∣∣
|Esam( f )|

4n

(n + 1)2

 (A2)

The maximum measurable absorption coefficient will occur when the ratio between the amplitude
spectra of the THz reference and the THz sample pulses is equal to the dynamic range function:
DRF(f ) = |Eref(f )|/|Eref(f )|. Substituting this relation into Equation (A2) defines Equation (7) in the
body of this manuscript.
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Figure A1. An illustration of the THz-TDS in a microfluidic platform is shown. The microfluidic
platform has a sample thickness of d, absorption coefficient of α, and refractive index of n. The THz
reference pulse (prior to the microfluidic platform) is Eref(t) and Eref(f ) in the time and frequency
domains, respectively; and the THz sample pulse (after the microfluidic platform) is Esam(t) and Esam(f )
in the time and frequency domains, respectively. The left air–liquid interface has a Fresnel coefficient of
t1 and the right liquid–air interface has a Fresnel coefficient of t2.
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