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Abstract: Cilia are slender flexible structures extending from the cell body; genetically 

similar to flagella. Although their existence has been long known, the mechanical and 

functional properties of non-motile (“primary”) cilia are largely unknown. Optical traps are 

a non-contact method of applying a localized force to microscopic objects and an ideal tool 

for the study of ciliary mechanics. We present a method to measure the mechanical 

properties of a cilium using an analytic model of a flexible, anchored cylinder held within an 

optical trap. The force density is found using the discrete-dipole approximation. Utilizing 

Euler-Bernoulli beam theory, we then integrate this force density and numerically obtain 

the equilibrium deformation of the cilium in response to an optical trap. The presented 

results demonstrate that optical trapping can provide a great deal of information and insight 

about the properties and functions of the primary cilium. 

Keywords: primary cilium; optical trapping; Euler-Bernoulli 

 

1. Introduction 

Eukaryotic non-motile cilia [1] are slender structures extending from the bodies of cells, 0.2 

microns in diameter and several microns long, the specific length being regulated by the cell itself [2]. 
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Although their existence has been long known, knowledge of their mechanical [3–5], sensory [6,7] and  

functional [8–10] properties is still incomplete. After considerable effort, sophisticated models of the 

ultrastructure [11–13], equilibrium [14] and dynamic [15–17] response of cilia to applied fluid flow 

exist. However, these models make use of material parameters that are incompletely measured, such as 

the elastic and shear moduli [3–5,16,18]. One of our overall goals is to better measure the mechanical 

properties of primary cilia to gain fresh insight regarding the functional significance of this organelle. 

Optical traps are a non-contact method of applying a localized force to microscopic objects and an 

ideal tool for the study of ciliary mechanics. Optical scattering and gradient forces on micrometer  

scale particles were first reported in 1970 [19]. Optical trapping in three dimensions via a single laser 

beam (“gradient trapping”) was reported shortly thereafter [20]. Optical trapping is already used for 

determining the mechanical properties of microtubules [21] and similar cytoskeletal structures; 

previous optical techniques for cilia often involve attaching dielectric spheres to the tip [18,22]. 

However, the sensory nature of the primary cilium implies that it is preferable to generate and measure 

the deformation of a cilium in a non-contact fashion, and from this deduce the elastic modulus and 

refractive index. We have previously demonstrated the ability to measure the force applied by an optical 

trap in the absence of information about the optical or physical properties of the trapped object [23]. 

Figure 1 presents a schematic of the measurement; a cilium is trapped and the trap is displaced from 

the center of the (undeformed) cilium by a distance “δy” and base of the cilium by a distance “δz”; the 

flexible cilium deforms in response to the applied load. A detailed description of the apparatus has 

been presented in [23]. 

 

Figure 1. A cilium is trapped with trap displaced from the center of the base by a distance 

“δy”; the flexible cilium deforms in response to the applied load. The resulting shape is 

shown when the trap is located at the distal tip of the cilium, but in general is located a 

distance “δz” from the cell surface. 

The Electric Field and the discrete dipole approximation (DDA) 

Cilia are slender dielectric cylinders and due to their size, can be considered optically 

homogeneous. Because cilia are oriented along the optical axis of the trapping beam, scattering 

algorithms based on for example, Mie scattering, break down [24–26]. As detailed in Ref. [26], the far-

field scattered intensity contains a term 1/cos(θ) that diverges as the light propagation axis becomes 

parallel with the cylinder axis (θ = 90°). The discrete dipole approximation (DDA) is an alternate 
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means of calculating the force on non-spherical particles [27–30]. In DDA, objects are modeled as a 

collection of interacting dipoles. The DDA approach, being a first-order approach, suffers from 

difficulties if the relative refractive index is high. As discussed in [31], our system with a low relative 

refractive index (∆n ≈ 0.02) can be modeled reasonably well with the DDA approach. Higher-order 

corrections to DDA have been developed [31] but are beyond the scope of this paper. The local electric 

field at dipole “I” is a combination of the electric field of the beam and the scattered field from the 

other dipoles 

𝑬(𝒓𝑖) = 𝑬
𝑏𝑒𝑎𝑚(𝒓𝑖) +∑ 𝑮(𝒓𝑖 , 𝒓𝑗)𝒑(𝒓𝑗)

𝑖≠𝑗
 (1) 

where 𝑮(𝒓𝑖 , 𝒓𝑗) is the dyadic Green’s function and the polarization 𝒑(𝒓) = α(𝒓)𝑬(𝒓) with α(𝒓) the 

Clausius-Mossotti polarizability [30] α(𝒓) = 3ϵ𝑚ϵ0δ
3 (ϵ(𝒓) − ϵ𝑚) (ϵ(𝒓) + 2ϵ𝑚)⁄ , where δ is the 

separation between dipoles and ϵ𝑚  the relative permittivity of the surrounding cell culture media. 

Optically, the cilium is approximately homogeneous so ϵ(𝒓𝑖) ≅ ϵ(𝒓𝑗) ≡ ϵ𝑐  and (𝒓𝑖) ≅ α =

3ϵ𝑚ϵ0δ
3 (ϵ𝑐 − ϵ𝑚) (ϵ𝑐 + 2ϵ𝑚)⁄ . 

Modeling the optical trap as a focused linearly-polarized (taken to be in the ‘y’ direction) Gaussian 

laser beam propagating in the ‘z’ direction, the incident field can be written as 

𝑬𝑏𝑒𝑎𝑚(𝒓𝑖) = 𝐸0
ω0
ω𝑖
𝑒𝑥𝑝(−ρ𝑖

2 ω𝑖
2⁄ )𝑒𝑥𝑝(𝑖[𝑘(𝑧𝑖 − δ𝑧) − η𝑖 + 𝑘ρ𝑖

2 2𝑅𝑖⁄ ])𝑦̂ (2) 

where: 

 Electric field field amplitude 𝐸0 = [4𝑃 𝑐ϵ0ϵ𝑚πω0
2⁄ ]1/2  

 Trap beam waist ω0 = λ0 𝑛𝑚π𝑠𝑖𝑛
−1(𝑁𝐴/𝑛𝑚)⁄  

 Trap beam diameter at dipole ‘i’ ω𝑖 = ω0[1 + [(𝑧𝑖 − δ𝑧) 𝑧0⁄ ]2]1/2 

 Wavenumber 𝑘 = 2𝜋𝑛𝑚 λ0⁄   

 Rayleigh length 𝑧0 =
1
2⁄ 𝑘ω0

2  

 η𝑖 = 𝑡𝑎𝑛
−1[(𝑧𝑖 − δ𝑧) 𝑧0⁄ ] 

 Radius of curvature 𝑅𝑖 = 𝑧𝑖 − δ𝑧 + [𝑧0
2 (𝑧𝑖 − δ𝑧)⁄ ] 

 Radial coordinate ρ𝑖 = [(𝑥𝑖 − δ𝑥)
2 + (𝑦𝑖 − δ𝑦)

2]1/2 

 P the optical power 

 NA the numerical aperture of the focusing lens, and  

 δx, δy, δz are the displacement of the center of the beam waist from the coordinate origin, 

which we place at the center of the base of the cilium.  

For the numerical calculations performed here, P = 0.5 W, NA = 0.95, and λ0 = 1.064 µm, 

corresponding to our experimental apparatus. The culture media is an aqueous saline solution with 

estimated refractive index nm =1.33, resulting in z0 = 1.2 μm and ω0 = 0.32 μm. When appropriate, we 

set the refractive index of the cilium nc = 1.35, based on the chemical composition of the cilium [6]. 

Similarly, for numerical calculations presented here, we set the length of a cilium h = 3 µm and 

diameter d = 0.2 µm. The length of the cilium is regulated by the cell in response to stimulation by flow [6] 

or other biochemical factors (for example, [32]), and 3 μm is a typical length. 

We note that in this paper, Equation (2) models the focused laser beam using the paraxial 

approximation even though our microscope objective is specified as sin(θ) = 0.71, corresponding to an 



Photonics 2015, 2 607 

 

 

error of 12% as compared to sin(θ) = θ. Incorporating higher-order corrections, for example [33] or 

using vectorial diffraction theory [34] is beyond the scope of this paper. 

2. Results 

2.1. The Force on a Dipole and the Force Density 

In Appendix A and Figure 2 it is shown that for our experimental conditions the fraction of the 

electric field produced by neighboring dipoles provides a negligible contribution to the total field, 

greatly simplifying the analysis. Ignoring the scattered field contributions, the force on an individual 

dipole can be calculated using 𝑭(𝒓𝑖) =  
α
2⁄ ∇𝑖(𝑬𝑖

𝑏𝑒𝑎𝑚∗ ∙ 𝑬𝑖
𝑏𝑒𝑎𝑚). 

 

Figure 2. (a) A plot of the points in a discretized cilium; (b) A plot of the ratio of the 

scattered electric field in the y direction from the other dipoles to the total electric field in 

the y direction as a function of s (microns) along the length of the cilium for (δx, δy, δz) = 

(0 µm, 0 µm, 1.5 µm). Notice that the field from the other dipoles is never more than 3/100 

of the total field. 

For the y-polarized beam 𝑭(𝒓𝑖) = 𝐹(𝒓𝑖)𝑦̂: 

𝐹(𝒓𝑖) = −2α𝐸0
2
ω0
2

ω𝑖
4 (𝑦𝑖 − δ𝑦)𝑒𝑥𝑝(−2ρ𝑖

2 ω𝑖
2⁄ ) (3) 

Extending this result by passing from discrete dipoles to a continuous distribution suggests a force 

density ‘f’ in the y direction of the form 

𝑓(𝒓) = −2α𝐸0
2
ω0
2

ω(𝑧)4
(𝑦 − δ𝑦)𝑒𝑥𝑝(−2ρ(𝑥, 𝑦)2 ω(𝑧)2⁄ ) (4) 

Modeling the cilium as a circular cylinder of diameter ‘d’ and height ‘h’ with base centered at the 

origin and axoneme oriented in the z direction, the total force in the y direction is given by 

𝐹 = ∫ ∫ ∫ 𝑓(𝒓)
√(𝑑/2)2−𝑦2

−√(𝑑/2)2−𝑦2

𝑑/2

−𝑑/2

ℎ

0

𝑑𝑥𝑑𝑦𝑑𝑧 (5) 
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2.2. The z Dependence of the Force Density and the Bending of a Cilium 

Here we use time-independent Euler–Bernoulli beam theory [35], valid for small static 

deformations of beams under constant load. The load on the cilium at a particular value of ‘z’ is given 

by integrating the force density over the cross section of the cilium at that value of ‘z’.  

The displacement of the centerline of the cilium in the y direction (‘Y’) at any position along its 

length, parameterized by ‘s’, is given by solving the differential equation: 

𝐸𝐼
𝑑4𝑌

𝑑𝑠4
= 𝐹(𝑠) = ∫𝑓(𝑠)𝑑𝐴(𝑠) =∫ ∫ 𝑓𝑑𝑥𝑑𝑦

√(𝑑 2⁄ )2−[𝑦−𝑌(𝑠)]2

−√(𝑑 2⁄ )2−[𝑦−𝑌(𝑠)]2

𝑑
2
+𝑌(𝑠)

−[
𝑑
2
+𝑌(𝑠)]

 (6) 

where E is the elastic modulus (the mechanical property we wish to measure), I is the second moment 

of area of a cross section of the cilium I = πd4, and boundary conditions Y(0) = 0, Y'(0) = 0, Y''(h) = 0, 

and Y'''(h) = 0. These boundary conditions correspond to a “simply supported” beam with “free end”. 

Extension to the time-dependent problem (say, for oscillatory or pulsatile applied flow occurring in 

vivo) is straightforward but not relevant for this report. In Equation (6), we modeled the cilium as a 

stack of infinitesimally-thin disks of diameter ‘d’, each laterally displaced by an amount Y(s). The 

coordinate s is related to z by ds2 = dz2 + dY2. For small deformations, s ≈ z. When appropriate, we set 

E = 1.2 * 10-8 N * μm−2 based on published reports [5,17,36–38]. 

2.3. The General Case 

Equation (6) is not, in general, analytically solvable. Instead, we used an approximate analytic 

solution using series representations, giving:  

∫𝑓(𝑠)𝑑𝐴

≅ 6ϵ𝑚ϵ0
ϵ𝑐 − ϵ𝑚
ϵ𝑐 + 2𝜖𝑚

ω0
2𝐸0

2

×∑∑ ∑ ∑∑∑∑
8(−1)𝑗+𝑘+𝑚+𝑝+𝑞

√𝜋𝑗! 𝑘! (2𝑘 + 1)(2𝑗 + 2𝑚 − 𝑝 − 𝑞 + 1)
 

∞

𝑟=0

2𝑚

𝑞=0

2𝑗

𝑝=0

∞

𝑚=0

2𝑘+1

𝑙=0

∞

𝑘=0

∞

𝑗=0

× (
2

ω(𝑧)2
)
𝑗+𝑘+1

(
𝑑

2
)
2𝑘+2𝑗+𝑚−𝑙−𝑝−𝑞−𝑟+3

(
2𝑘 + 1
𝑙

) (𝑘 +
1

2
−
𝑙

2
𝑚

)(
2𝑗
𝑝
) (
2𝑚
𝑞
)

× (
2𝑗 + 2𝑚 − 𝑝 − 𝑞 + 1

𝑟
) (δ𝑦)𝑝𝑌𝑞+𝑟(δ𝑥)𝑙 

(7) 

Appendix B derives this result, using the assumption that the beam is only displaced from the origin 

in the direction of polarization and z. Although Equation (7) is rather complex, it does converge 

rapidly, as shown in Figure 3. 
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Figure 3. Plots of Equation (7) with increasing numbers of terms, indicated on the plot.  

The series converges rapidly, indicating that only the first 5 or 10 terms are required for 

numerical evaluation. 

Using the series approximation, Equation (6) can be numerically solved, providing a final 

equilibrium deformed shape of the cilium. The model can also output other experimentally convenient 

parameters, for example the displacement of the cilium tip from equilibrium. 

Example plots of Equation (7) are shown for a representative experiment (Figure 4), allowing the 

displacement of the center of the trap relative to the cilium base to vary (Figures 5–7) and allowing the 

bending stiffness to vary (Figure 8). 

 

Figure 4. Example deformation of a primary cilium for a representative experiment.  

The trap parameters: incident power P = 0.5 W, trapping lens numerical aperture NA = 

0.95, and trap wavelength λ0 = 1.064 µm. The trap center was displaced from the cilium 

base by δy = 0.2 µm and δz = 2.5 µm. The cilium length is 3.0 µm. 
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Figure 5. Example deformation of a primary cilium for a representative experiment, 

showing the effect of allowing the vertical displacement of the trap from the cilium base δz 

= 0, 1.5, 3, and 4.5 µm. The trap parameters: incident power P = 0.5 W, trapping lens 

numerical aperture NA = 0.95, and trap wavelength λ0 = 1.064 µm. The trap center was 

displaced from the cilium axis by δy = 0.2 µm. The cilium length is 3.0 µm. 

 

Figure 6. Example deformation of a primary cilium for a representative experiment, 

showing the effect of varying the vertical displacement of the trap from the cilium base δz. 

Data graphs the displacement of the cilium tip Y(3) as δz is varied. The trap parameters: 

incident power P = 0.5 W, trapping lens numerical aperture NA = 0.95, and trap 

wavelength  

λ0 = 1.064 µm. The trap center was displaced from the cilium axis by δy = 0.2 µm. The 

cilium length is 3.0 µm. 
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Figure 7. Example deformation of a primary cilium for a representative experiment, showing 

the effect of varying the horizontal displacement of the trap from the cilium axis δy. Data 

graphs the displacement of the cilium tip Y(3). The trap parameters: incident power P = 0.5 W, 

trapping lens numerical aperture NA = 0.95, and trap wavelength λ0 = 1.064 µm. The trap 

center was displaced from the cilium axis by δz = 1.5 µm. The cilium length is 3.0 µm. 

 

Figure 8. Example deformation of a primary cilium for a representative experiment, 

showing the effect of varying the bending modulus of the primary cilium. Data graphs the 

displacement of the cilium tip Y(3). The trap parameters: incident power P = 0.5W, 

trapping lens numerical aperture NA = 0.95, and trap wavelength λ0 = 1.064 µm. The trap 

center was displaced from the cilium axis by δy = 0.5 µm and δz = 1.5 µm. The cilium 

length is 3.0 µm.  

2.4. A Very Narrow Cylinder 
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An alternative to the complicated approximation of the load from Equation (7) is to treat the cilium 

as a one-dimensional object, one dipole thick. This changes the polarizability to 

α = 3ϵ𝑚ϵ0π(
𝑑

2
)
2 ϵ𝑐 − ϵ𝑚
ϵ𝑐 + 2ϵ𝑚

δ(ρ) (8) 

Passing to a continuous medium, the differential equation describing the deformation of the cilium 

is 

𝑑4𝑌

𝑑𝑧4
≅

6𝑃

𝐸𝑐𝜋2𝑑2ω4
𝑛𝑐
2 − 𝑛𝑚

2

𝑛𝑐
2 + 2𝑛𝑚

2
(δ𝑦 − 𝑌)𝑒𝑥𝑝(−2(δ𝑦 − 𝑌)2/ω2) (9) 

where Y is the position of the center of the cilium. Figure 9 compares the results from Equations (7) and 

(9), showing that the 1-D approximation provides reasonable results as compared to the full 3-D 

expression. 

 

Figure 9. Example deformation of a primary cilium for a representative experiment, 

showing the effect of idealizing the primary cilium as a 1-D object. Finite cilium diameter 

(red), the 1-D idealized approximation (blue). The trap parameters: incident power P = 0.5 

W, trapping lens numerical aperture NA = 0.95, and trap wavelength λ0 = 1.064 µm. The 

trap center was displaced from the cilium axis by δy = 0.5 µm and δz = 1.5 µm. The cilium 

length is 3.0 µm. 

3. Discussion 

There are two aspects to our results presented above. First, we have demonstrated a method to 

calculate the applied force by an optical trap. We have shown that our model can output a variety of 

measurable results (cilium profile, tip displacement) as a function of several different experimental 

inputs (trap displacement, cilium mechanical properties). For example, in concert with measured data, 

we can determine the bending modulus of a primary cilium.  

The rationale for using optical trapping to stimulate a primary cilium rather than fluid flow is that 

optical traps apply a precise force to a single cilium, rather than apply a force to the entire apical 

surface of cells. Thus, optical trapping has specific advantages as a tool to study ciliary 
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mechanosensation. Since quantitative knowledge of the applied force is essential to use optical 

trapping in this context, our results provide justification and validation of our optical trap method. 

4. Conclusions 

The motivation for this work was to develop a method to accurately measure the mechanical 

properties of the primary cilium. Laser tweezers offers the ability to apply a quantified force in a non-

contact fashion. The goal here was to develop an initial model that can be used to analyze experimental 

data (total applied force, movement of the cilium tip) that we can obtain in the laboratory. The 

approximations introduced here were motivated by complexity of the analytical expression. Thus, we 

took pains to demonstrate that our approximate solution still provides results with sufficient accuracy 

and precision to be useful. However, it may be necessary to use more complicated differential equations 

to find the final deformation when accounting for environmental factors such as fluid flow, gravity, and 

thermal fluctuations. Similarly, solving the dynamic Euler-Bernoulli equation for beam oscillation may 

introduce additional complicating factors that we have not yet accounted for. For example, as the cilium 

is bending, the integrals in Equation (4) and (6) will depend on time. It is possible that a modified 

shooting approach [39] could be used, but a fully dynamic model is beyond the scope of this paper.  

The final deformation profile of the cilium is a function of many variables. Importantly, one of them 

is the elastic modulus, a measure of stiffness. By measuring the displacement of the tip of the cilium 

for many different positions of the center of the optical trap it should be possible to infer the value of 

the bending modulus and the refractive index. It is critical to note that our model allows us to 

determine the mechanical properties of the primary cilium by only measuring the tip displacement. 

This is significant because the geometry of the primary cilium (parallel to the optical axis) greatly 

complicates attempts to image the entire axoneme. Thus, our model has a significant advantage 

because a single measurement of the tip displacement is sufficient to constrain the model and 

determine, for example, the bending modulus. Accurately characterizing the mechanical properties of 

the primary cilium is an essential step in demonstrating the biological relevance of this organelle.  

Appendix A: Using the DDA to Calculate the Scattered Electric Field 

Starting from Equation (1) and substituting 

𝑮(𝒓𝑖 , 𝒓𝑗)𝒑(𝒓𝑗)

=  
𝑒𝑥𝑝(𝑖𝑘𝑟𝑖𝑗)

4πϵ0𝑟𝑖𝑗
3 [𝑘2𝒓𝑖𝑗 × (𝒓𝑖𝑗 × 𝒑(𝒓𝑗))

+
1 − 𝑖𝑘𝑟𝑖𝑗

𝑟𝑖𝑗
2 (𝑟𝑖𝑗

2𝒑(𝒓𝑗) − 3𝒓𝑖𝑗(𝒓𝑖𝑗 ∙ 𝒑(𝒓𝑗)))] 

(A1) 

for the scattered field contributions from other dipoles gives the local electric field 
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𝑬(𝒓𝑖) ≅ 𝑬
𝑏𝑒𝑎𝑚(𝒓𝑖)

+ 𝛼∑
𝑒𝑥𝑝(𝑖𝑘𝑟𝑖𝑗)

4πϵ0𝑟𝑖𝑗
3 [𝑘2 ((𝒓𝑖𝑗 ∙ 𝑬

𝑏𝑒𝑎𝑚(𝒓𝑗)) 𝒓𝑖𝑗 − 𝑟𝑖𝑗
2𝑬𝑏𝑒𝑎𝑚(𝒓𝑗))

𝑗≠𝑖

+
1 − 𝑖𝑘𝑟𝑖𝑗

𝑟𝑖𝑗
2 (𝑟𝑖𝑗

2𝑬𝑏𝑒𝑎𝑚(𝒓𝑗) − 3𝒓𝑖𝑗 (𝒓𝑖𝑗 ∙ 𝑬
𝑏𝑒𝑎𝑚(𝒓𝑗)))] 

(A2) 

where 𝒓𝑖𝑗 = 𝒓𝑖 − 𝒓𝑗  and 𝑟𝑖𝑗 = |𝒓𝑖𝑗|. Since the relative polarizability is small, terms of second order 

dependence or higher are neglected. 

The cilium is modeled as a cylinder with a hemispherical top shown in Figure 2. SciLab 5.3.3 code 

was written to evaluate the above expressions. Our results show that the scattered field in the y 

direction is very small compared to the total electric field in the y direction. Therefore, the scattered 

field can be ignored for our purposes.  

Appendix B: Series Solution for the Force on a Cylinder 

The goal is to evaluate the integral: 

∫𝑓(𝑠)𝑑𝐴 =𝐾∫ ∫ (𝑦
√(𝑑 2⁄ )2−[𝑦−𝑌]2

−√(𝑑 2⁄ )2−[𝑦−𝑌]2

𝑑
2+𝑌

−[
𝑑
2+𝑌]

− δ𝑦)𝑒𝑥𝑝 (−
2

ω(𝑧)2
[(𝑦 − δ𝑦)2 + (𝑥 − δ𝑥)2]) 𝑑𝑥𝑑𝑦 

(B1) 

Using the error function 
√𝜋

2
𝐸𝑟𝑓(𝑥) = ∫ exp(−𝑥2) 𝑑𝑥, we first obtain 

∫ 𝑒𝑥𝑝 (−
2

ω(𝑧)2
[(𝑦 − δ𝑦)2 + (𝑥 − δ𝑥)2]) 𝑑𝑥

√(𝑑 2⁄ )2−[𝑦−𝑌]2

−√(𝑑 2⁄ )2−[𝑦−𝑌]2

=
ω(𝑧)√𝜋

2√2
exp [−2(

(𝑦 − δ𝑦)

ω(𝑧)
)

2

] [𝐸𝑟𝑓 (
√2(√(𝑑 2⁄ )2 − [𝑦 − 𝑌]2 − δ𝑥)

ω(𝑧)
)

+ 𝐸𝑟𝑓 (
√2(√(𝑑 2⁄ )2 − [𝑦 − 𝑌]2 + δ𝑥)

ω(𝑧)
)] 

(B2) 

Using the following series expansions: 

√π

2
𝐸𝑟𝑓(𝑎 + 𝑥) = ∑

(−1)𝑘(𝑎 + 𝑥)2𝑘+1

𝑘! (2𝑘 + 1)

∞

𝑘=0

 (B3) 

(𝑥 ± 𝑦)𝑛 =∑(
𝑛
𝑘
) 𝑥𝑛−𝑘(±𝑦)𝑘

𝑛

𝑘=0

=∑
𝑛!

𝑘! (𝑛 − 𝑘)!
𝑥𝑛−𝑘(±𝑦)𝑘

𝑛

𝑘=0

 (B4) 

(𝑦 − δ𝑦)𝑒𝑥𝑝 [
−2

ω(𝑧)2
(𝑦 − δ𝑦)2] = ∑(

−2

ω(𝑧)2
)
𝑘 (𝑦 − δ𝑦)2𝑘+1

𝑘!

∞

𝑘=0

 (B5) 

To first obtain 
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𝐸𝑟𝑓
√2(√(𝑑 2⁄ )2 − [𝑦 − 𝑌]2 − δ𝑥)

ω(𝑧)
+ 𝐸𝑟𝑓

√2(√(𝑑 2⁄ )2 − [𝑦 − 𝑌]2 + δ𝑥)

ω(𝑧)

= ∑ ∑ ∑
2(−1)𝑘

√π𝑘! (2𝑘 + 1)
(
√2

ω(z)
)

2𝑘+1

(
2𝑘 + 1
𝑙

) (𝑘 +
1

2
−
𝑙

2
𝑚

)

∞

𝑚=0

2𝑘+1

𝑙=0

(−1)𝑚(𝑦 − 𝑌)2𝑚  

∞

𝑘=0

× (
𝑑

2
)
2𝑘+2−𝑙−𝑚

[(−δ𝑥)𝑙 + (δ𝑥)𝑙]

=

{
 
 

 
 

∑

∑ ∑
4(−1)𝑘+𝑚

√𝜋𝑘! (2𝑘 + 1)
(
2𝑘 + 1
𝑙

) (𝑘 +
1

2
−
𝑙

2
𝑚

)

∞

𝑚=0

(
√2

ω(𝑧)
)

2𝑘+12𝑘+1

𝑙=0

 (𝑦 − 𝑌)2𝑚 

×  (
𝑑

2
)
2𝑘+2−𝑙−𝑚

(δ𝑥)𝑙

∞

𝑘=0

, 𝑙 𝑒𝑣𝑒𝑛

0, 𝑙 𝑜𝑑𝑑

 

(B6) 

From here, we assume ‘l’ is even. Then, 

exp [−2(
(𝑦 − δ𝑦)

ω(𝑧)
)

2

] [𝐸𝑟𝑓 (
√2(√(𝑑 2⁄ )2 − [𝑦 − 𝑌]2 − δ𝑥)

ω(𝑧)
)

+ 𝐸𝑟𝑓 (
√2(√(𝑑 2⁄ )2 − [𝑦 − 𝑌]2 + δ𝑥)

ω(𝑧)
)]

=∑∑ ∑ ∑
4(−1)𝑗+𝑘+𝑚

√π𝑘! (2𝑘 + 1)
(

2

ω(𝑧)2
)
𝑗+𝑘+1 (𝑦 − δ𝑦)2𝑗

𝑗!
(
2𝑘 + 1
𝑙

) (𝑘 +
1

2
−
𝑙

2
𝑚

)

∞

𝑚=0

2𝑘+1

𝑙=0

 

∞

𝑘=0

∞

𝑗=0

× (𝑦 − 𝑌)2𝑚 (
𝑑

2
)
2𝑘+2−𝑙−𝑚

(δ𝑥)𝑙 

(B7) 

And finally: 

∫𝑓(𝑠)𝑑𝐴

= 𝐾∑∑ ∑ ∑∑∑
4(−1)𝑗+𝑘+𝑚+𝑝+𝑞

√π𝑗! 𝑘! (2𝑘 + 1)
(

2

ω(𝑧)2
)
𝑗+𝑘+12𝑚

𝑞=0

(
𝑑

2
)
2𝑘+2−𝑙−𝑚

2𝑗

𝑝=0

∞

𝑚=0

2𝑘+1

𝑙=0

∞

𝑘=0

∞

𝑗=0

× (
2𝑘 + 1
𝑙

) (𝑘 +
1

2
−
𝑙

2
𝑚

)(
2𝑗
𝑝
) (
2𝑚
𝑞
) (δ𝑦)𝑝 𝑌𝑞(δ𝑥)𝑙∫ 𝑦2𝑗+2𝑚−𝑝−𝑞𝑑𝑦

𝑑
2+𝑌

−[
𝑑
2+𝑌]

= 𝐾∑∑ ∑ ∑∑∑∑
8(−1)𝑗+𝑘+𝑚+𝑝+𝑞

√π𝑗! 𝑘! (2𝑘 + 1)(2𝑗 + 2𝑚 − 𝑝 − 𝑞 + 1)
(

2

ω(𝑧)2
)
𝑗+𝑘+1∞

𝑟=0

2𝑚

𝑞=0

2𝑗

𝑝=0

∞

𝑚=0

2𝑘+1

𝑙=0

∞

𝑘=0

∞

𝑗=0

× (
𝑑

2
)
2𝑘+2𝑗+𝑚−𝑙−𝑝−𝑞−𝑟+3

× (
2𝑘 + 1
𝑙

) (𝑘 +
1

2
−
𝑙

2
𝑚

)(
2𝑗
𝑝
) (
2𝑚
𝑞
) (
2𝑗 + 2𝑚 − 𝑝 − 𝑞 + 1

𝑟
) (δ𝑦)𝑝𝑌𝑞+𝑟(δ𝑥)𝑙 

(B8) 

where 2j + 2m-p-q is even. 
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This expression is considerably simplified with the approximation d → 0; for a Gaussian beam 

displaced from the cilium axis a distance ‘δρ’,  

𝐹(𝑧) = −6ϵ𝑚ϵ0
ϵ𝑐 − ϵ𝑚
ϵ𝑐 + 2ϵ𝑚

𝐸0
2
ω0
2

ω(𝑧)4
(δρ)𝑒𝑥𝑝(−2(δρ)2 ω(𝑧)2⁄ ) (B9) 

when δx or δy = 0; this sum is equal to 0 and, therefore, the applied force when the trap is centered on 

the cilium axis is equal to 0. 
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