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Abstract: Using coherent optical detection and digital signal processing, laser phase noise and
equalization enhanced phase noise can be effectively mitigated using the feed-forward and
feed-back carrier phase recovery approaches. In this paper, theoretical analyses of feed-back and
feed-forward carrier phase recovery methods have been carried out in the long-haul high-speed
n-level phase shift keying (n-PSK) optical fiber communication systems, involving a one-tap
normalized least-mean-square (LMS) algorithm, a block-wise average algorithm, and a Viterbi-Viterbi
algorithm. The analytical expressions for evaluating the estimated carrier phase and for predicting
the bit-error-rate (BER) performance (such as the BER floors) have been presented and discussed in
the n-PSK coherent optical transmission systems by considering both the laser phase noise and the
equalization enhanced phase noise. The results indicate that the Viterbi-Viterbi carrier phase recovery
algorithm outperforms the one-tap normalized LMS and the block-wise average algorithms for small
phase noise variance (or effective phase noise variance), while the one-tap normalized LMS algorithm
shows a better performance than the other two algorithms for large phase noise variance (or effective
phase noise variance). In addition, the one-tap normalized LMS algorithm is more sensitive to the
level of modulation formats.

Keywords: coherent optical detection; optical fiber communication; carrier phase recovery; feed-back
and feed-forward; laser phase noise; equalization enhanced phase noise; n-level phase shift keying

1. Introduction

Since the first generation of optical fiber communication systems was deployed over 30 years
ago, the achievable data rates carried by a single optical fiber have been raised over 10,000 times,
and the data network traffic has also been increased by over a factor of 100 [1,2]. To date, more than
90% of digital data is transmitted over optical fibers, to constitute the greater part of national and
international telecommunication infrastructures. The effective information capacity of these networks
has been widely increased over the past three decades with the introduction and development of
wavelength division multiplexing (WDM), higher-level modulation formats, digital signal processing
(DSP), advanced optical fibers and amplification technologies [3,4]. These developments promoted
the revolution of communication systems and the growth of the Internet, towards the direction of
higher-speed and longer-distance transmissions [2,3]. The performance of long-haul high-speed optical
fiber communication systems can be significantly degraded by the impairments in the transmission
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channels and laser sources, such as chromatic dispersion (CD), polarization mode dispersion (PMD),
laser phase noise (PN) and fiber nonlinearities (FNLs) [4–8]. Using coherent optical detection and
digital signal processing, the powerful equalization and effective mitigation of the communication
system impairments can be implemented in the electrical domain [9–18], which has become one of the
most promising techniques for the next-generation optical fiber communication networks to achieve a
performance very close to the Shannon capacity limit [19,20], with an entire capture of the amplitude
and phase of the optical signals. Using high-level modulation formats such as the n-level phase shift
keying (n-PSK) and the n-level quadrature amplitude modulation (n-QAM), the performance of optical
fiber transmission systems will be degraded seriously by the phase noise from the transmitter (Tx)
lasers and the local oscillator (LO) lasers [21,22]. To compensate the phase noise from the laser sources,
some feed-forward and feed-back carrier phase recovery (CPR) approaches have been proposed to
estimate and remove the phase of optical carriers [23–32]. Among these carrier phase estimation
(CPE) methods, the one-tap normalized least-mean-square (LMS) algorithm, the block-wise average
(BWA) algorithm, and the Viterbi-Viterbi (VV) algorithm have been validated for mitigating the laser
phase noise effectively, and are also regarded as the most promising DSP algorithms in the real-time
implementation of the high-speed coherent optical fiber transmission systems [27–32]. Thus it will
be of importance and interest to investigate the performance of these three carrier phase recovery
algorithms in long-haul high-speed optical communication systems.

In electronic dispersion compensation (EDC) based coherent optical fiber communication systems,
an effect of equalization enhanced phase noise (EEPN) will be generated due to the interactions
between the electronic dispersion equalization module and the laser phase noise (in the post-EDC case
the EEPN comes from the LO laser) [33–38]. The performance of long-haul optical fiber communication
systems will be degraded seriously due to the equalization enhanced phase noise, with the increment
of fiber dispersion, laser linewidths, modulation levels, symbol rates and system bandwidths [33–36].
The impacts of EEPN have been investigated in the single-channel, the WDM multi-channel, the
orthogonal frequency division multiplexing (OFDM), the dispersion pre-distorted, and the multi-mode
optical fiber transmission systems [39–46]. In addition, some investigations have been carried
out to study the influence of EEPN in the carrier phase recovery in long-haul high-speed optical
communication systems [47–50]. Considering the equalization enhanced phase noise, the traditional
analyses of the carrier phase recovery approaches are not suitable any longer for the design and the
optimization of long-haul high-speed optical fiber networks. Therefore, it will also be interesting and
useful to investigate the performance of the one-tap normalized LMS, the block-wise average, and the
Viterbi-Viterbi carrier phase recovery algorithms, when the influence of equalization enhanced phase
noise is taken into account.

In previous reports, the analytical derivations and numerical studies for the one-tap normalized
LMS, block-wise average, and Viterbi-Viterbi carrier phase recovery methods have been carried out
based on the quadrature phase shift keying (QPSK) coherent optical transmission system [26,37,51].
However, with the development of the optical fiber networks and the increment of transmission data
capacity, the QPSK modulation format can no longer satisfy the demand for high-speed optical fiber
communication systems. Therefore, the analyses on the carrier phase recovery approaches should
also be updated accordingly for the optical fiber transmission systems using higher-level modulation
formats, such as the n-PSK communication systems.

In this paper, built on the previous work in [26,37,51], the theoretical assessments of the carrier
phase recovery using the one-tap normalized LMS, the block-wise average, and the Viterbi-Viterbi
algorithms are extended and analyzed in detail for the long-haul high speed n-PSK coherent optical
fiber communication systems, considering both the intrinsic laser phase noise and the equalization
enhanced phase noise. The analytical expressions for the estimated carrier phase in the one-tap
normalized LMS, the block-wise average, and the Viterbi-Viterbi algorithms has been derived, and the
bit-error-rate (BER) performance such as the BER floors in these three carrier phase recovery approaches
has been predicted for the n-PSK coherent optical transmission systems. Our results indicate that
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the Viterbi-Viterbi carrier phase recovery algorithm outperforms the one-tap normalized LMS and
the block-wise average algorithms for small phase noise variance (or effective phase noise variance),
while the one-tap normalized LMS carrier phase recovery algorithm shows a better performance than
the other two algorithms for large phase noise variance (or effective phase noise variance). It is also
found that the one-tap normalized LMS algorithm is more sensitive to the level of the modulation
formats than the other two algorithms.

2. Laser Phase Noise and Equalization Enhanced Phase Noise

As shown in Figure 1, the origin of equalization enhanced phase noise in the coherent optical
communication systems using electronic dispersion compensation and carrier phase recovery is
schematically illustrated. In such systems, the transmitter laser phase noise goes through both the
transmission fiber and the EDC module, and therefore the net dispersion experienced by the transmitter
laser phase noise is close to zero. However, the LO laser phase noise only goes through the EDC
module, where the transfer function is heavily dispersed in the transmission system without using
any optical dispersion compensation (ODC) techniques. As a result, the LO laser phase noise will
interplay with the dispersion equalization module, and will significantly degrade the performance of
the long-haul high-speed coherent optical fiber communication systems, with the increment of fiber
dispersion, laser linewidths, modulation formats, and symbol rates [33,34,36].
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Figure 1. Principle of equalization enhanced phase noise in electronic dispersion compensation based
n-PSK coherent optical transmission system. PRBS: pseudo random bit sequence, N(t): additive white
Gaussian noise (AWGN), e.g., amplified spontaneous emission (ASE) noise from optical amplifiers,
ADC: analog-to-digital convertor.

In coherent optical communication systems, the variance of the phase noise coming from the
transmitter laser and the LO laser follows a Lorentzian distribution and can be described using the
following equation [4,5]:

σ2
Laser = 2π (∆ fTx + ∆ fLO) · TS, (1)

where ∆fTx and ∆fLO are the 3-dB linewidths (assuming the Lorentzian distribution) of the transmitter
laser and the LO laser, respectively, and TS is the symbol period of the coherent transmission system.
It can be found that the variance of the laser phase noise decreases with the increment of the signal
symbol rate RS = 1/TS.

Considering the interplay between the electronic dispersion compensation module and the LO
laser phase noise, the noise variance of the equalization enhanced phase noise in the long-haul
high-speed optical fiber communication systems can be expressed as follows [33,37,40]:
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σ2
EEPN = πλ2D · L · ∆ fLO/2cTS, (2)

where fLO is the central frequency of the LO laser, which is equal to the central frequency of the
transmitter laser fTx in the homodyne optical communication systems, D is the CD coefficient of
the transmission fiber, L is the length of the transmission fiber, RS is the signal symbol rate of the
communication system, and λ = c/fTx = c/f LO is the central wavelength of the optical carrier wave.

When the equalization enhanced phase noise is taken into account in the carrier phase recovery,
the total noise variance (or effective phase noise variance) in the long-haul high-speed n-PSK optical
fiber transmission systems can be calculated and described using the following expression [37,40]:

σ2
T ≈ σ2

Laser + σ
2
EEPN = 2πTS (∆ fTx + ∆ fLO) + πλ

2D · L · ∆ fLO/2cTS (3)

The equalization enhanced phase noise differs from the laser phase noise, and the noise variance in
Equation (2) has two-thirds contribution in the phase noise and one-third contribution in the amplitude
noise [33,37,40]. Therefore, Equation (3) is only valid for n-PSK communication systems, and the
performance of n-QAM transmission systems has to be assessed based on the evaluation of error vector
magnitudes [52].

Corresponding to the definition of the laser phase noise from the transmitter and the LO lasers, an
effective linewidth ∆fEff can be employed to describe the total phase noise variance in the EDC-based
n-PSK coherent optical communication systems and it can be expressed as follows:

∆ fE f f ≈
(
σ2

Laser + σ
2
EEPN

)
/2πTS. (4)

When the impact from laser phase noise and the influence from EEPN give an equal contribution in
the n-PSK optical fiber communication systems, namely σ2

Laser = σ2
EEPN , we will have the transmission

distance of L0 = 8cT2
S/λ2D.

Take the 32-Gbaud n-PSK coherent optical fiber transmission system as an example, and we
assume that the fiber CD coefficient is 17 ps/nm/km and the central wavelengths of the transmitter and
the LO lasers are both 1550 nm. In this case, we have L0 = 60.69 km. It means that at this transmission
distance, the laser phase noise and the EEPN will have the same impact on the degradation of the
performance of the 32-Gbaud n-PSK optical transmission systems.

3. Analysis of Carrier Phase Recovery Approaches

3.1. One-Tap Normalized Least-Mean-Square (LMS) Carrier Phase Recovery

As a feed-back carrier phase recovery approach [27,28], which is schematically shown in
Figure 2, the transfer function of the one-tap normalized LMS algorithm in the n-PSK coherent
optical communication systems can be expressed using the following equations:

y (k) = wNLMS (k) x (k), (5)

wNLMS (k + 1) = wNLMS (k) + µe (k) x∗ (k)/ |x (k)|2, (6)

e (k) = d (k)− y (k), (7)

where x(k) is the complex input symbol, k is the index of the symbol, y(k) is the complex output symbol,
wNLMS(k) is the tap weight of the one-tap normalized LMS equalizer, d(k) is the desired output symbol
after the carrier phase recovery, e(k) is the estimation error between the output symbol and the desired
output symbol, and µ is the step size of the one-tap normalized LMS algorithm.

It has been verified that the optimized one-tap normalized LMS carrier phase recovery in the QPSK
optical transmission systems behaves similarly to the ideal differential carrier phase recovery [24,37],
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and the BER floor of the one-tap normalized LMS carrier phase recovery in the QPSK transmission
systems can be approximately described as follows [37]:

BERNLMS_QPSK
f loor ≈ 1

2
er f c

(
π

4
√

2σT

)
. (8)

Therefore, the BER floor of the one-tap normalized LMS carrier phase recovery for the n-PSK
optical fiber communication systems can be derived accordingly, and can be expressed using the
following equation:

BERNLMS
f loor ≈

1
log2n

er f c
(

π

n
√

2σT

)
, (9)

where σ2
T is the total phase noise variance (or effective phase noise variance) in the long-haul high-speed

n-PSK optical transmission systems.
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3.2. Block-Wise Average Carrier Phase Recovery

As an n-th power feed-forward carrier phase recovery approach, which is schematically shown in
Figure 3, the block-wise average algorithm calculates the n-th power of the received symbols to remove
the information of the modulated phase in the n-PSK coherent transmission systems, and the computed
phase (n-th power) data are summed and averaged over a certain block. The averaged phase value is
then divided over n, and the final result is regarded as the estimated phase for the received symbols
within the entire block [29,30]. For the n-PSK coherent optical communication systems, the estimated
carrier phase for each process block using the block-wise average algorithm can be expressed as:

ϕBWA (k) =
1
n

arg

 q·NBWA

∑
p=1+(q−1)·NBWA

xn (p)

, (10)

q = dk/NBWAe, (11)

where k is the index of the received symbol, NBWA is the block length in the block-wise average
algorithm, and dxemeans the closest integer lager than x.

The BER floor of the block-wise average carrier phase recovery in the n-PSK coherent optical
communication systems can be derived using the Taylor series expansion, and can be approximately
described using the following equation:

BERBWA
f loor ≈

1
NBWAlog2n

·
NBWA

∑
p=1

er f c

(
π

n
√

2σBWA (p)

)
, (12)

σ2
BWA (p) =

σ2
T

[
2 (p− 1)3 + 3 (p− 1)2 + 2 (NBWA − p)3 + 3 (NBWA − p)2 + NBWA − 1

]
6N2

BWA
, (13)
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where σ2
T is the total phase noise variance (or effective phase noise variance) in the long-haul high-speed

n-PSK optical transmission systems.
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3.3. Viterbi-Viterbi Carrier Phase Recovery

As another n-th power feed-forward carrier phase recovery approach, which is schematically
shown in Figure 4, the Viterbi-Viterbi algorithm also calculates the n-th power of the received symbols
to remove the information of the modulated phase. The computed phase data are also summed
and averaged over the processing block (with a certain block length). Compared to the block-wise
average algorithm, the Viterbi-Viterbi algorithm just treats the extracted phase as the estimated
phase for the central symbol in each processing block [31,32]. The estimated carrier phase in the
Viterbi-Viterbi algorithm in the n-PSK coherent optical transmission systems can be described using
the following equation:

ϕVV (k) =
1
n

arg

 (NVV−1)/2

∑
q=−(NVV−1)/2

xn (k + q)

, (14)

where NVV is the block length of the Viterbi-Viterbi algorithm, and should be an odd value of e.g., 1, 3,
5, 7. . .
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Using the Taylor expansion, the BER floor of the Viterbi-Viterbi carrier phase recovery in the
n-PSK coherent optical communication systems can be assessed analytically, and can be expressed
approximately using the following equation:

BERVV
f loor ≈

1
log2n

er f c

 π

n ·
√

N2
VV−1

6NVV
· σT

, (15)

where σ2
T is the variance of the total phase noise (or effective phase noise) in the long-haul high-speed

n-PSK optical fiber transmission systems.
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4. Results and Discussion

4.1. Results

In this section, the performance of carrier phase recovery in the long-haul high-speed n-PSK
coherent optical transmission systems using the one-tap normalized LMS, the block-wise average,
and the Viterbi-Viterbi algorithms are investigated based on the above theoretical studies, which can
be regarded as extensions of the QPSK results in previously reported work [26,37,51]. The comparisons
of the three carrier phase recovery approaches have also been carried out in detail. In all these analyses
and discussions, the standard single mode fiber (SSMF) has been employed in the n-PSK coherent
optical transmission systems, where the fiber dispersion is 17 ps/nm/km, the central wavelengths
of both the transmitter laser and the LO laser are 1550 nm, and the signal symbol rate is 32-Gbaud.
The fiber attenuation, the PMD, and the nonlinear effects are all neglected.

Based on Equation (9), the performance of the one-tap normalized LMS carrier phase recovery
in the coherent optical fiber communication systems using different modulation formats is shown in
Figure 5. The optimization of the one-tap normalized LMS carrier phase recovery has been investigated
and discussed in detail in Reference [27,37], where the step size varying from 0.01 to 1 has been applied.
A smaller step size will degrade the BER floor due to the fast phase changing occurring in the long
effective symbol average-span, while a larger step size will degrade the signal-to-noise ratio (SNR)
sensitivity in the one-tap normalized LMS carrier phase recovery. The optimal step sizes for different
effective linewidths have been studied, with a resolution of 0.005 used in the optimization process [37].
In this section we assume that all the operations of the one-tap normalized LMS algorithm have
been optimized. It can be found in Figure 5 that the one-tap normalized LMS carrier phase recovery
algorithm is very sensitive to the phase noise variance and the modulation formats, especially when
phase noise variance is less than 0.1.
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phase recovery in the coherent optical transmission systems using different modulation formats.

In the case of back-to-back (BtB) or without considering EEPN, the performance of BER floors
versus laser linewidths in the one-tap normalized LMS carrier phase estimation has been studied in
Figure 6 based on the analysis in Equations (1) and (9). The indicated linewidth value in Figure 6 is the
3-dB linewidth for both the transmitter laser and the LO laser. It can be seen that the BER floors of the
one-tap normalized LMS carrier phase recovery are deteriorated with the increment of the modulation
format levels and the laser linewidths. The degradations due to the laser phase noise (laser linewidths)
are more drastic for higher-level modulation formats.

Considering the impact of EEPN, the effective phase noise variance will increase with the
increment of the transmission distance and the laser linewidth. As shown in Figure 7, the BER floors
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of the one-tap normalized LMS carrier phase recovery has been investigated for different transmission
distances, when the linewidths of both the Tx and the LO lasers are set to 1 MHz. It can be found that
the performance of the one-tap normalized LMS carrier phase recovery is degraded significantly with
the increment of transmission distances, and this effect is more severe for higher-level modulation
formats due to less tolerance to laser phase noise and EEPN.
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Figure 7. BER floors versus transmission distances in the one-tap normalized LMS carrier phase
recovery in the coherent optical transmission systems using different modulation formats, considering
the equalization enhanced phase noise. Both the Tx and LO lasers linewidths are 1 MHz.

The performance of the block-wise average carrier phase recovery approach has also been
investigated, as shown in Figures 8–10. The BER floors versus different phase noise variances
(or effective phase noise variance) in the block-wise average carrier phase recovery is described
in Figure 8. In Figure 8a, the performance of the block-wise average algorithm is studied in terms of
different block lengths in the 8-PSK optical transmission system. It can be found that the phase noise
(or effective phase noise) induced BER floor in the block-wise average carrier phase recovery algorithm
is increased with the increment of block length. Generally, a smaller block length will lead to a lower
phase noise induced BER floor due to a more accurate estimation of carrier phase, while a larger
block length is more effective for mitigating the amplitude noise (such as the amplified spontaneous
emission—ASE—noise) to improve the SNR sensitivity. In practical transmission systems, the optimal
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block length is determined by considering the trade-off between the phase noise and the amplitude
noise. As an example, the block length of NBWA = 11 is employed in all subsequent analyses, if the
value is not specified. Based on Equations (12) and (13), the performance of the block-wise average
carrier phase recovery in the coherent optical communication systems using different modulation
formats is shown in Figure 8b, where the block length is 11. It can be found in Figure 8b that the
block-wise average carrier phase recovery algorithm is also very sensitive to the phase noise variance
and the modulation formats, when phase noise variance is less than 0.1.

Based on the analyses in Equations (1), (12) and (13), the BER floors versus laser linewidths in
the block-wise average carrier phase recovery for the back-to-back case or without considering EEPN
has been studied in Figure 9, where the indicated linewidth value is the 3-dB linewidth for both the
transmitter laser and the LO laser. It can be found that the BER floors in the block-wise average carrier
phase recovery are also degraded with the increment of modulation format levels and laser linewidths.
The degradations due to the laser phase noise (laser linewidths) are also more severe for higher-level
modulation formats.
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Figure 8. BER floors versus phase noise variances in the block-wise average carrier phase recovery in
the coherent optical transmission systems. (a) Different block lengths in the 8-PSK transmission system;
(b) different modulation formats with the block length of 11.
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Figure 10. BER floors versus transmission distances in the block-wise average carrier phase recovery
in the coherent optical transmission systems using different modulation formats. The block length is
11, and the linewidth of both the Tx and the LO lasers are 1 MHz.

As shown in Figure 10, the BER floors of the block-wise average carrier phase recovery have
been investigated for different transmission distances by considering the impact of EEPN, where the
linewidths of both the Tx and the LO lasers are set to 1 MHz. It can be found that the performance of the
block-wise average carrier phase recovery is degraded significantly with the increment of transmission
distances, and this effect is more severe for higher-level modulation formats, since the EEPN influence
will scale with the increment of transmission distances and modulation formats.

From Figures 11–13, the performance of the Viterbi-Viterbi carrier phase recovery approach has
been investigated in terms of the phase noise variances, the laser linewidths and the transmission
distances. The BER floors versus the phase noise variances in the Viterbi-Viterbi carrier phase recovery
algorithm is studied in Figure 11. In Figure 11a, the BER floors are also studied in terms of different
block lengths in the Viterbi-Viterbi CPR algorithm for the 8-PSK optical transmission system. Similar
to the block-wise average algorithm, a smaller block length in the Viterbi-Viterbi carrier phase recovery
will generate a lower phase noise induced BER floor; in contrast, a larger block length is more tolerant
to the amplitude noise and will lead to better SNR sensitivity. The optimal block length is again
determined by considering the trade-off between phase noise and amplitude noise. It can be found
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that the phase noise induced BER floors in the Viterbi-Viterbi carrier phase recovery algorithm are
also deteriorated with the increment of block lengths. Similar to the block-wise average algorithm,
the block length of NVV = 11 is also selected as an example in the Viterbi-Viterbi carrier phase recovery
to consider the mitigation of both the phase noise and the amplitude noise in practical applications.
Based on Equation (15), the performance of the Viterbi-Viterbi carrier phase recovery in the coherent
optical communication systems using different modulation formats is shown in Figure 11b, where the
block length is 11. It is found in Figure 11b that the Viterbi-Viterbi carrier phase recovery algorithm is
also very sensitive to the phase noise variance and the modulation formats, when phase noise variance
is less than 0.15.
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coherent optical transmission systems. (a) Different block lengths in the 8-PSK transmission system;
(b) different modulation formats with the block length of 11.

Without considering EEPN (or for the back-to-back case), the BER floors versus laser linewidths
in the Viterbi-Viterbi carrier phase recovery have been studied in Figure 12 based on the analyses in
Equations (1) and (15), where the indicated linewidth value is again the 3-dB linewidth for both the
transmitter laser and the LO laser. It can be found that the BER floors are also degraded significantly
with the increment of laser linewidths, and this degradation is also more severe with the increment of
modulation format levels.

As shown in Figure 13, the BER floors of the Viterbi-Viterbi carrier phase recovery have also
been investigated for different transmission distances considering the impact of EEPN, where the
linewidths of the Tx and the LO lasers are both set to 1 MHz. It can be found that in the Viterbi-Viterbi
carrier phase recovery, the EEPN influence will also increase with the increment of transmission
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distances and modulation formats. The performance of the Viterbi-Viterbi algorithm is degraded
significantly with the increment of transmission distances, and this effect is more serious for
higher-level modulation formats.Photonics 2016, 3, 51  12 of 18 
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and the linewidth of both the Tx and the LO lasers are 1 MHz.

The comparisons of the one-tap normalized LMS, the block-wise average, and the Viterbi-Viterbi
carrier phase recovery algorithms have also been investigated in detail. The BER floors versus different
phase noise variances in the above three carrier phase recovery algorithms in the 8-PSK optical
fiber communication system have been studied and are shown in Figure 14, where the block length
in the block-wise average and the Viterbi-Viterbi algorithms varies from 5 to 17, in Figure 14a–c,
respectively. It can be seen that the phase noise induced BER floors in the block-wise average and
Viterbi-Viterbi algorithms are degraded with increment of the block length, and the one-tap normalized
LMS algorithm keeps the same performance due to its optimized operation. It is also found in Figure 14
that for the small phase noise variance (or effective phase noise variance), the Viterbi-Viterbi carrier
phase recovery algorithm outperforms the one-tap normalized LMS and the block-wise average
algorithms, while for the large phase noise variance (or effective phase noise variance), the one-tap
normalized LMS algorithm shows a better performance than the other two algorithms in the carrier
phase recovery.
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Figure 14. BER floors versus different phase noise variances in the three carrier phase recovery
algorithms in the 8-PSK optical fiber communication systems. (a) Block length of the BWA and VV
algorithms is 5; (b) block length of the BWA and VV algorithms is 11; (c) block length of the BWA and
VV algorithms is 17.

As shown in Figures 15 and 16, the comparison of the one-tap normalized LMS, the block-wise
average, and the Viterbi-Viterbi carrier phase recovery algorithms has also been investigated in terms
of different modulation formats. Here a block length of 11 is used in the block-wise average and the
Viterbi-Viterbi algorithms. It can be found in Figure 15 that the BER floors in all the three algorithms
are increased with the increment of modulation formats, but the variation in the one-tap normalized
LMS CPR algorithm is larger than in the other two algorithms. Therefore, the one-tap normalized LMS
algorithm is more sensitive to the level of the modulation formats.
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Figure 15. BER floors versus different phase noise variances in the three carrier phase recovery
algorithms in the optical fiber communication systems using different modulation formats. Block
lengths of the BWA and VV algorithms are both 11. (a) QPSK system; (b) 8-PSK system; (c) 16-PSK
system; (d) 32-PSK system.
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Figure 16. BER floors versus different transmission distances in the three carrier phase recovery
algorithms in the optical fiber communication systems using different modulation formats. Linewidths
of the transmitter and LO lasers are both 1 MHz, and block lengths of the BWA and VV CPR algorithms
are both 11. (a) QPSK system; (b) 8-PSK system; (c) 16-PSK system; (d) 32-PSK system.

Figure 16 shows the performance of BER floors versus transmission distances in the three carrier
phase recovery methods under different modulation formats, where the linewidths of both the
transmitter and the LO lasers are set as 1 MHz and the transmission distance are set from 0 km
to 5000 km. It can also be found in Figure 16 that, similar to Figure 15, the one-tap normalized LMS
algorithm is more sensitive to the level of the modulation formats than the block-wise average and
the Viterbi-Viterbi CPR algorithms. In addition, the Viterbi-Viterbi algorithm outperforms the other
two carrier phase recovery approaches when the transmission distance varies from 0 km to 5000 km,
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while the differences between the three carrier phase recovery algorithms become smaller with the
increment of modulation formats.

4.2. Ideal Spectral Efficiency in Carrier Phase Recovery

For the binary symmetric channel (binary input and output alphabets, symmetric transition
probability), the coding rate RC in the n-PSK optical fiber communication systems (assuming an ideal
hard-decision forward error correction coding) can be expressed as follows [53],

RC = 1 + BER · log2 (BER) + (1− BER) · log2 (1− BER). (16)

Correspondingly, the ideal spectral efficiency (assuming an ideal hard-decision forward error
correction coding) in the carrier phase recovery in the n-PSK coherent optical fiber communication
systems can be calculated as:

SE = RC · Np · log2 (n) , (17)

where SE is the ideal spectral efficiency, n is the modulation format level of the communication
system, Np is the number of polarization states. The BER limits in Equation (16) can be
obtained from the BER floors in the three carrier phase recovery approaches according to
Equations (9), (12) and (15), respectively.

4.3. Complexity of Carrier Phase Recovery Approaches

The computational complexity is always a significant consideration and criterion for the DSP
algorithms. Here the complexity of the one-tap normalized LMS, the block-wise average, and the
Viterbi-Viterbi carrier phase recovery algorithms has been investigated in terms of the number of the
complex multiplications per recovered symbol, which are shown in Table 1 (n is the level of modulation
formats). It is found that the computational complexity of the one-tap normalized LMS algorithm
is independent from the modulation formats, while the complexity of the block-wise average and
the Viterbi-Viterbi CPR algorithms scales linearly with the level of modulation formats. Note that
the computations in the pre-convergence of the one-tap normalized LMS algorithm also has to be
considered in the practical applications.

Table 1. Complexity of carrier phase recovery approaches (complex multiplications per symbol).

One-Tap Normalized LMS Block-Wise Average Viterbi-Viterbi

5 n n

All the above analyses are based on the carrier phase recovery in the n-PSK coherent optical
communication systems; however, all these discussions can be directly extended into the circular
n-QAM transmission systems. Meanwhile, although the n-PSK signals have a lower tolerance to the
ASE noise than the multi-amplitude signals (such as n-QAM signals), the n-PSK signals will have a
better tolerance to fiber nonlinearities due to the constant amplitudes [54,55].

5. Conclusions

Theoretical analyses of the carrier phase recovery in long-haul high-speed n-PSK (n-level
phase shift keying) coherent optical fiber communication systems, using the one-tap normalized
least-mean-square (LMS), block-wise average, and Viterbi-Viterbi algorithms, have been investigated
and described in detail, considering both the laser phase noise and the equalization enhanced phase
noise. The expressions for the estimated carrier phase in these three algorithms have been presented,
and the bit-error-rate (BER) performance such as the BER floors, has been predicted analytically.
Comparative studies of the one-tap normalized LMS, block-wise average, and Viterbi-Viterbi
algorithms have also been carried out. It has been found that the Viterbi-Viterbi carrier phase recovery
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algorithm outperforms the one-tap normalized LMS and the block-wise average algorithms for small
phase noise variance (or effective phase noise variance), while the one-tap normalized LMS algorithm
shows a better performance than the other two algorithms in the carrier phase recovery for large
phase noise variance (or effective phase noise variance). In addition, the one-tap normalized LMS
carrier phase recovery algorithm is more sensitive to the level of modulation formats than the other
two algorithms.

The BER floors in this paper were discussed and analyzed based on the influence from laser
phase noise and equalization enhanced phase noise in the long-haul n-PSK transmission systems,
and this represents the system limits from laser phase noise and equalization enhanced phase
noise. In addition, signal degradation from fiber nonlinearities is also a significant effect in such
communication systems. Therefore, the actual BER floors will be determined by involving the impacts
from amplified spontaneous emission (ASE) noise, laser phase noise, equalization enhanced phase
noise and fiber nonlinearities, which will be investigated in our future work.
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