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Abstract: Performance modeling of the characteristics of mid-infrared quantum cascade lasers
(MIR QCL) is an essential element in formulating consistent component requirements and
specifications, in preparing guidelines for the design and manufacture of the QCL structures, and in
assessing different modes of operation of the laser device. We use principles of system physics to
analyze the electro-optical characteristics of high power MIR QCL, including thermal backfilling of
the lower laser level, hot electron effects, and Stark detuning during lasing. The analysis is based
on analytical modeling to give simple mathematical expressions which are easily incorporated in
system-level simulations of defense applications such as directed infrared countermeasures (DIRCM).
The paper delineates the system physics of the electro-optical energy conversion in QCL and the
related modeling. The application of the performance model to a DIRCM QCL is explained by
an example.
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1. Introduction

Quantum cascade lasers (QCL) provide direct generation of mid-infrared radiation for several
airborne applications. Especially high-power QCL could replace diode-pumped solid state
lasers coupled to optical parametrical generators/oscillators (OPG/OPO) in directed infrared
countermeasure (DIRCM) systems because they show reduced complexity with much fewer parts
to be assembled, exhibit smaller mass and volume, and may be less expensive in investment and
installation costs.

Changing an established and qualified laser technology in airborne systems requires a significant
improvement in wallplug efficiency in order to reduce the required prime power from the platform.
It is expected that maximizing the wallplug efficiency also leads to increased optical output power
without impacting the beam quality. At the system level, wallplug efficiency of a laser is primarily
determined by the efficiency of the power supply module which converts and filters the platform input
power, and by the heat removal subsystem. Moving from optically-pumped solid state/OPO laser
systems to electrically-pumped QCL is one way to reduce the heat load. Another important factor is
the improvement of the electro-optical efficiency, especially to bring the operating point of maximal
electro-optical efficiency as close as possible to the point of maximal optical output power.

An essential element in the assessment of the electro-optical performance of lasers in different
applications is modeling using a system physics approach [1]. System physics uses conservation
laws complemented with constitutive equations relating observable fluxes (currents) to driving forces
(potential differences) representing physical processes. An early application of system physics is the
engineering of heat engines. Central to the modeling of these engines are the energy conservation
law and the related efficiencies of the conversion processes between different forms of energy. The
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laser, considered as a light engine, fits very well into this framework. From the point of view of a
system-level assessment of QCL, modeling based on solving the Schrödinger equation, to use a density
matrix formalism, employing non-equilibrium Green’s function formalism, or Monte Carlo simulations,
to name a few examples [2–4], are not very helpful because they require complex calculations and
detailed knowledge of the values of quantum level parameters which are not readily available.

Recently, models describing the performance of QCL using efficiencies [5–8], an approach well
known from solid state laser engineering [9], have been proposed. They deal with QCL in the vicinity
of the lasing threshold, taking into account the escape of electrons from the upper laser level and
thermal backfilling of the lower laser level from the injector. In directed infrared countermeasures
applications we operate the QCL at high optical power levels and, consequently, high pump currents.
Stark detuning of the energy levels, the subsequent decrease in the oscillator strength of the laser
transition, and the reduction of the injection efficiency from the injector into the upper laser level
cannot be neglected in devices operating near the maximum current the structure can sustain.

This paper deals with the modeling of the optical output power vs. pump current of high-power
mid-infrared QCL taking thermal backfilling, hot electrons, and Stark detuning into account.
The purpose of the modeling is the assessment of the electro-optical performance in different modes of
operation of the laser device, the formulation of consistent component requirements and specifications,
and the preparation of guidelines for the design and manufacture of the QCL structures to meet the
specified performance goals.

The subject matter of the paper is outlined as follows: The first two sections introduce the
electro-optical energy conversion processes, the electro-optical performance model, its descriptors
and observables. Then, the model is compared to experimental data. The conclusion highlights the
applicability of the model to represent the performance of mid-infrared QCL on a system level.

2. Electro-Optical Energy Conversion in MIR Quantum Cascade Lasers

The quantum cascade laser is a semiconductor laser employing a unipolar (electron) current
to convert electricity into optical energy. The electro-optical architecture of a QCL can be described
as a cascade of gain stages which convert electrical energy into coherent optical energy (work) and
heat when pumped above the laser threshold. Figure 1 depicts a sketch of a simplified energy level
diagram of a single stage of the quantum cascade. The electron flow leading to the electro-optical
energy conversion is drawn in red. The blue arrows represent non-radiative transitions of the electrons.
The cascade is embedded in a waveguide, which defines the optical modes and also serves as resonator.
The physical principles underlying the conversion process are similar to the quasi three-level laser
scheme well known in solid state laser physics. In this scheme, the ground state of the QCL (level 0)
is the lowest state in a manifold of sublevels (comprising level 1 and the injector) which are coupled
among each other and to the lower laser state (level 2). Consequently, the lower laser state is always
populated with electrons and the laser behaves in a way which is intermediate between a three-level
(levels 0, 2, and 3) and a four-level (levels 0, 1, 2, and 3) laser. This backfilling of electrons is controlled
by the energy difference ∆inj between the lower laser state (level 2) and the ground state (level 0).
In addition, there is an excited state manifold (indicated as level 4 in Figure 1) into which electrons
from the upper laser state (level 3) can escape and bypass the laser transition.

Above the lasing threshold, the difference in electron population between the upper and the lower
laser state is clamped at its threshold value. Please note, that the population inversion between the
laser states is constant during operation but not the electron density in the upper laser state, as in
bipolar semiconductor lasers.
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Figure 1. Simplified energy level diagram of a single gain stage of the quantum cascade involved in 

the electro-optical energy conversion. The electron flow leading to the electro-optical energy 

conversion is drawn in red. Stimulated photon emission is represented by the broken arrow 

connecting levels 3 and 2. The blue arrows represent non-radiative transitions of the electrons. The 

in-plane kinetic energy distribution of the ground state of the injector is indicated by the bowl-like 

pictogram. 
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Figure 1. Simplified energy level diagram of a single gain stage of the quantum cascade involved in the
electro-optical energy conversion. The electron flow leading to the electro-optical energy conversion
is drawn in red. Stimulated photon emission is represented by the broken arrow connecting levels
3 and 2. The blue arrows represent non-radiative transitions of the electrons. The in-plane kinetic
energy distribution of the ground state of the injector is indicated by the bowl-like pictogram.

The energy structure of a QCL is designed with a constant average voltage Vf b applied across
the cascade. At this so-called flat-band voltage the ground state of the injector of one gain stage is
energetically-aligned (in resonance) with the upper laser level of the succeeding stage. Its value can be
easily estimated from Figure 1:

Vf b “ Nc¨

ˆ

}ω

e
` ∆inj

˙

(1)

In the formula Nc is the number of gain stages (periods) and ω is the angular laser frequency
defined by the energy spacing between the upper and the lower laser state, } is the reduced Planck
constant, and e is the unit electron charge

`

“ 1.6ˆ 10´19 As
˘

.
In operation, the QCL is pumped electrically by a current I and the quantum cascade is aligned

by applying a voltage U across the device. At the lasing threshold, the (internal) voltage across the
cascade is equal to:

Vth “ Uth ´ Rs¨ Ith (2)

In the formula, Rs is the series resistance of the cladding layers and the contacts, Uth and Ith are
the applied voltage and the current at the threshold. During lasing, the voltage across the cascade
remains clamped at Vth because the current is driven by stimulated emission of [10].

The energy conversion within the quantum cascade can be expressed as a balance equation of the
form [1]:

Vth¨ I “
Vth¨ Is

ηi
`

P
ηV ¨ ηL

(3)

The pump current I generates heat (loss current Is) and photons with an optical power P. The
injection efficiency ηi is the ratio of the number of electrons injected from the injector into the upper
laser state and the number of electrons introduced into the cascade. The external quantum efficiency ηL
is the number of photons per gain stage leaving the QCL resonator divided by the number of electrons
injected above threshold. The ratio ηV is equal to the photon energy divided by the energy loss of the
electrons per gain stage:

ηV “
Nc¨}ω

e¨Vth
(4)

The basic physical processes supporting the quasi-three-level laser scheme of the conversion of
electrical into optical energy in MIR QCL are the following [3]:
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‚ Pumping of the active region through voltage controlled resonant tunneling of electrons from the
ground state (0) of the injector into the upper laser state (level 3) through an injection barrier;

‚ Photon driven relaxation of electrons from the upper (level 3) to the lower (level 2) laser state;
‚ Depletion of the lower laser state (level 2) by longitudinal optical (LO) phonon-driven relaxation

of electrons into the upper state (level 1) of the injector manifold;
‚ Thermal backfilling of electrons from the injector into the lower laser state (level 2) mediated by

LO phonon reabsorption; and
‚ Transport of electrons through the injector in terms of sequential transitions from the upper

injector state (level 1) to its ground state.

The effectiveness of the energy conversion process is reduced by additional processes:

‚ Escape of electrons from the upper laser state (level 3) into states lying energetically higher and
subsequent relaxation into lower lying states essentially by-passing the laser process [5,6];

‚ Stark detuning of the energy levels with respect to the flat-band design resulting in a decrease of
the oscillator strength of the laser transition and in a reduction of the injection efficiency into the
upper laser level due to the opening of additional non-resonant transitions to other states in the
active region or into the continuum [11]; and

‚ Heating of the electrons above the lattice temperature [12].

There are other relevant processes which can affect the energy conversion efficiency in
mid-infrared QCL such as free-carrier absorption or interface-roughness scattering. We assume
that these effects are implicitly represented in the parameters values specifying the threshold current
density and the optical gain.

3. Electro-Optical Performance Model

The electro-optical performance model relates the stationary photon sheet density S (photons/cm2)
per gain stage to the pump current density J (kA/cm2). All sheet densities are referred to the area of
the resonator waveguide perpendicular to the current flow.

3.1. Population Inversion, Gain, and Photon Sheet Density in MIR QCL

The starting point for the electro-optical performance model is the population inversion ∆n
between the two laser states with electron sheet densities n3 and n2 (electrons/cm2) per gain stage.
The population inversion is written in a form known from solid state laser physics [9]:

∆n “ n3 ´ pχi ´ 1q ¨ n2 (5)

In solid state lasers the (dimensionless) inversion reduction factor χi is related to the ratio of the
emission and of the absorption cross sections of the two laser states ([9], p. 24). In QCL, χi represents
the influences of the non-parabolicity of the in-plane motion of the electrons and of the second-order
scattering-assisted optical transition between the laser subbands on the population inversion ([3],
p. 238).

Within the k-th gain stage, we model the dependence of the population inversion ∆n on the sheet
density rp of the pumping rate (transitions/s/cm2) and on the photon sheet density S by considering
the balance between pumping, depletion by stimulated emission, and thermal backfilling from the
injector manifold as follows:

∆npkq “
`

τeff ¨ rp
˘

pkq ´
`

τsat¨ Γ¨ σe¨∆n¨ S¨ cg
˘

pkq ´ rpχi ´ 1q ¨ nthermspkq (6)

The effective transition time between the laser levels τe f f and the relaxation time τsat (which is
related to the photon saturation sheet density) depend on the electron temperature Te and on the lattice
temperature TL, which are controlled by the pumping current density J.
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The other symbols represent the overlap factor Γ of the waveguide mode with the active region of
k-th gain stage, the population inversion threshold ntherm caused by thermal backfilling of electrons
from energy states below the lower laser state, and the group velocity cg of energy transport in the
optical mode.

The average gain coefficient γ (1/cm) per gain stage is defined by γ “ 1
Nc

řNc
k“1 pσe∆nqpkq. In the

expression, σe (cm) is the emission “cross-section” of the upper laser level. The summation symbol
comprises any inhomogeneous broadening of the optical transition. For simplicity, we assume a
homogeneous linewidth and uniform gain stages. Thus, we can write:

γ “ σe¨ τeff ¨ rp ´ γ¨
S

Ssat
´ αtherm (7)

The saturation value of the photon sheet density is defined by Ssat “ 1{
`

Γmσeτsatcg
˘

, the mean
overlap factor per gain stage is Γm “

1
Nc

řNc
k“1 Γpkq, and αtherm “ σe pχi ´ 1q ntherm (1/cm) is an effective

loss coefficient describing the reduction of population inversion due to thermal backfilling.
Above the lasing threshold, the gain is clamped at its threshold value γth and the equation can be

solved for the photon sheet density:

S “ Ssat¨
γp ´ pγth ` αthermq

γth
(8)

We have introduced the small signal gain coefficient γp “ σeτe f f rp. Lasing occurs if γp exceeds
the effective threshold value γs “ γth ` αtherm.

To proceed, we require an expression relating γp to the pump current density. Near the threshold,
a popular assumption is rp “ J{e, resulting in a linear dependence of the form γp “ σe τe f f J{e.

For high power MIR QCL this assumption is not valid. The large electric field associated with high
current densities shifts the energy levels of the cascade relative to their design values. This Stark shift
leads to a decrease in oscillator strength of the optical transition (affecting σe) and, more importantly,
it opens up new non-resonant transitions to additional states in the active region or into the continuum.
These new conductive channels reduce the efficiency of the electron injection from the injector into
the upper laser level (affecting τe f f ). We model the pump process relating the gain γp and the current
density J under the influence of the Stark detuning by introducing a second order term as follows:

γp pJq “ gc¨ J¨
ˆ

1´
J
J0

˙

(9)

In the formula gc “ σeτe f f {e is the differential gain for small pump current densities J << J0.
The parameter J0 sets the scale for the Stark detuning of the energy levels in the cascade. We assume
that the Stark scale J0 is an intrinsic property of the quantum structure, independent of the electron
temperature Te.

With the model for the pump process of the active region we attain the following model equation
for the photon sheet density after an elementary calculation (we tacitly assume throughout the paper
that S ě 0):

S “
Ssat¨ pγth ` αthermq

γth
¨

ˆ

J
A
´ 1

˙

¨

ˆ

1´
J
B

˙

(10)

The coefficients A and B are defined as follows:

A “
2 pγth ` αthermq

gc¨
´

1`
b

1´ 4pγth`αthermq
gc¨ J0

¯ (11)
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and:
B “

2 pγth ` αthermq

gc¨
´

1´
b

1´ 4pγth`αthermq
gc¨ J0

¯ (12)

The A-coefficient determines the lasing threshold. For high current densities J > B the photon
emission is quenched due to the Stark detuning of the energy levels. The sum of both coefficients
equals the Stark scale: A` B “ J0. In general, A and B depend on the electron temperature and on the
lattice temperature. Both temperatures depend on the pump current density so that the photon sheet
density S is only formally a quadratic function of J, as will be shown in the next subsection.

3.2. Dealing with Hot Electrons and Stark Detuning

The following procedure is adopted to deal with the hot electrons and Stark detuning in MIR
QCL. We assume that the dependences of the coefficients A and B on the electron temperature are
approximated by linear functions. In particular, we make the following substitution for ApTe, TLq:

A pTe, TLq “
Js

1´ εs
` εh¨ pTe ´ TLq (13)

The meanings of Js, εs, and εh will be explained below. The thermal model given in [12] provides
an expression for the temperature difference: Te´ TL “ αEL J. The parameter αEL describes the thermal
coupling of the electrons to the lattice. In MIR QCL based on the GaInAs/AlInAs/InP material system
we assume a constant value of αEL “ 35 Kcm2{kA [12] discarding the dependence of αEL on the
particular device structure and operating condition.

The linear approximation for the coefficient B pTe, TLq is easily derived on the basis of the relation
A` B “ J0 and the assumption that J0 is independent of the electron temperature:

B pTe, TLq “
Js

εs
´ εh¨ J (14)

In the linear approximation of the coefficients A and B, the photon sheet density S depends on
the three quantities: Js, εs, and εh, which control the operation of the QCL.

The loss current density

Js pTLq “

ˆ

γth ` αtherm
gc

˙

Te“TL

(15)

equals the threshold current of the QCL structure in the particular case defined by thermal equilibrium
between the electrons and the lattice, thermal backfilling at the lattice temperature, and operation at
the flat-band voltage (quasi-three-level lasing scheme).

The Stark loss factor

εspTLq “
1
2

˜

1´

d

1´
4 Js

J0

¸

(16)

is derived by setting Te “ TL in Equation (11) and by introducing Js from Equation (15). This factor
describes the reduction of the efficiency of electron injection from the injector into the upper laser state
and the decrease in oscillator strength of the laser transition due to the Stark detuning of the energy
levels. It will be shown below that the Stark scale J0 is equal to two times the value of the roll over
current density Jro of the P-I curve. The dependence of εs on this ratio is depicted in Figure 2a.

The heating loss factor

εh pTLq “ αEL¨

ˆ

dA
dTe

˙

TL

(17)

is a measure for the loss of pump energy due to the heating the electrons above the lattice temperature.
In order to estimate the order of magnitude of the heating loss factor we generated a dependence on
the electron temperature for the gain cross-section σe and the inversion reduction factor χi using the
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non-parabolic subbands theory of [13]. The thermal backfilling loss coefficient αtherm was calculated
according to [14] with the lattice temperature replaced by the electron temperature. With the help of a
4-level rate equation model [15] including electron escape from the upper laser level along the lines
of [6,7] we generated the coefficient A pTe, TLq and calculated the derivative pdA{dTeqTL

numerically
for different QCL structures. A result of these calculations is shown in panel of Figure 2b. The εh
values span a range between 0% and 20% depending on the lattice temperature and on the value of the
Stark current scale J0.

Photonics 2016, 3, 30 7 of 15 

 

dependence on the electron temperature for the gain cross-section 𝜎𝑒 and the inversion reduction 

factor 𝜒𝑖 using the non-parabolic subbands theory of [13]. The thermal backfilling loss coefficient 

𝛼𝑡ℎ𝑒𝑟𝑚  was calculated according to [14] with the lattice temperature replaced by the electron 

temperature. With the help of a 4-level rate equation model [15] including electron escape from the 

upper laser level along the lines of [6,7] we generated the coefficient 𝐴(𝑇𝑒 , 𝑇𝐿) and calculated the 

derivative (𝑑𝐴/𝑑𝑇𝑒)𝑇𝐿
 numerically for different QCL structures. A result of these calculations is 

shown in panel of Figure 2b. The 𝜀ℎ values span a range between 0 and 20% depending on the lattice 

temperature and on the value of the Stark current scale 𝐽0.  

 
 

(a) (b) 

Figure 2. Loss factors. (a) Stark loss factor 𝜀𝑠 as a function of the ration 𝐽0/𝐽
𝑠
; and (b) electron 

heating loss factor 𝜀ℎ as a function of the lattice temperature for different Stark scales 𝐽
0
. 

The Stark current scale is the parameter which drives the QCL electro-optical performance. A 

small value of 𝐽0 leads to the occurrence of the Stark roll-over within the dynamic current range of 

the device (in a pulsed low duty cycle mode). Ideally, the value of the Stark current scale is well 

beyond the maximum current determined by the doping level of the device. A preliminary 

evaluation [15] of measured data (from the author’s labs and from publications) using the model 

indicates that the ratio 𝐽0/𝐽𝑠 assumes values between 6 and 10. Therefore, we expect 𝜀𝑠 to take on 

values between 10% and 20% and 𝜀ℎ to be in the order of a few percent. A detailed assessment of the 

application of the model to QCL devices is the topic of an ongoing study and beyond the scope of 

this paper. 

3.3. Threshold Current Density 

The threshold current density for constant lattice temperature (which happens in short pulse low 

duty cycle operation of the QCL) is defined by the onset of photon emission, i.e.: 

𝐽𝑡ℎ = 𝐴(𝑇𝑒(𝐽𝑡ℎ), 𝑇𝐿) (18) 

This is an implicit equation for the calculation of 𝐽𝑡ℎ. We solve this equation using the linear 

approximation for 𝐴(𝑇𝑒 , 𝑇𝐿) derived above. The result is: 

𝐽𝑡ℎ =
𝐽𝑠

(1 − 𝜀ℎ) ∙ (1 − 𝜀𝑠)
 (19) 

The threshold current density 𝐽𝑡ℎ of the device is larger than the loss current density 𝐽𝑠 because 

pump energy is lost to the heating of the electrons (factor 𝜀ℎ) and to the Stark shift of the energy 

levels (factor 𝜀𝑠). The product 𝜂𝑖(𝐽𝑡ℎ) = (1 − 𝜀ℎ)(1 − 𝜀𝑠) can be interpreted as the efficiency of the 

electron injection from the ground state of the injector into the upper laser level at the threshold. 

Figure 2. Loss factors. (a) Stark loss factor εs as a function of the ration J0{Js; and (b) electron heating
loss factor εh as a function of the lattice temperature for different Stark scales J0.

The Stark current scale is the parameter which drives the QCL electro-optical performance.
A small value of J0 leads to the occurrence of the Stark roll-over within the dynamic current range of
the device (in a pulsed low duty cycle mode). Ideally, the value of the Stark current scale is well beyond
the maximum current determined by the doping level of the device. A preliminary evaluation [15] of
measured data (from the author’s labs and from publications) using the model indicates that the ratio
J0{Js assumes values between 6 and 10. Therefore, we expect εs to take on values between 10% and
20% and εh to be in the order of a few percent. A detailed assessment of the application of the model to
QCL devices is the topic of an ongoing study and beyond the scope of this paper.

3.3. Threshold Current Density

The threshold current density for constant lattice temperature (which happens in short pulse low
duty cycle operation of the QCL) is defined by the onset of photon emission, i.e.,:

Jth “ A pTe pJthq , TLq (18)

This is an implicit equation for the calculation of Jth. We solve this equation using the linear
approximation for A pTe, TLq derived above. The result is:

Jth “
Js

p1´ εhq ¨ p1´ εsq
(19)

The threshold current density Jth of the device is larger than the loss current density Js because
pump energy is lost to the heating of the electrons (factor εh) and to the Stark shift of the energy levels
(factor εs). The product ηi pJthq “ p1´ εhq p1´ εsq can be interpreted as the efficiency of the electron
injection from the ground state of the injector into the upper laser level at the threshold.



Photonics 2016, 3, 30 8 of 16

Looking at the equation for the threshold current density, we see that the well-known procedure
of estimating the waveguide losses by fitting a straight line to the dependence of Jth on 1{LR needs to
be interpreted carefully in order to separate the contributions of device losses, thermal backfilling, hot
electrons, and Stark detuning.

3.4. Quenching Current Density

At constant lattice temperature, the laser stops the emission of photons if the pump current density
exceeds the current density Jq defined implicitly by the equation Jq “ B

`

Te
`

Jq
˘

, TL
˘

. In linear
approximation we attain the solution:

Jq “
Js

p1` εhq ¨ εs
(20)

The quenching current density Jq depends strongly on the loss parameter εs and is, thus, directly
related to the Stark detuning of the energy levels. If the Stark detuning is negligible, the quenching
current density becomes infinite and the photon sheet density grows until the maximum current
density that the cascade can support is reached. If Jq is less than this maximum value, Stark roll-over
limits the dynamic current range of the device measured by the difference Jq ´ Jth.

3.5. Electro-Optical Performance Model

Writing A “ Jth ` εh pJ ´ Jthq and B “ Jq ` εh
`

Jq ´ J
˘

and rearranging the formula for the photon
sheet density leads to the following expression for S which is valid for moderate heating loss factors εh:

S “ Ssat¨
gc

γth
¨ ηh¨ ηi pJq ¨

ˆ

1´
J
Jq

˙

¨ pJ ´ Jthq (21)

The heating loss parameter εh reduces the photon sheet density through the efficiency factor:

ηh “ 1´ εh (22)

In addition, the heating of the electrons leads to a limitation of the photon sheet density at high
pump current values. Suppressing the Stark shift by imposing εs “ 0 gives the upper limit:

Supl “ Ssat¨
gc Js

γth
¨

ˆ

1
εh
´ 1

˙

(23)

A second reduction factor of the photon sheet density is given by:

ηi pJq “
p1´ εhq ¨ p1´ εsq

1` εh¨
´

J
Jth
´ 1

¯ (24)

This factor represents the efficiency of the injection of electrons from the injector into the upper
laser level. At threshold, ηi is equal to ηi pJthq “ p1´ εhq p1´ εsq.

Finally, the factor 1´ J{Jq parameterizes the quenching of the photon emission due to the reduction
of the dynamic current range.

The photon sheet density S given in Equation (21) is a non-linear function of the current density J.
The slope factor dS{dJ is determined (among other factors) by the escape of electrons from the upper
laser state due to heating (factor εh) and by the Stark detuning (factor εs). These factors influence
the slope already near the threshold. With increasing current density the heating factor ηh remains
constant, whereas the injection efficiency ηi is reduced. In addition, hot electrons and Stark detuning
reduce the dynamic range of the pump current through the factor 1´ J{Jq.
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The dependences of the reduction factors ηi pJq and 1´ J{Jq on the normalized current density
are depicted in Figure 3 for different values of εh and εs. The graphs show that for moderate values
of εh and εs a reduction of the photon sheet density down to 50% of the value without considering
heating and Stark detuning can be expected.Photonics 2016, 3, 30 9 of 15 
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Figure 3. (a) Injection efficiency ηi and (b) quenching factor 1´ J{Jq as functions of the current density
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The photon sheet density exhibits a maximum and may roll over with increasing current density,
depending on the value of the Stark current scale J0 (effective through εs). Roll-over occurs at the
pump current density Jro for which the slope dS{dJ equals zero. Differentiating the function S pJq with
respect to the pump current density J for a constant lattice temperature and performing an elementary
calculation gives the formula:

Jro “
1
2
`

Jq ` Jth
˘

`
Jth
εh
¨

«

d

1` εh

ˆ

Jq

Jth
´ 1

˙

´

˜

1`
εh
2

ˆ

Jq

Jth
´ 1

˙

¸ff

(25)

For small values of the heating loss εh the bracket on the right hand side is zero to first order.
This implies that roll-over occurs approximately midway between the threshold and the quenching
point: Jro –

1
2

`

Jth ` Jq
˘

. At the same order of approximation we have J0 – Jth ` Jq which shows that
the roll-over current density of the electro-optical characteristic is directly related to the Stark scale
Jro –

1
2 J0.

Figure 4 depicts the non-linear dependence of the photon sheet density S on the normalized
current density J{Js. Panel (a) shows the influence of the hot electron factor εh on the roll-over of the
electro-optical characteristics, panel (b) depicts the influence of the Stark detuning factor εs.

In practice, both mechanisms, i.e., heating and Stark detuning, occur simultaneously. Figure 5
gives calculated electro-optical characteristics for different combinations of the loss parameters εh and
εs. The Stark detuning factor εs determines primarily the position of the roll-over current (through J0)
whereas the heating factor εh adjusts the value of the photon sheet density at roll-over.
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(b) Different values of the Stark loss factor εs for thermal equilibrium of electrons and lattice (εh “ 0).
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3.6. Parabolic Approximation of the Optical Output Power Based on Observable Quantities

The expression for the photon sheet density given above depends on parameters which represent
the internal mechanisms of the electro-optical energy conversion. This description is useful to guide
design decisions, for example concerning the resonator geometry or facet coatings. For system level
simulations we require model parameters which are observable at the device level. To arrive at such a
model we introduce in Equation (21) the value of S at the roll-over point, Sro “ S pJroq, replace Jq by
the approximate value Jq – J0 ´ Jth and assume that ηi pJq is roughly equal to its roll-over value ηi pJroq.
This procedure leads to a parabolic approximation of the dependence of the photon sheet density on
the current density parameterized with the experimentally observable quantities Jth, Sro, and J0 (– 2Jro

for constant TL):

S pJq –
4Sro

J0 ´ 2Jth
¨

J0 ´ Jth ´ J
J0 ´ 2Jth

¨ pJ ´ Jthq (26)
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A comparison of the parabolic model function with the full performance model is depicted in
Figure 5. It is evident that the parabolic approximation improves with increasing influence of the Stark
roll-over for current densities between the threshold and the roll-over current density. In other words,
this region is sufficiently well approximated using the parabolic model.

3.7. External Quantum Efficiency

Introducing the Equations (19), (22) and (23) into Equation (3) leads to the following expression of
the conservation of energy within the quantum cascade above threshold:

Vth¨ I “ Vth¨ Ith `Vth¨ εh¨ pI ´ Ithq ` ¨
P

ηV ¨ ηL
(27)

The currents are given by expressions of the form I “ J LRLW where LR and LW are the length and
the width of the resonator. The first and the second term of Equation (27) describe the heat generation
in the cascade at the threshold and the additional heating of the electrons above the threshold.

Relating the output power P to the photon sheet density S through the mirror coupling loss
αM according to P “ αM}ωNcSLRLWcg, substituting the photon sheet density S, and solving for the
external quantum efficiency ηL leads to:

ηL “
αM

αM ` αAR
¨

τe f f

τsat
¨ ηi pJq ¨

ˆ

1´
J
Jq

˙

(28)

with αAR denoting the losses due to free electron absorption and optical losses in the resonator.
The external quantum efficiency ηL is different from the differential slope efficiency because the

injection efficiency and the reduction of the dynamic range depend on the current density. The factor
ηi
`

1´ J{Jq
˘

reduces the quantum efficiency relative to its value without hot electrons and Stark shift.
This relative value is depicted in Figure 6 for different combinations of the loss parameters εh and εs.
Even for moderate loss factors of 5% the reduction in quantum efficiency due to heating and Stark
detuning is considerable.
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is zero.

4. Experiments and Discussion

The electro-optical performance model relates the optical output power of a QCL to the pump
current at a constant lattice temperature. The model can be used to characterize and to summarize
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the power characteristics of QCL grown and processed in a similar way for a specific application.
The model parameters are established using a calibration procedure in pulsed mode operations. Once
the model is set up, system simulations can be used to assess the performance of QCL in different
modes of operation.

Especially useful for system-level calculations is the parabolic approximation with the directly
observable parameters threshold current Ith, Stark scale current I0, and output power Pro at roll-over.
The values of these parameters have to be measured in a pulsed low duty cycle mode of operation
in order to avoid self-heating, and to keep the lattice temperature as close as possible to the
heatsink temperature which can be controlled during the measurement. Stepping through the
heatsink temperature and fitting the parabolic model at each step to the power-versus-current
characteristics of the QCL under investigation gives three functions relating the model parameters to
the heatsink temperature.

The usual procedure is to fit exponential functions to the temperature variation of these data:
the threshold current increases as Ith pTLq “ Ith

´

Tre f

¯

¨ exp
´´

TL ´ Tre f

¯

{T0

¯

, the optical power at

roll-over decreases according to Pro pTLq “ Pro

´

Tre f

¯

¨ exp
´´

Tre f ´ TL

¯

{T2

¯

, and the Stark scale

decreases as I0 pTLq “ I0

´

Tre f

¯

¨ exp
´´

Tre f ´ TL

¯

{T3

¯

over a (limited) temperature range of interest.
In these empirical models it was assumed the lattice temperature equals the heat sink temperature
(TL – Ths).

The calibration of the model parameters is completed by measuring the electro-optical
characteristics of the QCL under pulse train pumping with different duty cycles. In this case the
temperature of the lattice is greater than the temperature of the heat sink. Both temperatures can be
related by a simple thermal model of the form TL “ Ths ` ξ RLH U I [3] to the electrical (pulse) power
U I and to the duty cycle ξ. Using curve-fitting techniques, the effective thermal resistance RLH of the
QCL structure may be estimated from the experimental data.

We demonstrate the application of the modeling approach for the characterization of 4.6 µm QCL
devices using an experimental data set obtained from high-power MIR QCL developed at Fraunhofer
IAF. The active region design of the QCL is based on a slightly-diagonal-transition [16]. After the
material growth, the wafers were processed into mesa waveguide lasers by etching double trenches
to define the ridges of about 12 µm in width. After processing, the wafers were cleaved into laser
bars with cavity lengths of 3.5 mm, either leaving the facets uncoated for standard low duty-cycle
characterization to obtain the characteristic temperature T0, or high-reflectively (HR) coated on the
back facet with R ~ 0.8 to enhance the light emission of the front facet for high duty-cycle operation as
well as CW operation.

The lasers were soldered onto gold-plated copper heatsinks, either simply epilayer-up for low
duty-cycle characterization, or epilayer-down after HR coating of the back facet for high duty-cycle
or CW operation. After wire-bonding, the mounted devices were attached to a thermoelectric cooler
for electrical and optical characterization. The temperature of the thermoelectric cooler was varied
between 270 K and 360 K. For low duty-cycle operation, the lasers were driven by current pulses
of 100 ns width at a repetition rate of 1 kHz to avoid accumulative self-heating of the devices.
The emitted light was collimated by an F/1.6 off-axis parabolic mirror and focused either into a
Fourier transform spectrometer (spectral resolution 0.1 cm´1) equipped with a liquid-nitrogen cooled
cadmium-mercury-telluride detector for characterization of the emission spectra, or onto a calibrated
room-temperature pyro-electric detector for direct power measurement, while for high duty-cycle,
the lasers were driven by current pulses of 300 ns width and repetition rates varying from 0.1 MHz
to 2.5 MHz. For both high duty-cycle and CW operation, we placed a power meter directly in
front of the emitting facet of the QCL chip, without any collection optics nor beam steering mirrors.
The power meter has a diameter of 2 inches and the distance between the power meter and the laser
front facet is about 1 cm, resulting in a collection solid angle of around 1.8π and ensuring almost
100% collection efficiency.
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Figure 7 shows the optical power vs. pump current (P-I) curves in pulsed low duty cycle mode
for a QCL chip with the dimension of 12 µm ˆ 3.5 mm at various heat sink temperatures. The
panel (a) gives the experimental data, the panel (b) shows the parabolic model (Equation (26)) fitted
to the data. The model represents the experimental data with reasonable quality for the purpose of
system-level simulations.
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The dependences of the threshold current, of the optical power at roll-over, and of the Stark
scale on the heat sink temperature have been approximated with exponential functions. The model
parameters are as follows for a reference temperature of Tre f “ 270 K: Ith

´

Tre f

¯

“ 0.60 A, T0 “ 170 K;

Pro

´

Tre f

¯

“ 0.8 W; T2 “ 87 K; I0

´

Tre f

¯

“ 3.6 A; T3 “ 1200 K.
The comparison of Figure 7a,b reveals the limits of the parabolic model for elevated heat sink

(active region) temperatures. The description is reasonable up to the roll-over point and for moderate
temperature differences relative to the reference temperature (270 K in Figure 7). Beyond these limits the
full model (Equation (21)) has to be applied. The variation of the injection efficiency (which is neglected
in the parabolic model) with temperature reduces the peak value of the output power and reduces the
slope of the P-I curve beyond the maximum. This limitation is acceptable for system-level simulations.

In order to determine the effective thermal resistance of the QCL structure, P-I measurements in
high duty-cycle operation at a heatsink temperature of Ths = 293 K were performed. As mentioned
before, for this experiment the back facets of the lasers are high-reflectively coated with R ~ 0.8 to
enhance the light emission of the front facet, and single-ended emission optical power from only the
front facet is counted. The experimental results, together with a simultaneous fit of the parabolic
and the thermal models, are depicted in Figure 8. The model parameters had to be adjusted because
the threshold current and the peak power adapt themselves to the new resonator configuration. The
values are as follows, for a reference temperature of Tre f “ 270 K: Ith

´

Tre f

¯

“ 0.50 A, T0 “ 170 K;

Pro

´

Tre f

¯

“ 1.3 W; T2 “ 120 K. An essential feature of the model states that the Stark scale is
determined by the quantum design and, consequently, its parameters should remain same. Please note
that the heat sink temperature of the measurements was 293 K.
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Figure 8. Peak optical output power vs. current amplitude in pulsed mode for different duty cycles. 

The laser is driven by current pulses of 300 ns with various repetition rates. The back facet is 

HR-coated, optical power from only the front facet has been counted. (a) Experimental data; and  

(b) parabolic model fitted to the data. 

The electrical input power 𝑈 𝐼 to the device above the threshold was calculated from a linear 

model of the form 𝑈 = 𝑈0 + 𝑅𝑠𝐼 with the parameter values 𝑈0 = 9.0 V and 𝑅𝑠 = 3.3 Ω derived from 

an analysis of the experimental voltage-current characteristics. We use the same set of parameters 

Figure 8. Peak optical output power vs. current amplitude in pulsed mode for different duty cycles.
The laser is driven by current pulses of 300 ns with various repetition rates. The back facet is HR-coated,
optical power from only the front facet has been counted. (a) Experimental data; and (b) parabolic
model fitted to the data.

The electrical input power U I to the device above the threshold was calculated from a linear
model of the form U “ U0 ` Rs I with the parameter values U0 “ 9.0 V and Rs “ 3.3 Ω derived from
an analysis of the experimental voltage-current characteristics. We use the same set of parameters
independent of the duty cycle. From the data in Figure 8 we estimated an effective thermal resistance
of the order RLH “ 7.5 K{W.

The agreement between experimental and model data is adequate for the purpose of system
simulations. Looking at the model data in the light of the limitations mentioned above it is expected
that the parabolic approximation is limited to duty cycles up to about 50%.

The variation of the average power as a function of the duty cycle is an electro-optical characteristic
of particular interest for applications. This mode of operation allows for the variation of the output
power by keeping the amplitude and the duration of the underlying laser pulses fixed. Figure 9
compares the experimental characteristics with the calculated model values. The comparison of both
data sets confirms the limits of the parabolic approximation which are observed in Figures 7 and 8.
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Figure 9. Average optical output power and average power efficiency in pulsed mode vs. duty cycle.
The laser is driven by current pulses of 300 ns with various repetition rates. The back facet is HR-coated,
optical power from only the front facet has been counted. (a) Experimental data; and (b) calculation
based on the parabolic model.
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5. Conclusions

Quantum cascade lasers are a versatile technology which opens up new opportunities in civil
and defense applications. In order to penetrate different application areas tools are needed which
allow the system designer to assess the performance of these new laser sources. In the paper we
presented and verified a model for the electro-optical performance of QCL which is based on system
physics. This approach links physical processes to model parameters and allows for the exploration
of different modes of operation within the limits imposed by physics. It was shown that the model
could be reduced to a quadratic dependence of the optical output power on the pump current. In this
approximate form, the model parameters need to be calibrated with experimental data. Subsequently,
the QCL performance model can be utilized for system-level simulations with acceptable fidelity.
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The following abbreviations are used in this manuscript:

DIRCM Directed Infrared Countermeasures
HR High Reflective
P-I Power vs. Current
QCL Quantum Cascade Laser

References

1. Olesberg, J.T.; Flatté, M.E. Theory of mid-wavelength infrared laser active regions: Intrinsic properties and
design strategies. In Mid-Infrared Semiconductor Optoelectronics; Krier, A., Ed.; Springer-Verlag: London, UK,
2006; pp. 3–92.

2. Jirauschek, C.; Kubis, T. Modeling techniques for quantum cascade lasers. Appl. Phys. Rev. 2014, 1, 011307.
[CrossRef]

3. Faist, J. Quantum Cascade Laser; Oxford University Press: Oxford, UK, 2013.
4. Bismuto, A.; Terazzi, R.; Hinkov, B.; Beck, M.; Faist, J. Fully automated quantum cascade laser design by

genetic optimization. Appl. Phys. Lett. 2012, 101, 021103. [CrossRef]
5. Botez, D.; Chang, C.-C.; Mawst, L.J. Temperature sensitivity of the electro-optical characteristics for

mid-infrared (λ = 3–16 µm)-emitting quantum cascade lasers. J. Phys. D Appl. Phys. 2016, 49, 0430.
[CrossRef]

6. Botez, D.; Shin, J.C.; Kumar, S.; Kirch, J.; Chang, C.-C.; Mawst, L.J.; Vurgaftman, I.; Meyer, J.R.; Bismuto, A.;
Hinkov, B.; et al. The temperature dependence of key electro-optical characteristics for mid-infrared emitting
quantum cascade lasers. Proc. SPIE 2011. [CrossRef]

7. Flores, Y.V.; Kurlov, S.S.; Elagin, M.; Semtsiv, M.P.; Masselink, W.T. The role of electron temperature in the
leakage current in QCLs and its impact on the quantum efficiency. Proc. SPIE 2014. [CrossRef]

8. Yang, Q.K.; Schilling, C.; Ostendorf, R.; Hugger, S.; Fuchs, F.; Wagner, J. Wall-plug efficiency of mid-infrared
quantum cascade lasers. J. Appl. Phys. 2012, 111, 0531111. [CrossRef]

9. Koechner, W. Solid State Laser Engineering; Springer Series in Optical Sciences: New York, NY, USA, 2006.
10. Choi, H.; Diehl, L.; Wu, Z.-K.; Giovanni, M.; Faist, J.; Capasso, F.; Norris, T.B. Time resolved investigations

of electronic transport dynamics in quantum cascade lasers based on diagonal transition. IEEE J.
Quantum Electron. 2009, 45, 307. [CrossRef]

11. Howard, S.S.; Liu, Z.; Gmachl, C. Thermal and Stark effect roll-over of quantum cascade lasers. IEEE J.
Quantum Electron. 2008, 44, 319. [CrossRef]

http://dx.doi.org/10.1063/1.4863665
http://dx.doi.org/10.1063/1.4734389
http://dx.doi.org/10.1088/0022-3727/49/4/043001
http://dx.doi.org/10.1063/1.3478836
http://dx.doi.org/10.1117/12.2036371
http://dx.doi.org/10.1063/1.3692392
http://dx.doi.org/10.1109/JQE.2009.2013091
http://dx.doi.org/10.1109/JQE.2007.912477


Photonics 2016, 3, 30 16 of 16

12. Vitiello, M.; Gresch, T.; Lops, A.; Spagnolo, V.; Scarmarcio, G.; Hoyler, N.; Giovanni, M.; Faist, J.
Influence of InAs, AlAs layers on the optical, electronic, and thermal characteristics of strain-compensated
GaInAs/AlInAs quantum-cascade lasers. Appl. Phys. Lett. 2007, 91, 161111. [CrossRef]

13. Gorfinkel, V.B.; Luryi, S.; Gelmont, B. Theory of gain spectra for quantum cascade lasers and temperature
dependence of their characteristics at low and moderate carrier concentrations. IEEE J. Quantum Electron.
1996, 32. [CrossRef]

14. Maulini, R.; Lyakh, A.; Tsekoun, A.; Patel, C.K.N. λ ~ 7.1 µm quantum cascade lasers with 19% wall-plug
efficiency at room temperature. Opt. Express 2011, 19, 17203. [CrossRef] [PubMed]

15. Tholl, H.D. Modellierung der elektrischen und der elektro-optischen Kennlinien von Quantenkaskadenlasern.
Unpublished report. 2015. (In German)

16. Yang, Q.K.; Lösch, R.; Bronner, W.; Hugger, S.; Fuchs, F.; Aidam, R.; Wagner, J. High-peak-power
strain-compensated GaInAs/AlInAs quantum cascade lasers (lambda ~ 4.6 µm) based on a slightly-diagonal
active region design. Appl. Phys. Lett. 2008, 93, 251110.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.2798061
http://dx.doi.org/10.1109/3.541687
http://dx.doi.org/10.1364/OE.19.017203
http://www.ncbi.nlm.nih.gov/pubmed/21935083
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Electro-Optical Energy Conversion in MIR Quantum Cascade Lasers
	Electro-Optical Performance Model
	Population Inversion, Gain, and Photon Sheet Density in MIR QCL
	Dealing with Hot Electrons and Stark Detuning
	Threshold Current Density
	Quenching Current Density
	Electro-Optical Performance Model
	Parabolic Approximation of the Optical Output Power Based on Observable Quantities
	External Quantum Efficiency

	Experiments and Discussion
	Conclusions

