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Abstract: Emerging ultra-fast mode-locked lasers are now capable of generating pulses
in the few to sub-femtosecond regime. Using recent theoretical innovations around the
short pulse equation, we characterize the mode locking dynamics using a low-dimensional
representation of the pulse parameters. The theory is formulated using a variational
approach, since linearization of the exact solution is not tractable. The dominant dynamics
can be characterized in a geometrical way using phase-plane analysis. Of note is our ability
to determine the underlying bifurcations that occur due to changes in the fiber laser cavity
parameters, including the onset of the multi-pulsing instability. The theory can aid in design
principles for generating robust and highly-stable mode-locked pulses.
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1. Introduction

Technological advances have revolutionized the state-of-the-art in ultrafast science, so that the
production of few-cycle optical pulses in the 5–8 femtosecond regime have become routine with
Ti:sapphire laser cavities. Innovations that have allowed such performance gains center on precision
engineering for dispersion compensation (using, for instance, chirped mirrors) and saturable absorption
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(saturable quantum wells on the mirrors) to ensure self-starting [1–6]. These cavity engineering
advances have also allowed modern day researchers to push ultra-fast science into the sub-femtosecond
regime or attosecond regime [7,8], where the field of attosecond physics is allowing for transformative
science [9–11]. Not only can we potentially establish a new absolute standard of time [12,13], we can
now measure atomic and molecular physics at the fastest time-scales, including molecular vibrations,
chemical reactions, single electron transition events [7] and light-matter interactions. Theoretical models
in this ultra-fast regime currently lag the rapid pace of experimental development. To this end, we explore
the underlying dynamics of the recently-proposed short pulse equation, specifically as it applies to mode
locking. Indeed, we characterize the stability (and instabilities) of the mode-locked solutions, showing
them to have attractor-like dynamics that depend on the various parameters tuned via the precision
engineering mentioned previously.

To understand the current theoretical limitations of mode-locked laser models, one only has to
consider their underlying assumptions. Specifically, many of the leading theories in mode-locked lasers
are based on a center-frequency expansion of the electromagnetic field [14–16]. Thus, by assumption,
the asymptotic reduction given by this theory assumes at leading order a delta-function-like spectrum,
which is in complete contradiction to the octave-spanning spectrum generated for ultra-fast pulses.
This contradiction between theory and experiment in the femtosecond to sub-femtosecond regime has
motivated a new set of theoretical considerations based on the so-called short pulse equation [17–22],
which unlike the center-frequency expansion, assumes at leading order that the pulse approaches a
delta-function in time, not in frequency. The short pulse expansion is clearly the correct asymptotic
regime for describing optical pulses in tens of femtoseconds or less. Like the master mode locking
equation, an analogous version can be derived to describe mode locking in the few-cycle regime [21,22].
This provides a beginning theoretical treatment for a more precise and quantitative understanding of the
pulse formation, dynamics and interactions at the this timescale.

A highly-attractive feature of standard mode locking theory is the existence of a body of literature
on perturbation theory for mode-locked pulse solutions. Rooted in soliton perturbation theory [23,24],
the theory has been the primary tool for making critical theoretical predictions concerning physical
phenomena, such as the Gordon–Haus timing jitter [25], soliton self-frequency shifting [26], mode
locking operation [14,27], the effect of dispersive radiation [28], soliton collisions [29] and four-wave
mixing interactions of solitons [30]. Without the underpinnings of soliton perturbation theory, it in
unclear if much theoretical progress or insight could have been gained in the master mode locking
theory, thus leaving the system to simulation studies alone. This theoretical framework was recently
extended to the short pulse equation [31]. We build upon this theoretical construct to perform
a comprehensive evaluation of the stability and dynamics of pulses in the short pulse equation,
deriving visualizations of mode locking performance and mechanisms of instability to be avoided in
ultra-fast systems. Such readily-accessible diagnostics provide valuable insights for the engineering of
modern-day ultra-fast systems.
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2. Governing Equations and Reduced Models

In the subsections that follow, the theoretical underpinnings of the short pulse theory are outlined and
a reduced order model developed from perturbation theory. The reduced model is what allows us to
construct detailed stability analyses of the mode locking dynamics.

2.1. Short Pulse Equation

Short pulse mode locking theory is rooted in Maxwell’s equations. Several recent papers have detailed
the ultra-short pulse limit in order to model the propagation few-cycle optical pulses [17–20]. In contrast
to the standard envelope-carrier wave approximation, these theories assume a broad-band pulse, avoiding
the center-frequency approximation. A rescaling [32,33] allows pulse evolution in a Kerr medium to be
given by the so-called short pulse equation (SPE),

uxt − u−
1

6

(
u3
)
xx

= 0 (1)

where u, x and t are rescalings of the electric field, propagation distance and time, respectively. The
subscripts denote partial derivatives. (see [17] and [32]). When modeling laser pulses, the SPE equation
is perturbed with dissipative terms accounting for attenuation, bandwidth-limited gain and intensity
discrimination (saturable absorption) in order to characterize mode locking [14,15]. Much like the Haus
master mode locking approach [16], efforts have been made to develop a general qualitative theory for
ultra-short mode locking, thus a short pulse master mode locking (SPMML) equation [21,22] has been
developed where additional gain and dissipative terms capture the mode locking physics.

Like its center-frequency counterpart nonlinear Schrödinger equation (NLS), the SPE is Hamiltonian
and integrable [19,32] and has special soliton-like solutions. Integrability is a hallmark feature of
soliton systems, and the SPE’s Hamiltonian nature allows the perturbation method that we employ
here [31]. The SPE admits exact solutions, which are derived from breather solutions to the integrable
sine-Gordon [33]. These approximately look like a left-moving envelope modulated by a right-moving
sinusoid. Unfortunately, a stability analysis of this solution is currently intractable, since it is not possible
to separate the solution in time and space.

For broad pulses, solutions to the SPE asymptotically approach the standard wave packet of a
hyperbolic secant modulated with a sinusoid. In this limit, the SPE and NLS solitons are comparable,
with the exception that the fast carrier is explicit in the SPE solution. As the pulse contains fewer cycles
of the carrier oscillations, the NLS approximation breaks down. It is this limit that is of greatest interest,
since this models the approach to attosecond physics. In this limit, the SPE becomes numerically stiff as
the solution approaches the few-cycle regime.

2.2. Alternative Formulations of Short Pulse Dynamics

The SPE formulation is one of several models developed in the literature to help characterize pulse
propagation in the few-cycle regime. One of the first derivations along these lines was provided by
Brabec and Kraus [34]. Indeed, they used a novel approach to derive a general three-dimensional wave
equation to first order in the propagation coordinate that is applicable to the single-cycle regime of
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nonlinear optics. Their evolution equation, which covers a broad range of phenomena in nonlinear
optics, provides an accurate description of the evolution of the wave packet envelope down to pulse
durations as short as one carrier oscillation cycle. Porras [35] generalized the method so as to treat
diffraction and self-focusing in a better way, but which also neglected the nonlinearity. The culmination
of these early methods ultimately led to the optical pulse propagation equation (UPPE) of Kolesik and
Moloney [36,37]. Their UPPE, which is also derived directly from Maxwell’s equations, provides a
seamless transition between various nonlinear envelope equations in the literature and the full vector
Maxwell’s equations. They specifically demonstrate the UPPE equation in the context of supercontinuum
generation in air and compare their results to the scalar model of Brabec and Krausz. The fully-vectorial
aspects of the model are a major advantage of the model and were illustrated in the context of extreme
focusing of a femtosecond pulse. Thus, unlike SPE, the UPPE is capable of a full three-dimensional
description of the electromagnetic field. However, unlike the SPE, limiting analytic results are not
known, thus making it more difficult to provide insights available with the SPE and SPE perturbation
theory [31].

In addition to the variety of slowly-varying envelope approaches, directly modeling the interaction
of the ultra-short light with matter is also possible. Perhaps the earliest theory proposed to do so was
advocated by Leblond and Sanchez in 2003 [38]. In their model, they derive governing equations for
optical pulse propagation in a medium described by a two-level Hamiltonian, without the use of the
slowly-varying envelope approximation. In their analysis, they assume that the resonance frequency
of the two-level atoms is either well above or well below the inverse of the characteristic duration of
the pulse. In doing so, they reduce the propagation problem to a modified Korteweg–de Vries or a
sine-Gordon equation. Moreover, they are able to derive analytical solutions of these equations, which
are rather close in shape and spectrum to pulses in the two-cycle regime produced experimentally, which
shows that soliton-type propagation of the latter can be envisaged. This approach was generalized
by Rozanov et al. [39] to the study of the propagation of few-cycle pulses in a two-component
medium consisting of nonlinear amplifying and absorbing two-level centers embedded into a linear
and conductive host material. Their analysis first considered a linear theory of propagation of short
pulses in a purely-conductive material and demonstrated the diffusive behavior for the evolution of
the low-frequency components of the magnetic field in the case of relatively strong conductivity.
Then, numerical simulations were carried out in the frame of the full nonlinear theory involving a
Maxwell–Drude–Bloch model to reveal the stable creation and propagation of few-cycle dissipative
solitons under excitation by incident femtosecond optical pulses of relatively high energies. They
demonstrated that the broadband losses that were introduced by the medium conductivity represented
the main stabilization mechanism for the dissipative few-cycle solitons.

2.3. Short Pulse Master Mode Locking Equation

With the inclusion of linear loss, bandwidth-limited gain and saturable absorption, the SPE is modified
to [21,22]:

uxt − u−
1

6

(
u3
)
xx

=
(
g(t)(τ2uxx+τ4uxxxx)− γu+ βu3

)
x

(2)
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where g(t) is the time-varying coefficient of the bandwidth-limited, saturating gain [14,15]:

g(t) =
2g0

1 + ‖u‖2/E0

(3)

The parameter g0 is the gain pumping strength; E0 is the cavity saturation energy; and
‖u‖2 =

∫∞
−∞ |u|

2dt. Note that since the left-hand side effectively describes the time evolution of ux,
the dissipative terms on the right-hand side also must be differentiated with respect to x. The parameters
τ2, τ4 describe the width of the gain windows, which can be modeled by:

P (ω) = τ2ω
2 − τ4ω4 (4)

in the frequency domain. Thus, τ2, τ4 govern both the separation of the windows, hence the carrier
frequency, as well as the width of the gain windows, which ultimately determines pulse width. We will
see that the parameter τ4 can be used as a bifurcation parameter. This model produces the mode locking
dynamics expected in practice [21,22]. As such, we consider this as the underlying governing equation
for ultra-short mode locking behavior.

2.4. Reduced Model

Given the underlying Hamiltonian structure of the SPE, a variational method can be easily
implemented within the short pulse theory, as outlined in [31]. The goal of the Lagrangian approach
is to constrain the mode-locked pulse evolution to a physically-realizable manifestation of the evolution
dynamics. In standard soliton perturbation theory, one chooses the general soliton solution [40]. In the
case of the SPE, the natural choice of ansatz is the limit of the exact solution. Thus, we assume an ansatz
for the potential function for u(x, t) of the form:

φ(t, x) = η(t) sech(k(t)(x− b(t))) sin((x− θ(t)) (5)

so that φ(t, x) = ux(t, x). Note that we choose to hold ω fixed at one. Differentiating this potential
function with respect to x gives a wave packet that asymptotically approaches both the familiar NLS
soliton solution, as well as the exact solution SPE. This ansatz does not account for the phase chirp,
whose effect is small in practice. However, it does give an explicit description of the pulse’s phase,
which is absent in any envelope equation, such as the NLS. In fact, for moderately-broad pulses, the
exact solution approximately satisfies this form with the pulse amplitude approximately four-times the
pulse inverse-width, η(t) ≈ 4k and the pulse speed approximately equal to one.

The variational reduction using Equation (5) renders a manageable 4 × 4 system of differential
equations for study. To begin, the non-local gain dynamics reduces to:

g(t) ≈ 2g0
1 + η2/k

(6)

This is used with the variational framework in order to produce a reduced system of differential
equations. To leading order, all parameter evolutions depend only on the amplitude and inverse width
functions. Specifically, the amplitude and width dynamics decouple from the remaining parameters, thus
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reducing the dynamics further to a two-dimensional system for η and k, which is amenable to phase-plane
analysis. When k 6= 0, the governing reduced-model evolution can be written conveniently as [31]:

dη

dt
=f(η, k) = −γη + fG(k)

D(k, η)
η + 0.4βη3 (7)

dk

dt
=h(η, k) =

hG(k)

D(k, η)
− 0.2βkη2 (8)

for the amplitude-width interaction. The remaining two variables modeling time-shifts and phase
changes are slaved to the amplitude and width through the differential equations:

db

dt
=−0.06

(η
k

)2
(9)

dθ

dt
=1− 0.06η2 (10)

Note that the following definitions apply:

fG = 4g0((1.075τ2 − 1.51τ4) + (0.25τ2 − 4.56τ4)k
2) (11)

hG = 4g0((1.15τ2 − 2.02τ4)k − (0.50τ2 + 5.125τ4)k
3) (12)

D(k, η) = 1 + η2/k (13)

When k = 0, the above equations are rewritten in an equivalent form that is well defined. The reduced
model allows for a phase-plane analysis of the dynamics and stability of the pulse solutions of the SPE
mode locking. This geometrical description is valuable in providing a qualitative description of the
attractor dynamics generated from the additional mode locking terms and further providing insight into
potential instabilities.

In what follows, an in-depth analysis of the phase-plane dynamics will be considered. However,
beforehand, it is important to compare the reduced two-dimensional ODE system (8) to the full governing
SPE mode locking equations. Recall that the variational method here is strictly valid only for PDEs
that are nearly Hamiltonian. Thus, we first compare a dissipative system with small mode locking
perturbations: g0 = 0.015, γ = 0.0035, β = 0.001. We see that for appropriate initial conditions,
the reduced model agrees reasonably well with the PDE model, as shown by Figure 1a. When larger
dissipation parameters are used, g0 = 0.25, γ = 0.25, β = 0.05, the resulting pulse is shorter. More
significantly, for these parameter values, mode locking in the PDE system is more robust, as shown
by the rapid convergence and uniformity of mode-locked solutions in Figure 1b. However, since the
perturbation terms are large, the agreement between ODE and PDE is expected to be only qualitative.
The next section will investigate the stability of fixed points in the ODE system, in order to make
predictions about mode-locked pulse solutions for the PDE.

3. Phase-Plane Analysis and Stability of Mode Locking

The Lagrangian reduction technique advocated here provides a valuable, geometrical interpretation
of mode locking stability. Although not quantitatively accurate, it reflects the underlying stability and
instability mechanisms in a qualitative, easily-interpretable manner. Moreover, the two-dimensional
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nature of the reduction allows for simple phase-plane visualizations of dynamics and bifurcations. In
what follows, we will first consider the phase-plane analysis and stability of physically-realizable mode
locking solutions. The results will then be applied in the next section to understanding the bifurcations
in the laser cavity.
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Figure 1. When all mode locking terms are included, stable pulses are possible. Here,
parameter values are chosen to be perturbatively small, g0 = 0.015, γ = 0.0035, β = 0.001.

ODE shows reasonable agreement with the full PDE, but does not reflect the oscillations
inherent in the PDE model at this low dissipation. When the magnitude of dissipative
perturbation is increased, the ODE agrees only qualitatively with PDE. Parameter values are
g0 = 0.25, γ = 0.25, β = 0.05. However, the stability of such solutions is greatly enhanced,
as evidenced by the robust mode locking in the PDE model, as well as the large negative
eigenvalues associated with the ODE.

3.1. Nullclines and Fixed Points

The fixed points and nullclines of the phase plane dynamics of (8) are critical for determining the
qualitative dynamics of the SPE mode locking. We will see that there is always a fixed point at the origin
and one fixed point on each axis. The fixed point on the k-axis occurs when hG = 0, at (k0, 0), where
k0 =

√
(1.15τ2 − 2.02τ4)/(0.5τ2 + 5.125τ4). The fixed point on the η-axis occurs at (0,

√
γ/(0.40β),

which is at the intersection of the upper branch of the η nullcline. Furthermore, depending on system
parameters, there will be one non-trivial fixed point with k > 0, η > 0, at the intersection of the
nullclines. These points are of most interest, as they correspond to pulse solutions with finite amplitude
and width. In particular, the transition of a fixed point from the lower branch of the nullcline to the upper
branch has significant implications for mode locking.

When η 6= 0, k 6= 0, the nullclines for η and k are found by setting the f(η, k) and g(η, k) in
Equation (8) to zero. Note that for all non-trivial solutions, the phase and position evolve according to
Equation (10), so that the solutions of interest are fixed points only in the two-dimensional subspace and
not the full four-dimensional system. Multiplying by the denominator of the gain term in Equation (3),
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which depends on η and k, gives rise to two equations that are quadratic in η2 and whose coefficients are
functions of k. The η and k nullclines are the set of all (k, η) pairs, such that:

0.4βη4/k+(0.4β − γ/k)η2+(fG − γ)=0 (14)

hG − 0.2βη4 − 0.2βk η2 = 0 (15)

respectively.
Using the quadratic formula, the nullclines can be written such that η is a function of k, provided

care is taken that η2 is real and non-negative for each. Fixed points exist at any intersection of these
two curves. We will see that for sufficiently small values of τ4, both branches of the η nullcline will
be important.

Holding parameters g0 = 0.25, γ = 0.15, β = 0.05 fixed, we vary bandwidth parameters τ to see how
pulse parameters change. We will hold τ2 = 1. As τ4 increases, the width of the gain window decreases,
leading to fewer modes being amplified and, hence, lower amplitude pulses. The location of the fixed
point as a function of τ4 is computed numerically. Figure 2 shows this trend. As τ4 is decreased, the fixed
point moves up and to the right, leading to taller and narrower pulses. We first investigate solutions as
τ4 becomes large. As τ4 is increased, the fixed point moves toward the origin, corresponding to smaller
and broader pulses.
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Figure 2. As the bandwidth parameter τ4 decreases, fixed points move up and to the right.
Values of (from the left) τ4 = 0.55, 0.45, 0.35, 0.25. For τ4 > 0.57, the k nullcline ceases
to exist.

We find the intersection of the nullclines to determine the position of the fixed points and plot them in
Figure 3. This increase in amplitude takes a dramatic shift for values of τ4 < 0.20, suggesting some kind
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of bifurcation. In the following subsection, we will characterize the stability of all of the fixed points,
and in the next section, we will investigate the bifurcation structure to determine how this jump in pulse
amplitude occurs.
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Figure 3. Pulses become taller and more narrow for large τ4 as τ4 decreases. At around
τ4 = 0.196, fixed points jump to the upper branch, and pulses immediately become much
taller and broader (smaller k). The stability of the fixed point changes at almost that point,
as well.

Figure 4 shows nullclines and phase plane portraits for two parameter sets, one with very small
dissipative perturbation and one with a larger perturbation. In the first case, the system is nearly
Hamiltonian, with system parameters g0 = 0.015, γ = 0.0035, β = 0.001. The second figure is the
phase portrait associated with much larger dissipation terms. g0 = 0.25, γ = 0.25, β = 0.05. The
resulting pulse is shorter (k = 0.60 instead of 0.20), which is ultimately the desired result. Furthermore,
we will show in the next subsection that large perturbations also lead to increased pulse stabilization,
which is critical in practice for mode locking operation.

3.2. Stability

Once the stationary solutions to the two-dimensional system for (8) are established, the stability of
each can be determined. The Jacobian matrix for (8), whose eigenvalues determine the stability of a
given solution, is given by:

J=

[
fγ+
(
fG
D
−fG
D2

∂D
∂η

)
+3fβη

2
(
1
D
∂fG
∂k
− 1
D2

∂D
∂k

)
η+ ∂0.4β

∂k
η3

−hG
D2

∂D
∂η

+ 2− 0.2βkη
(
1
D
∂hG
∂k
−hG
D2

∂D
∂k

)
+ ∂−0.2βk

∂k
η2

]
(16)

where η, k,D are all evaluated at a given fixed point.
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Figure 4. Phase portrait for the two-dimensional ODE shows convergence to fixed point at
about η = 0.82, k = 0.206 using small parameter perturbation (left) and η = 1.05, k = 0.58

using large parameter perturbation (right). The red curve is the η nullcline, and the green
curve is the k nullcline. Blue lines are trajectories, all of which are attracted to the fixed
point. The larger dissipative terms in the second panel give rise to a shorter pulse (larger k).

Figure 4 shows the phase planes for two sets of parameter sets, one with very small dissipative
perturbation and one with a larger perturbation. In each case, fixed points occur at the origin and at
one point in the positive (η, k) quadrant. The eigenvalues of the Jacobian matrix Equation (16) evaluated
at the fixed point (k, η) = (0.206, 0.82) are both negative, so it is an attractor. However, they are also
small in absolute value (λ1,2 = −0.0044,−0.0035), indicating that convergence to the fixed point is
slow. One should not expect convergence to a pulsed solution in the PDE unless initial conditions are
carefully chosen. This is illustrated by the oscillations in the PDE results shown in Figure 1a. Note that
the amplitude of these oscillations is largely independent of initial conditions. It seems that they do not
correspond to any neglected imaginary part in the eigenvalues. The second panel of Figure 4 is the phase
portrait associated with much larger perturbation. The parameters g0 = 0.25, γ = 0.15, β = 0.05 are
about two orders of magnitude greater. The resulting pulse is shorter (k = 0.60 instead of 0.20). More
significantly, the mode locking is more robust, with eigenvalues of J given by λ1,2 = −0.413,−0.113,
also about two orders of magnitude larger than the weak dissipation case. This drives the solutions
quickly to the attracting fixed point or mode-locked SPE solution. For these parameter values, mode
locking in the PDE system will correspondingly be much more robust, as illustrated in Figure 1b, where
PDE solutions converge quickly and remain fixed. Recall that since the perturbations are large, the ODE
and PDE are not expected to agree quantitatively.

Finally, there is always a fixed point to the system at the origin, which corresponds to a zero amplitude
sine wave of infinite extent. If the origin is an attractor, then mode locking is not viable, at least for initial
conditions near the origin. If it is unstable, then mode locking may be feasible, even from low levels of
noise. Thus, we must consider its stability as well, since this helps determine the ability of an SPE cavity
to self-start from noise. When η = 0, k = 0, it is clear that the off-diagonal terms of the Jacobian matrix
are both zero, so the eigenvalues are simply the diagonal entries, given by:

λ1 = γ + 4g0(1.075τ2 − 1.51τ4) (17)

λ2 = 4g0(1.15τ2 − 2.02τ4) (18)
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If λ1 < 0, this is because the loss (γ) is too large in comparison to the gain, leading to an exponential
decay mode along the η-axis. This is in complete accordance with the lossy example from [31]. On the
other hand, if λ2 < 0, this is because τ4 is too large in comparison to τ2, leading to a decay mode along
the k-axis, which is a spreading of the pulse. Recall that τ2 and τ4 govern the spectral gain width of
the optical amplifier. If the gain windows are too narrow, only a few modes can be amplified, leading
to an extended sinusoid, rather than a localized pulse. For all parameter values, this happens when
τ4/τ2 ≥ 1.15/2.04 ≈ 0.569.

4. Bifurcations in the SPE Mode Locking Model

The construction of fixed points and null clines allows us now to consider the bifurcation structure of
the governing evolution (8), which determines parameter regimes for which mode locking is possible and
also predicts when a pulsed laser suffers from harmonic pulse-splitting. Since the larger perturbations
give rise to more robust mode locking behavior, we will consider only this regime in this subsection, but a
similar result holds for all sets of parameters. We hold fixed parameters g0 = 0.25, γ = 0.15, β = 0.05;
we will use the bandwidth parameters τ to study these bifurcations. We will hold τ2 = 1 fixed and
vary τ4.

As τ4 increases, the width of the gain window decreases, leading to fewer modes being amplified
and, hence, lower amplitude pulses. The location of the fixed point as a function of τ4 is computed
numerically. Figure 2 and Figure 3 show this trend. As τ4 is decreased, the fixed point moves up and
to the right in the phase plane, leading to taller and narrower pulses. We first investigate solutions as
τ4 becomes large. As τ4 is increased, the fixed point moves toward the origin, corresponding to smaller
and broader pulses. For sufficiently large τ4, the k nullcline ceases to be real. Thus, for all (k, η) values
in the plane, k is decreasing. This happens when λ2 = 0, which we saw in the last section happens
when τ4 > 0.569. In this instance, the origin is a saddle point, attracting along the k-axis and repelling
along the η-axis until trajectories meet the η nullcline. Such solutions correspond to an extended sine
wave of finite amplitude. This can happen when the gain is sufficiently large to overcome cavity losses
and amplify only a few modes (continuous wave operation), but the mode locking term is insufficient to
lock them into a single localized pulse. This region of parameter space is small. For τ4 > 0.6125, λ1
becomes negative, and the origin becomes a stable node. At this point, not only does the mode locking
mechanism fail, but the gain is insufficient to overcome loss. From the ODE perspective, this is also the
value for which the η nullcline ceases to exist.

Of greater interest is the behavior of fixed points in the first quadrant, which correspond to pulses of
finite width and amplitude. For all values of τ4 > 0.20, the location of the only non-trivial fixed point
is at the intersection of the k nullcline with the lower branch of the η nullcline, as shown in the top two
panels of Figure 5. Qualitatively, these fixed points all have the same stability. As τ4 decreases, the two
branches of the η nullcline approach one another and meet when τ4 = 0.196. For τ4 < 0.196, both the
upper and lower branches of η nullcline have gaps for some small interval of k, as shown in the lower
two panels. That is, within that k interval, η is always increasing. When this split occurs, the fixed point
is to the left of this split and initially remains on the lower branch. As τ4 decreases further, this gap
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widens, and eventually, the fixed point moves onto the upper branch of the η nullcline, as shown in the
lower right panel.
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Figure 5. As τ4 decreases, fixed point moves up. When τ4 = 0.1962, there exists a region of
k for which η′ > 0. At about τ4 < 0.162, the fixed point exists only on the upper branch of
the η nullcline.

By evaluating Equation (16), we can readily determine the stability of each fixed point. The real and
imaginary parts of the eigenvalues are shown in Figure 6. We see that for τ4 > 0.1962, the eigenvalues
are real and negative, indicating that the fixed point is a stable node, corresponding to the phase planes
in the upper panels of Figure 5. In this parameter regime, mode locking is feasible. Even as the fixed
point moves to the left of the gap, as in the bottom left panel of Figure 5, its stability initially remains
unchanged. For a narrow region of parameter space, for 0.194 < τ4 < 0.196, the eigenvalues of
Equation (16) become complex conjugate, with a negative real part. Thus, the fixed point becomes a
stable spiral and still attracts nearby trajectories. When τ4 < 0.194, the system undergoes a supercritical
Hopf bifurcation, and the fixed point becomes an unstable spiral.

In this bifurcation, a limit cycle is created around the unstable spiral as indicated by Figure 7. This
limit cycle increases with decreasing τ4. In the top panels, τ4 = 0.192, and trajectories are repelled
from the fixed point and the unstable spiral in what appears to be a stable limit cycle. The top right
panel indicates that these high amplitude oscillations persist indefinitely. As τ4 decreases further, a third
bifurcation occurs, in which the limit cycle expands and collides with the stable manifold of the saddle
on the k-axis and is destroyed. However, for values of τ4 near this bifurcation, solutions also enter a
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quasi-periodic orbit for a finite time, but eventually are repelled and attracted along the stable manifold
of the saddle point on the η-axis, as shown in the lower panels of Figure 7.
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Figure 6. The fixed point is a stable attractor on the lower branch of the η nullcline until
about τ4 = 0.1962, when the fixed point jumps to the upper branch of the nullcline. At
τ4 = 0.1960, the fixed point becomes a stable spiral. At about τ4 = 0.1940, the system
undergoes a Hopf bifurcation, and solutions tend to a stable limit cycle, which vanishes for
τ4 < 0.192.

For those parameter values when τ4 is sufficiently small, the ODE model predicts that solutions spiral
away and eventually grow exponentially tall along the η-axis. For long times, the PDE does not exhibit
this behavior. Rather, solutions receive sufficient gain that their amplitude grows, and they undergo an
instability, leading to pulse splitting, the onset of which exhibits amplitude oscillations, characteristic
of the unstable spiral. Since the ansatz for this paper does not permit multi-pulse solutions, we cannot
expect the comparison to hold in this region. However, the ODE model does accurately predict the
instability of pulsed solutions for sufficiently small τ4 and accurately predicts that this instability is
oscillatory, as is typically the case with pulse pulsing. Figure 8 shows two solutions to the PDE, one for
τ4 = 0.150 and another at τ4 = 0.14. As τ4 is reduced, the single-pulse solution becomes unstable and
splits into two. Note that the bottom right panel shows that the amplitude remains about constant for long
times, until around t = 800, after which the amplitude goes through oscillations before stabilizing to the
two-pulse solution. This is in complete accordance with the prediction of the ODE model, as predicted
by the Hopf bifurcation and illustrated in Figure 7.
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Figure 7. For τ4 < 0.194, the only fixed point is an unstable spiral. However, for a short
band of τ4, there appears to be a limit cycle. For τ4 < 0.19195, this limit cycle exhibits its
instability only after a long period of time. This corresponds to the breathing characteristic
of a pulse undergoing harmonic pulse splitting. For smaller values of τ4, the transition to
instability is nearly instantaneous.

Although the ansatz selected does not admit it, the PDE admits another solution with two lower
amplitude pulses with the same L2 norm as the unstable one. Thus, the solution ansatz can be modified
to include two different pulses that are well separated in space. Each of the two pulses has the same
parameters as a solution with lower effective g0:

g0 eff = g0
1 + η20/k

1 + 2 η20/k
(19)

For example, the ODE for τ4 = 0.170, g0 = 0.25 has an unstable spiral at (0.389, 2.155). However,
one can predict a two-pulse solution, each of which will have the same amplitude and width as a
single-pulse solution to the g0 = 0.1307 case. For τ4 = 0.170 and g0 = 0.1307, the ODE model has
a stable node at (0.753, 0.871), corresponding to stable pulses, which are lower in amplitude. Figure 8
shows two solutions to the PDE, one for τ4 = 0.15 and another at τ4 = 0.14. Thus, the stability
results advocated here can be extended to handle multi-pulse mode locking and the instability driving the
multi-pulsing instability. Indeed, the multi-pulsing instability is the most important instability observed
in practice, as it significantly limits the power per pulse [43–45].
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Figure 8. As the bandwidth parameter τ4 decreases, amplitudes increase until becoming
unstable, as predicted by the ODE model. In fact, solutions to the PDE undergo harmonic
pulse splitting, as evidenced here.

5. Conclusion

With the emerging frontier of attosecond physics, there is renewed demand for theoretical models
rooted in Maxwell’s equations that are capable of providing an underlying theoretical description of
short pulse dynamics [17–20] and short pulse mode locking theory [21,22]. Especially important are
methods that capture the underlying stability, bifurcations and operating regimes of ultra-fast devices,
like mode-locked lasers. In this manuscript, a reduced-order theoretical model has been developed for
understanding short pulse propagation. The theory is based on a variational approach versus direct
linearization due to the implicit nature of the short pulse solution. Much like the success of previous
variational reductions [40,41], the short pulse variational framework provides an easy-to-use theoretical
description of the pulse evolution, thus providing a valuable modeling tool for understanding the
state-of-the-art sub-femtosecond pulses currently being generated in research laboratories. Indeed, the
fundamental nature of the pulse instabilities can be discovered from geometrical methods (phase-plane
analysis) of dynamical systems.
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Given the limited theoretical work to date on short pulse theory, it makes sense to develop methods
capable of pushing forward our understanding of this important propagation regime. Although it is
very difficult to model the evolution of electromagnetic energy in a quantitatively accurate manner
without detailed knowledge of the full gain spectrum, the proposed qualitative assessments are critical for
characterizing pulse instabilities in the sub-femtosecond regime. This greatly extends the limited outlook
and validity of envelop-based approaches (such as NLS with additional terms) in the sub-femtosecond
regime, giving an alternative to modeling the dynamics under extreme conditions. With the advent of
octave-spanning lasers, the exploration of the fundamental nature of atomic and molecular physics at the
fastest time scales, including molecular vibrations, chemical reactions and light-matter interactions, is
finally a realistic possibility [7]. Additionally, as a result, developing a new theory for this regime, such
as the SPE mode locking theory, will become of increasing importance.
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