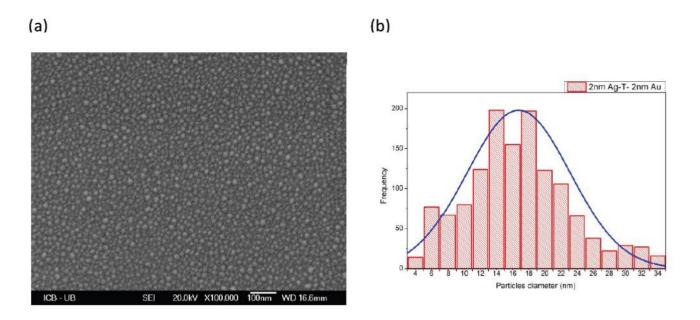


Supplementary Information

Effects of Irregular Bimetallic Nanostructures on the Optical Properties of Photosystem I from *Thermosynechococcus elongatus*. *Photonics* 2015, 2, page range

Imran Ashraf ¹, Sepideh Skandary ¹, Mohammad Y. Khaywah ^{2,3}, Michael Metzger ¹, Alfred J. Meixner ¹, Pierre M. Adam ² and Marc Brecht ^{1,4,*}


- ¹ IPTC and Lisa+ Center, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany; E-Mails: imran.ashraf@iptc.uni-tuebingen.de (I.A.); sepideh.skandary@uni-tuebingen.de (S.S.); michael.metzger@uni-tuebingen.de (M.M.); alfred.meixner@uni-tuebingen.de (A.J.M.)
- Laboratory of Nanotechnology, Instrumentation and Optics, University of Technology of Troyes, 12 Rue Marie Curie, CS 42060, 10004 Troyes Cedex, France; E-Mails: mohammad_yehia.khaywah@utt.fr (M.Y.K.); pierre_michel.adam@utt.fr (P.M.A.)
- Laboratory of Materials, Catalysis, Environment and Analytical Methods, Lebanese University, Campus Rafic Hariri, Hadath-Beirut, Lebanon
- ⁴ Zurich University of Applied Science Winterthur (ZHAW), Technikumstrasse 13, 8401 Winterthur, Switzerland
- * Author to whom correspondence should be addressed; E-Mail: marc.brecht@uni-tuebingen.de; Tel.: +49-7071-29-76239; Fax: +49-7071-29-5490.

SEM Images and Detail about Particle Size Distributions

The SEM images of the Ag/Au and Au/Au sample are shown in Figure S1a and Figure S2a, respectively. Details about the fabrication of these nanostructures are given in Reference. (Khaywah, *et al.*, 2015). The size of the particles is different in both of the samples. For Ag/Au, the average size of the particles is \approx 18 nm and the standard deviation of the particle's size distribution is 6.4 nm. In total 1339 particles correspondent to the SEM image are measured for Ag/Au sample.

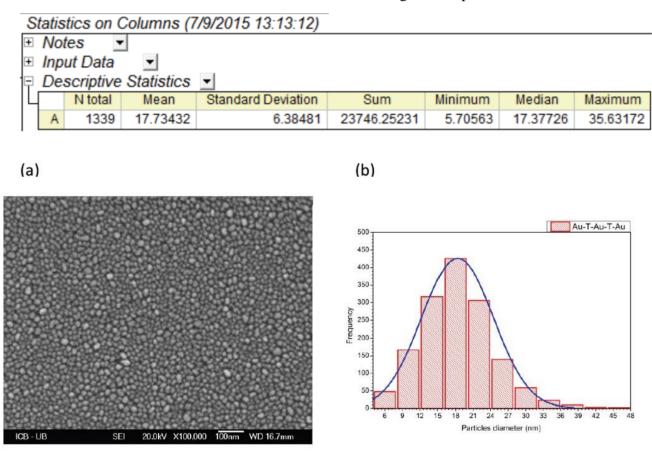

The particle size distribution for Ag/Au sample is given in Figure S1b. The information about the size of the particles of Ag/Au sample is given in Table S1.

Figure S2a shows the SEM image for Au/Au sample where in total 1501 particles are measured. The average size of the particles is ≈ 19 nm with standard deviation of 6.1 nm. The size distribution of the particles is demonstrated in Figure S2b. Detailed information about the size of the particles of sample Au/Au is given in Table S2.

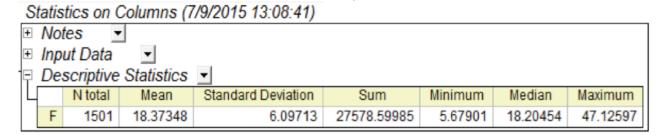

Figure S1. (a) SEM image of Ag/Au substrate (b) SEM Image based size distribution of the Ag/Au nanoparticles.

Table S1. Particle size distribution of Ag/Au sample.

Figure S2. (a) SEM image of Au/Au substrate (b) size distribution correspondent to the SEM image of the Au/Au sample.

Table S2. Particle size distribution of Au/Au sample.

Works Cited

Khaywah, M.Y.; Jradi, S.; Louarn, G.; Lacroute, Y.; Toufaily, J.; Hamieh, T.; Adam, P.M. Ultra stable, uniform, reproducible and highly sensitive random arrays of bimetallic nanoparticles as reliable large scale SERS substrates. *J. Phys. Chem. C* **2015**, under review.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).