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Abstract: We elucidated the light-matter interaction of individual ZnO NRs with a 

monochromatic beam of linearly polarized light that scatters elastically from the ZnO NRs 

by performing forward scattering and back-aperture imaging in a dark-field setting. We 

precisely controlled the electric field vector of the incident light and the NR orientation 

within the plane of light interaction during both modes of measurement, and spatially 

resolved the scattering response from different interaction points along the NR long axis. We 

then discerned, for the first time, the effects of light polarization, analyzer angle, and NR 

orientation on the intensity and directionality of the optical responses both qualitatively and 

quantitatively along the length of the single ZnO NRs. We identified distinctive scattering 

profiles from individual ZnO NRs subject to incident light polarization with controlled NR 

orientation from the forward dark-field scattering and back-aperture imaging modes. The 

fundamental light interaction behavior of ZnO NRs is likely to govern their functional 

outcomes in photonics, optoelectronics, and sensor devices. Hence, our efforts provided 

much needed insight into unique optical responses from individual 1D ZnO nanomaterials, 

which could be highly beneficial in developing next-generation optoelectronic systems and 

optical biodetectors with improved device efficiency and sensitivity. 

Keywords: zinc oxide nanorod; far field scattering; back-aperture imaging; single nanorod 

scatterer; polarized light interaction; light matter relationship; nanophotonics 
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1. Introduction 

The optical properties of one-dimensional zinc oxide nanorods (1D ZnO NRs) have been extensively 

studied and engineered for better photonic [1–7], optoelectronic [8–14], and biosensing applications  

[15–18]. Many studies have previously demonstrated that the incorporation of 1D ZnO materials in those 

applications can enable improvements in emission efficiency and/or detection sensitivity over their 2D 

and bulk counterparts [11,19–25]. From these efforts, beneficial optoelectronic characteristics of 1D 

ZnO have been identified that have not been readily observed from the thin film or bulk form of ZnO. 

For instance, single-crystalline ZnO NRs have been shown to exhibit beneficial optical properties such as 

spontaneous/stimulated emission at room temperature [21,26–30] and effective UV/visible light guiding 

[2–4,7,24]. In other examples, the optical signal-enhancing capability of ZnO NRs has been used in 

conjunction with dye-coupled DNA and proteins for fluorescence-based biomedical detection  

[15–18,25,31–33].  
Both individual and ensembles of ZnO NRs have been exploited for the aforementioned applications. 

Upon subjecting 1D ZnO to incident light with different measurement configurations for excitation and 

detection, light can trigger various responses from the materials such as bandgap emission and elastic 

scattering. In this regard, the majority of previous studies on 1D ZnO has focused on ensembles of NRs 

for a test platform to be investigated, and on the bandgap-associated photoluminescence for a property to 

be examined. Several studies have attempted to elucidate interesting light behavior specifically from 

individual ZnO nanomaterials instead of ensembles [2,4,24,34,35]. Examples of these endeavors can be 

found in the areas of subwavelength waveguiding using 1D structures such as nanoribbons and nanobelts 

[23,24,29]. Another study in the field of hybrid plasmonic/photonic coupler has demonstrated that a 

paired system of individual ZnO NRs and metal nanowires can be used to convert light to plasmons via 

direct light coupling and vice versa [6]. Very recently, crystal facet-dependent fluorescence emission 

characteristics have been reported from dye-conjugated proteins on different crystal surfaces of isolated 

ZnO NRs [36]. In these investigations employing single ZnO NRs as test elements, light is known to 

couple effectively into the ZnO NR medium and propagate predominantly along the long axis of the 

ZnO NR via guided- and/or surface evanescent-waves. This highly directional light guiding and 

propagation along the c-axis of ZnO NRs occur whether incident light is launched from another nanowire 

source for the cases of subwavelength waveguiding and hybrid coupling, or whether emitted light from 

biomolecules is coupled to the high refractive index NR medium instead. 

For many optical and bio-optical applications such as those described above, quantifying how 

individual ZnO NRs scatter light to far field is also critical since far-field observations of the light signal 

are commonly utilized in many optical detection schemes. Information on scattering intensity and 

directionality can provide much-needed guiding principles for optimizing optical device outputs and for 

accurate bio-optical signal interpretation in both single and ensemble ZnO NR-based devices. Therefore, 

scattering is another important aspect of light response that needs to be thoroughly probed to establish 

the fundamental light-matter relationship. However, it is not yet clearly understood how light from ZnO 

NRs scatter into far field. Due to the inherently low signal intensity that can be collected from a single 

nanomaterial and the difficulty of removing the background optical noise, very few studies have 

systematically investigated scattering from semiconducting oxide NRs, especially by addressing each 

NR independently [37,38]. 
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In this article, we study the optical responses of individual ZnO NRs upon illumination with a linearly 

polarized, monochromatic beam of light (642 nm in wavelength), while specifically focusing on 

elucidating light polarization- and NR orientation-dependent, elastic scattering characteristics of single 

ZnO NRs. To circumvent the challenges of low signal and high background issues in single NR imaging, 

we utilize dark field (DF)-based optical measurement schemes capable of detecting the scattering 

intensity and, at the same time, recording the spatial distribution from individual NRs upon illumination 

with a well-defined incident wave vector and polarization. Specifically, we carry out DF scattering 

measurements in forward geometry as well as back-aperture imaging (also known as Fourier 

microscopy) in order to quantify systematically the position-, orientation-, and polarization-resolved 

optical response from individual ZnO NRs. The two investigation modes utilized in this study are 

designed to provide not only the scattering intensity but also scattering directionality from each NR. In 

the forward DF scattering mode, the scattering signal from individual ZnO NRs is both qualitatively and 

quantitatively discerned along the position on the NR. This measurement is systematically conducted as 

a function of analyzer rotation when the ZnO NRs are illuminated under different electric field 

orientations of the incident light. We also ascertain distinctive, polarization-dependent scattering 

responses from single ZnO NRs that are arranged in different directions within the sample plane. In the 

back-aperture imaging mode, we identify the spatial distribution of the scattering signal from individual 

ZnO NRs. We resolve the polarization-dependent scattering directivity and the orientation of individual 

ZnO NR scatterers based on the distinctive patterns formed at the back focal plane, which are equivalent 

to Fourier transforming the radiation distribution from the back-aperture of the objective lens. With the 

ever-growing research and development of single ZnO NRs for highly miniaturized optical, 

optoelectronic, and biomedical devices, our study’s pursuit of a better understanding of fundamental 

light interaction with individual 1D ZnO nanomaterials may provide important insight into their potential 

behavior, particularly when functioning as an effective directional scatterer of polarized light to far field. 

Furthermore, our efforts may promote innovative optical, hybrid nanophotonic, and biomedical 

applications based on the use of ZnO NRs by harnessing the polarization-dependent, highly directional 

optical response of the nanomaterials stemming from their high shape anisotropy.  

2. Results and Discussion 

Optical Setup for Dark Field Scattering and Back-Aperture Imaging. Figure 1 describes our 

experimental setup to measure forward scattering signals from individual ZnO NRs with controlled 

orientations. The incoming light source, a linearly polarized 642 nm laser, was passed through a  

half-lambda (HL) plate at 45° and 90° to control the orientation of the incident electric field (E) vector 

to achieve E║ (polarization direction lying in the plane of incidence) and E┴ (polarization direction 

perpendicular to the plane of incidence) orientations, respectively. After passing through a series of 

mirrors and neutral density filters, the laser beam was directed to the sample stage via a dark field (DF) 

condenser with a high numerical aperture. The use of DF in our setup is essential to resolve the inherently 

low amount of signal to be collected from individual NR samples. As displayed in panel (i) of Figure 1, 

multiple components involved in the ZnO NR sample assembly are refractive index-matched throughout 

all existing interfaces, and this configuration allows for total internal reflection (TIR) of the incident 

laser beam after illuminating the sample.  
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Figure 1. Schematic illustrations showing the experimental setup to measure the NR 

position- and NR orientation-dependent scattering signal as well as to detect the back-aperture 

signal from individual ZnO NRs while controlling excitation and collection polarization 

angles. Three key measurement points in the setup, shown as (i), (ii), and (iii) are displayed 

in detail inside the boxed panels: (i) sample assembly to achieve refractive index matching 

for all measurement components and optics, (ii) two distinctive directions for the incoming 

polarized laser and the two different NR orientations on the measurement plane, and  

(iii) optical elements to perform forward DF scattering and back-aperture imaging from the 

same individual NRs. The diagram shown in (ii) is a 180° rotated view of the sample plane 

and incident light in order to describe the two polarized light directions of E║ and E┴. The 

incident angle of the laser, noted as θin in the diagram, is 62° in our experimental setup. The 

two orthogonal axes of the sample plane are labelled as x and y. The * sign next to E marks 

the projected components of the electric field onto the sample plane.  

The four experimental configurations examined in our forward scattering measurements, displayed 

in panel (ii) of Figure 1, are the results of different combinations of the polarized laser orientations (E║ 

and E┴) illuminating the NRs with the main body lying along the y (NR║) and x (NR┴) directions of the 

sample plane as defined in the schematics. Additionally, the spatial distribution characteristics of the NR 

scattering signals are investigated by performing back-aperture imaging using the optical setup provided 

in panel (iii) of Figure 1. The removal of the last lens between the Fourier lens and the detector in our 

setup permits back-aperture imaging of the same NR directly after examination of its forward scattering 

behavior. Using this setup, both forward DF mode scattering and back-aperture images were collected 

by examining over 20 different individual NRs. The representative scattering characteristics specific to 
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each of the four different combinations of the NR orientation (NR║ and NR┴) and the incident 

polarization direction (E║ and E┴) are provided herein.  

Scattering Characteristics of NR║ under E║ and E┴. The typical scattering behavior of individual 

NRs was first characterized from the y axis-oriented NRs (NR║) by employing the two cases of polarized 

illumination, E║ and E┴. Figure 2 summarizes the resulting data by showing 3-dimensional (3D) contour 

plots of the scattering intensity as a function of both the position along the ZnO NR long axis and the 

analyzer angle, 2-dimensional (2D) projection maps of the scattered signal with respect to the analyzer 

rotation along the spatial position of the NR, and DF images of the NR║ at four representative analyzer 

angles of 0°, 30°, 60°, and 90°. Schematics showing the orientations of the key measurement components 

are also provided in Figure 2. The set of data in Figure 2A represents typical scattering responses of ZnO 

NRs lying along the y-axis when they are illuminated with an incoming light oriented parallel to the long 

axis of the NR, i.e., E║. ZnO NRs used in our study are free of atomic defects and they do not absorb 

any visible light or show any defect emission in the visible wavelength range. Hence, the scattering 

signal from individual ZnO NRs collected at the same wavelength as the incident light is not associated 

with any type of inelastic scattering phenomena. The scattering intensity of the NR║ decreases as the 

analyzer angle is changed from parallel (0°) to perpendicular (90°) with respect to the incident 

polarization direction and recovers back to its full scattering intensity when the analyzer rotation is 

increased from 90° to 180°. This trend in the NR║ scattering intensity is quantitatively confirmed in the 

3D contour plot in Figure 2A in which the highest intensities are observed at 0° and 180° while the 

lowest intensity is observed at 90°. These analyzer angle-dependent changes in NR scattering intensity 

are further evidenced quantitatively in the 2D projection map and qualitatively in the four representative 

DF images of the ZnO NR sampled at analyzer rotations of 0°, 30°, 60°, and 90°.  

When the same NR║ is examined under the incident laser polarized orthogonal to the NR long axis 

(E┴) instead, analyzer angles at which the maximum and minimum scattering occurs are reversed from 

the previously discussed E║ case. Highest NR║ scattering is observed at the analyzer angle of 90° whilst 

the lowest is observed at 0° and 180°, as presented in the 3D contour plot in Figure 2B. Similar to the 

previously discussed case, the 2D projection map of the NR scattering intensity as well as the 

representative DF panels further demonstrates that, under E┴ illumination, the highest (and lowest) 

scattering from the NR║ is yielded at the analyzer rotation of 90° (and 0° and 180°). For both cases of 

NR║ scattering using E║ and E┴, the highest scattering intensity is achieved when the incident E field is 

parallel to the analyzer rotation, while the lowest scattering is observed when the incident E field is 

perpendicular to the analyzer angle. When comparing the measured scattering intensities along the 

position of the NR at the analyzer angles yielding the maximum signal for each of the E║ and E┴ case, 

we notice that the scattering intensity gradually increases from one end towards the other end of the NR. 

This effect is not likely due to uneven illumination of the NR as the beam size (approximately 50 μm) 

is much larger than the NR dimensions. Rather, this phenomenon may be caused by the light coupling 

through the NR end located closer to the incident light wave vector, which is then guided through the 

NR main body before coupling out through the other end of the NR.  
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Figure 2. Scattering of a single ZnO NR (138 nm in diameter, 8.06 μm in length) measured 

by using two polarization directions of an incoming laser (E║ and E┴) on the NR oriented in 

the y direction (ZnO NR║). Scattering intensity is measured with respect to the position along 

the length of the 1D nanomaterial as well as the analyzer angle. (A) The 3D contour plot 

summarizes scattering results from a ZnO NR║ under the excitation of E║ as a function of 

both the analyzer angle and the spatial position on the NR. The highest and lowest scattering 

is observed when the collection polarization angle is set parallel (0°) and perpendicular (90°) 

to the incoming polarization direction, respectively. The phenomenon is clearly seen in the 

2D projection of the scattering intensity with respect to the analyzer angle at each position 

along the length of the ZnO NR║. Color schemes used in the 2D plot are the same as the 

scattering intensity level profiled in the 3D contour graph. A series of grey-scale panels are 

the scattering images obtained from the ZnO NR measured at the analyzer angle of 0°, 30°, 

60°, and 90°, presented from left to right, respectively. (B) The same set of scattering 

measurements was repeated by using the orthogonal excitation of E┴ as functions of the 

analyzer angle and the spatial position on the same ZnO NR║ shown in (A). Similar to what 

was observed under E║, highest and lowest scattering from the NR occurred when the 

analyzer angle was set parallel and perpendicular to E┴, respectively. In (B), those analyzer 

angles correspond to 90° for the former and 0° for the latter case.  
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In Figure 3, the scattering signal over the entire length of the ZnO NR║ is further processed and 

compared for the two excitation conditions of E║ and E┴ by plotting NR-position averaged scattering 

values against the analyzer rotation. Specifically, the scattering dependence of the ZnO NR║ on the 

incoming E-field polarization is evaluated by plotting the average scattering intensity, normalized 

scattering intensity, and polarization anisotropy (PA) as a function of the analyzer rotation in  

Figure 3A, B, and C, respectively. In all graphs of Figure 3, data collected from the two cases of E║ and 

E┴ (and their respective curve fits) are represented as red and blue points (and lines), respectively. For 

the normalized intensity plots, the average scattering intensity is normalized with respect to the highest 

and lowest intensity values measured at each excitation condition. The PA values plotted in Figure 3C 

are obtained by the equation shown below, which defines PA as the ratio of the difference between the 

scattered light intensities for polarized light under E║ and E┴ to the sum of those values at a given 

analyzer angle.  PA = I ∥ − I ┴I ∥ + I ┴ (1) 

When the scattering intensity values are taken at the analyzer angles allowing the highest signals for 

E║ and E┴ (I of 6800 and 2000, respectively), then the above equation yields a PA value of 0.55 from 

this measurement configuration. 

We note a characteristic trend of the NR║ scattering intensity (I) as function of analyzer angle, which 

reveals a sinusoidal pattern as shown in Figure 3 A, B, and C. When fitting the experimental data 

obtained under the two cases of E║ and E┴, the scattered signal from the ZnO NR║ is directly proportional 

to the square of the cosine of the angle (θ) between the transmission axis of the analyzer and the incident 

polarized light. This behavior is similar to what is known as Malus’s law, which describes the  

angle-dependent intensity of plane-polarized light incident on an analyzer and demonstrates that the 

same macroscopic behavior can be carried over to explain the analyzer angle-dependent intensity of a 

scatter whose width is only a few hundred nanometers. In these instances, the intensity of the light 

transmitted by the analyzer is directly proportional to the square of the cosine of the angle between the 

transmission axes of the analyzer and the polarizer, I = I0 cos2(θ). Furthermore, in comparing the average 

intensity values of the scattered light from the same ZnO NR║ between E║ and E┴, the maximum NR 

scattering intensity under E║ is approximately 3.5 times greater than scattering from E┴. This value was 

obtained by keeping the exposure time constant at 50 ms for both orientations of the incident light. Figure 

3D,E provides polar plots of the ZnO NR║ in order to reveal the effect of E║ and E┴ on the degree of 

polarization in ZnO NR║. When evaluating the corresponding polar intensity plots in Figure 3D,E for 

the effect of E║ and E┴ on NR║ scattering, a stronger polarization anisotropy effect is seen under E║ as 

evidenced by the narrower waist of the dipolar plot in Figure 3D in comparison to that in Figure 3E. NRs 

with high shape anisotropy will result in dipolar scattering patterns with tightly closed centers, whereas 

the patterns will open up in the center and become circular instead when the length of the nanomaterial 

reaches its width.  
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Figure 3. The NR-position dependent scattering signals under the two excitation conditions 

of E║ and E┴ were collected over the entire length of the ZnO NR║ and plotted against the 

analyzer rotation. Red and blue symbols in all graphs are the experimental data when 
excitation polarizations of E║ and E┴ were used, respectively. Lines represent curve fits for 

the corresponding set of data. (A) The position-dependent scattering signal was averaged 

over the entire length of the NR║ and plotted as a function of the analyzer angle. For the 

same exposure of 50 ms, the overall scattering intensity from the same NR was much lower 

when E┴ was used as excitation instead of E║. (B) The average scattering intensity was 

normalized with respect to the highest intensity values measured at each excitation condition 

and graphed as a function of the analyzer rotation. (C) Polarization anisotropy values 

calculated from the data shown in (B) follow a cos2θ dependence on the analyzer angle, θ. 

(D,E) Polar plots of average scattering intensities from the ZnO NR║ under (D) E║ and (E) 

E┴ excitation are shown. 

Scattering Characteristics of NR┴ under E║ and E┴. Subsequently, the scattering characteristics of 

x-axis oriented ZnO NRs (NR┴) were investigated as a function of the position along the NR┴ and the 

analyzer rotation for both the incident E fields of E║ and E┴. The results are provided in Figure 4 along 

with the schematics showing the orientations of the key measurement components. The 2D projection 
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maps and 3D contour plots in Figure 4A,B display the typical scattering response of NR┴ under the 

incident light with E║ and E┴ polarizations, respectively, as a function of the analyzer angle.  

The data in Figure 4 reveal that the scattering behavior of NR┴ is strikingly different than that of NR║. 

The scattering signal from the NR┴ is highly localized at the two ends (basal planes) of the NR┴ upon 

illumination with either E║ or E┴. Variations in the analyzer rotation lead to changes in this highly 

localized scattering intensity at each end, resulting in either even brightening/dimming of the two ends 

under E║ or alternating brightness between the two ends under E┴. This tendency is displayed in the four 

DF panels provided in Figure 4A,B. At the same time, scattering is completely absent along the main 

body (prismic planes) of the NR┴ despite the variations in E║ and E┴ or in the analyzer setting. This 

discontinuity in scattering intensity along the position of the NR┴ is embodied as the NR edge peaks in 

the 2D and 3D plots of Figure 4 as well as in the one (or two) bright NR end spots in the four 

representative DF images. In comparison, the scattering intensity from NR║ detailed in Figures 2 and 3 is 

relatively uniform spatially along the length of the NR║, regardless of the polarization of the incident light.  

Both the 2D projection maps and 3D contour plots in Figure 4A,B clearly present the spatially 

resolved, NR┴ scattering intensity along the position on the NR as a function of the analyzer angle probed 

from 0° to 180° with an increment of 10°. When the analyzer setting is varied incrementally from 0° to 

90° under E║, a decreasing trend in NR┴ scattering intensity is observed as seen in the DF panels in 

Figure 4A. The data in Figure 4A display the highest intensities monitored at 0° and 180° while the 

lowest is observed at 90°, showing the same trend as those observed in the (NR║, E║) case. This 

observation is due to the maximum scattering intensity being transmitted through the analyzer when its 

polarization vector is aligned with the polarized direction of the incident light. On the other hand, the 

scattering intensity of the same NR┴ under E┴ in Figure 4B shows more complicated behaviors. In this 

case, a small degree of polarization demixing is observed and the scattering does not become uniformly 

weaker at all positions of the NR even at the analyzer angle perpendicular to the incident polarization. 

Although the cause is not understood yet, this effect leads to the an interesting optical phenomenon 

evidenced in Figure 4B by the switching of the bright ends in the series of NR scattering panels at 

different analyzer rotation, as well as in the 2D map showing the alternating analyzer angles of the two 

NR ends corresponding to the maximum scattering intensity. The observed rotation of the polarization 

from one end to the other of the NR may be related to the fact that ZnO is a birefringent material.  

In order to substantiate the polarization-dependent scattering behavior of ZnO NR┴ under the two 

cases of the incident laser, Figure 5 further displays the quantitative scattering data measured from the 

ZnO NR┴ discussed in Figure 4. Figure 5A displays the scattering signal averaged over the entire length 

of the NR┴ in response to E║ (red points) and E┴ (blue points) while systematically varying the analyzer 

angle. Red and blue lines in the graphs are the curve fits of the respective data. Figure 5B shows the 

scattering intensity as a function of analyzer rotation after normalizing the signals with respect to the 

highest and lowest intensity values measured at each excitation condition. The exposure time was kept 

constant at 10 ms between the two laser polarizations. The scattering intensity of the NR┴ is 

approximately 2.5 times greater under E║ irradiation than under E┴, yielding a PA value of 0.428. When 

taking the different NR orientations into consideration, a larger difference between the average scattering 

intensity values from E║ and E┴ illumination is observed for NR║ than for NR┴. Figure 5C presents the 

calculated PA values at each analyzer angle for the NR┴. Figure 5D,E provide polar intensity plots of 

the average scattering intensities from the ZnO NR┴ under E║ (red) and E┴ (blue) radiation. Similar to 
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the behavior observed in NR║, the polar plots show a dipole-like pattern with a tightly closed center for 

E║ excitation while the dipolar plot is slightly open at the center under E┴. 

 

Figure 4. Scattering of a single ZnO NR (184 nm in diameter, 10.15 μm in length) measured 

by using two polarization directions of an incoming laser (E║ and E┴) on an NR oriented 

along the x-axis (ZnO NR┴). Scattering intensity was measured with respect to the position 

along the length of the 1D nanomaterial as well as the analyzer angle. (A) The 3D contour 

plot summarizes scattering results from a ZnO NR┴ under the excitation of E║ as a function 

of both the analyzer angle and the spatial position on the NR. A striking difference in the 

scattering signal was seen along the length of the NR┴. Intense scattering occurred only on 

the two ends of the NR┴ where the signal along the main body of NR┴ was negligible. This 

phenomenon is also clearly seen in the 2D projection of the scattering intensity with respect 

to the analyzer angle at each position along the length of the ZnO NR┴. Color schemes used 

in the 2D plot are the same as the scattering intensity levels profiled in the 3D contour graph. 

A series of grey-scale panels are the scattering images obtained from the ZnO NR measured 

at the analyzer angle of 0°, 30°, 60°, and 90°, respectively. (B) The same set of scattering 

measurements was repeated by using the orthogonal excitation of E┴ as a function of both 

the analyzer angle and the spatial position on the same ZnO NR┴ shown in (A).  
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Figure 5. The NR position-dependent scattering signals under the two excitation conditions 

of E║ and E┴ are collected over the entire length of the ZnO NR┴ and plotted against the 

analyzer rotation. Red and blue symbols in all graphs are experimental data when the 

excitation polarizations of E║ and E┴ are used, respectively. Lines represent curves fits for 

the corresponding set of data. (A) The position dependent scattering signal averaged over 

the entire length of the NR┴ is plotted as a function of the analyzer angle. The overall 

scattering intensity from the same NR was much lower when E┴ was used as excitation 

instead of E║ while keeping the same exposure time of 10 ms. (B) The average scattering 

intensity was normalized with respect to the highest intensity values measured at each 

excitation condition and graphed as a function of analyzer rotation. (C) Polarization 

anisotropy values calculated from the data shown in (B) follow a cos2θ dependence on the 

analyzer angle, θ. (D and E) Polar plots of average scattering intensities of the ZnO NR┴ 

under (D) E║ and (E) E┴ excitation are displayed.  

Scattering Behavior Distinctive to Each Light-Matter Pair of (NR║, E║), (NR┴, E┴), (NR║, E┴) 

and (NR┴, E║). The most striking difference in scattering behaviors for the four cases shown in Figures 

2 and 4 can be summarized by the fact that y- and x-axis oriented ZnO NRs give rise to continuous 

(relatively evenly distributed) and discontinuous (highly localized) scattering, respectively, when 
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analyzed as a function of the position on the NR. As detailed above, the scattering signal is observed 

only from the end(s) of NR┴ regardless of the orientation of the incident polarized light and the analyzer 

rotation, whereas scattering signal from NR║ is present continuously from all positions of the NR. If the 

incident light enters normal to the sample plane, the symmetry in measurement conditions between the 

NR long axis and polarization direction present in the set of (NR║, E║) and (NR┴, E┴) as well as in the 

set of (NR║, E┴) and (NR┴, E║) will yield identical scattering patterns for the two cases within the same 

set. Our data, summarized in Figures 2 and 4 and displaying distinctively different scattering behaviors 

monitored from the four different cases, correspond to the glancing laser light entering with an incident 

angle (θin) of approximately 62°, as illustrated in Figure 1(ii). Further work is currently underway via 

computer simulation studies to understand the exact roles of the glancing incident light and the possible 

origins of the distinctive scattering profiles specific to each polarization and NR orientation case.  

Back-Aperture Imaging. We subsequently examined the polarization-dependent spatial 

distributions of the scattering patterns from individual ZnO NRs by carrying out back-aperture imaging 

as shown in the schematics of Figure 6. Superpositioned plane waves, each defined by a unique wave 

vector in reciprocal space, radiate from ZnO NRs, and their directional and spatial scattering information 

can be accessed by back-aperture imaging. This is possible since the objective lens focuses these 

individual plane waves into different spots with unique spatial coordinates at the back focal plane of the 

lens. Hence, the back focal plane of the objective lens contains the spatial information on scattering 

directionality. Back-aperture imaging refers to acquiring Fourier transformed images of the scattering 

electric field distribution from the objective lens on the back focal plane, a plane perpendicular to the 

optical axis of the objective lens at its focal distance. For back-aperture imaging of the NRs, a set of 

optical elements containing a Fourier lens was used as displayed in the setup in Figure 1(iii). This setup 

enabled us to carry out the back-aperture imaging of the same NRs immediately after the forward 

scattering measurements, while collecting the signal only from the NR of interest with the use of an iris. 

To switch back and forth between forward scattering and back-aperture imaging modes, the removable 

lens, which is the last lens between the iris and the detector, is simply inserted into the imaging path to 

form a focused image on the detector for the forward DF scattering and removed to collimate the beam 

for the back-aperture imaging, as indicated with the beam path in red and purple in Figure 1(iii), 

respectively. Similar to the forward scattering experiment, both directionality and intensity of the 

scattered radiation from individual NRs are probed with respect to the angle between analyzer and the 

transmission axis.  

Specifically, we carried out back-aperture imaging for both NR║ and NR┴ under E║ and E┴ 

illumination at the analyzer setting from 0° to 170° for measurements at every 10°. The resulting 

scattering patterns at four representative analyzer angles of 0°, 30°, 60°, and 90° are presented in Figure 

6A and categorized by the polarization direction of the incident E vector (Edir), the analyzer angle (θ), 

and the orientation of the NR. For the ZnO NR║ in both the cases of E║ and E┴, the  

back-aperture images reveal that the scattering patterns appear as a strip of horizontal bands that are 

perpendicular to the NR orientation on the back focal plane. For the NR║, the scattering intensity is the 

strongest when the incident E field is parallel with the analyzer rotation at 0° for E║ and 90° for E┴, 

while the emission is weakest when the E field is perpendicular to the analyzer at 90° for E║ and 0° for 

E┴. This tendency agrees with the forward scattering intensity of ZnO NRs whose results were discussed 

earlier. For ZnO NR┴, a ripple-like scattering pattern is observed instead for both E║ and E┴ illumination. 
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The rippled patterns are formed due to the interference patterns of the concentrically propagating waves 

originating from the two points that correspond to the two end scattering points of the NR┴. Although 

the intensity of the NR┴ back focal pattern is most pronounced when the incident E field is parallel with 

respect to the analyzer angle at 0° for E║ and at 90° for E┴, the intensity differences are not as noticeable 

as for the case of NR║. In our forward scattering measurements on NR║ described in Figures 2 and 3, 

the entire NR scatters light along the entire NR length. This position-independent presence of scattering 

signal results in the linear band-like pattern recorded on the back focal imaging plane. Light response 

from NR┴ in our forward scattering measurements is observed only at the two end facets of the NR as 

discussed in Figures 4 and 5, and the presence of its scattering signal is highly sensitive to the position 

on the NR. This effect is manifested into the ripple-like patterns on the back-aperture. Therefore, our 

back focal imaging results of ZnO NRs confirm the optical response observed in our forward scattering 

measurements.  

 

Figure 6. Back-aperture images of the scattering signal from ZnO NRs of different spatial 

orientations when varying the polarization direction of excitation as well as the analyzer 

angle. To collect the set of back-aperture images, the excitation direction of E║ and E┴ were 

used at representative collection angles of 0°, 30°, 60°, and 90°. ZnO NR║ exhibited a linear 

radiation pattern rotated 90° from the physical orientation of the NR in the measurement 

plane. ZnO NR┴ displayed ripple-like radiation patterns emanating from two focal points 

(the two scattering ends of the NR┴), that mimic interference patterns seen from radially 

propagating waves from two different centers. 
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The polarization-dependent scattering response resolved in this study can, therefore, provide insight 

into the optical signal expected from individual ZnO NRs depending on their orientation in the 

measurement plane. Highly increased signal confined in the NR termini has been previously reported in 

near band edge (NBE) photoluminescence and biomolecular fluorescence of ZnO NRs, although the 

effect of polarization-, orientation-, and position-dependence of the NRs was not systematically 

evaluated. When unpolarized light was used as an excitation source to probe NBE emission from ZnO 

NRs, the two NR ends exhibited stronger photoluminescence intensity when compared to the NR  

body [22]. In addition, an interesting phenomenon of fluorescence intensification on ZnO NR ends was 

reported in recent studies involving fluorophore-coupled biomolecules on individual ZnO NRs [36,39]. 

The outcomes of our study demonstrate that a similar, highly spatially localized scattering can be 

achieved by controlling the NR orientation with respect to the direction of light polarization. Therefore, 

our results from this study suggest that even richer and novel optical behaviors can be identified when 

scattering, photoluminescence, and fluorescence/Raman emission of individual nanomaterials are 

further examined with well-characterized light polarization and nanomaterial orientation. Our efforts, 

signifying a systematic scattering investigation of the non-trivial case of glancing incident light with 

controlled polarization, may be highly valuable in interpreting and predicting characteristic optical 

responses collected from individual NRs of specific orientations. Coupled with the capability of 

discerning scattering intensity along the position of the NR as well as elucidating the spatial distribution 

characteristics of the scattered light, our endeavors may be extremely beneficial to the optimal design of 

optical devices with improved sensitivity and advantageous in terms of accurate interpretation of the 

collected optical signal based on the light polarization direction and NR orientation. We also note that 

further work pertaining to the intriguing ZnO NR scattering profiles is ongoing by examining the system 

with different wavelengths and NR orientations in order to elucidate the fundamental mechanisms 

leading to the NR orientation-dependent scattering patterns as well as the spatial distributions. 

3. Summary 

In summary, we have performed forward scattering measurements of single ZnO NRs in a  

dark-field configuration and elucidated their characteristic, polarization-resolved optical response under 

well-controlled experimental parameters such as incident light polarization, NR orientation, and analyzer 

rotation. We have also carried out back-aperture imaging of the same individual ZnO NRs and 

systematically examined the spatial radiation directivity of the scattering signal. We have quantitatively 

catalogued the effect of light polarization, NR orientation, and position along the NR on both the 

intensity of the resulting scattering signal as well as the corresponding spatial distribution pattern of ZnO 

NR scattering. Since fundamental light interaction behavior of NRs will significantly affect their 

functional outcomes in photonics, optoelectronics, and sensor devices, our endeavors presented in this 

paper will not only provide much needed insight into the unique optical properties of individual 1D ZnO 

nanomaterials in light-matter interaction but also signify an important step forward to developing next-

generation optoelectronic systems and optical biodetectors with improved device efficiency and sensitivity. 
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4. Materials and Methods 

Sample Growth and Assembly. 1 × 1 cm Si wafer (0.017 in. thickness) obtained from Silicon, Inc 

was cleaned by sonication in ethanol and dried under a stream of N2. For individual ZnO NRs, 20 μL of 

20 nm Au colloid (Ted Pella, Inc) was deposited on a Si wafer for 5 min and gently blown dry with N2. 

The source materials, 0.45 grams of a 2:1 mixture of graphite (99%) and zinc oxide powders (99.999%) 

obtained from Alfa Aesar Inc., were placed in a quartz boat at the center of a horizontal resistance 

furnace, and a target boat containing the catalyst-deposited Si substrate was placed 15.6 cm downstream. 

The furnace was heated to 950 °C for 2 h at a ramp up/ramp down rate of 15°C/min under a constant Ar 

flow of 100 standard cubic centimeters per minute. Various aspect ratios of ZnO NRs were achieved by 

slight alterations to the distance between the source materials and the growth substrate. ZnO NRs were 

subsequently sonicated off their growth substrates in ethanol and 2 μL aliquots of dispersed ZnO NRs 

were subsequently drop-casted onto on to a clean glass slide and then dried with N2. A small drop of 

glycerol (n = 1.4729) was placed on top of the ZnO NRs on the glass slide and a cover slip was slowly 

lowered onto the sample while avoiding bubble formation.  

Forward Dark-Field Scattering and Back-Aperture Imaging. When performing the forward 

scattering measurements, a linearly polarized 642 nm laser (Spectra Physics Excelsior-PS-DD-CDRH 

with an average output power of 60 mW, Newport Corp., Bozeman, MT) was focused onto the ZnO NR 

plane from below the sample stage after passing through a half-lambda (HL) wave plate and a neutral 

density filter wheel (Thorlabs Inc., Newton, NJ). The HL plate controlled the orientation of the E field 

vector of the laser on the NR plane, as seen in Figure 1. The polarized laser was directed to the sample 

through a high numerical aperture (N.A. = 1.2~1.4), oil-immersion DF condenser mounted below the 

stage and subsequently focused onto individual NRs of investigation. An analyzer was placed between 

the microscope tube lens and the CCD detector to examine polarization anisotropy of the scattered light 

from individual NRs. Scattering signal was collected by using a 40 × plan apochromatic objective lens 

(Olympus PlanSApo, N.A. = 0.90, Olympus Corp., Center Valley, PA). Scattered light from the ZnO 

NR sample was collected at specific analyzer angles in order to investigate the polarization dependence. 

For a given NR, a set of eighteen analyzer settings were used from 0° to 170° in 10° interval. 

Additionally, back-aperture imaging of individual ZnO NRs was performed by adding a home-built 

optical attachment to our forward scattering setup. The optical addition employed to examine the spatial 

distribution of the scattered light contained an iris and a removable lens. Data from the forward scattering 

and back-aperture imaging measurements were processed and analyzed using Origin 8.5 software 

(OriginLab Corp., Northampton, MA) and Image J, the Java-based image-processing program. 
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