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Abstract: Mesh-based Monte Carlo techniques for optical imaging allow for accurate 

modeling of light propagation in complex biological tissues. Recently, they have been 

developed within an efficient computational framework to be used as a forward model in 

optical tomography. However, commonly employed adaptive mesh discretization techniques 

have not yet been implemented for Monte Carlo based tomography. Herein, we propose a 

methodology to optimize the mesh discretization and analytically rescale the associated 

Jacobian based on the characteristics of the forward model. We demonstrate that this method 

maintains the accuracy of the forward model even in the case of temporal data sets while 

allowing for significant coarsening or refinement of the mesh. 

Keywords: Monte Carlo; mesh-based Monte Carlo; optical tomography; fluorescence 

molecular tomography; time-gated optical tomography; mesh optimization 

 

1. Introduction 

Fluorescence Molecular Tomography (FMT) is a highly sensitive molecular imaging modality which 

benefits from the availability of numerous molecular probes and relatively low cost. FMT is especially 

valuable in preclinical studies as it allows for three-dimensional, quantified reconstructions of the 

distribution of fluorescence probes in tissue. This has numerous applications in fields such as drug 

discovery and gene therapy [1–3]. FMT is based on an inverse problem, which links a measurement 

vector and a forward model of light propagation to successfully retrieve the unknown parameter 

distribution in the image space. For simplicity of implementation, the diffusion equation (DE), an 
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approximation of the radiative transport equation (RTE), is usually used as the forward model. Typically, 

DE-based algorithms are two orders of magnitude faster than RTE-based ones, with the added advantage 

of being more robust [4–6]. However, the DE approximation does not accurately represent the 

propagation of photons when absorption is large compared to scattering, when scattering is low, near 

boundaries and for ballistic or minimally scattered photons [7–10]. Hence, there are still considerable 

interests in developing efficient RTE-based algorithms to overcome these limitations, which are often 

encountered in pre-clinical imaging applications. Recently, the Monte Carlo (MC) method, which is a 

stochastic solver to the RTE [11], has been proposed as an accurate and general forward model for optical 

tomography [12,13]. 

The Monte Carlo (MC) method simulates the path of numerous photons through complex tissue to 

sample the imaged volume with suitable statistical accuracy [14]. This method is considered the gold 

standard for photon transport modeling in bio-tissues and is frequently employed as a benchmark when 

developing novel optical techniques and algorithms [15]. Especially in time resolved imaging, MC 

techniques provide improved accuracy in forward models compared to common alternatives such as the 

diffusion equation, as it can simulate both minimally scattered and diffuse photons [16]. However, MC 

techniques were not considered viable to generate the forward model in optical tomography due to the 

necessity of computing numerous forward simulations, with each simulation potentially requiring hours 

of computing time [17,18]. Recently, thanks to new MC formulations [19,20] and massively parallel 

implementations [21,22], the computational cost of MC simulations has drastically reduced. For 

instance, our group first demonstrated that functional and fluorescence optical tomography is feasible 

within frameworks that are competitive with DE-based algorithms [14,23]. Especially, MC techniques 

based on finite element mesh models (mMC) have been developed which lessen this computational 

burden and also improve the modeling of boundary conditions for complex geometric models [24,25]. 

mMC, along with parallel implementations [26], allow for Monte Carlo based fluorescence molecular 

tomography to be implemented with reasonable time and computation demands in the case of free space 

imaging [27], challenging data types such as early gates [28], and wide-field strategies [23,29,30]. 

However, mMC does not yet benefit from adaptive finite element methods that are frequently employed 

in PDE based inverse problems [31]. 

For arbitrary domain geometry, the FMT problem poses a tradeoff between accuracy and 

computational efficiency [32]. As FMT is typically highly underdetermined, the choice of uniform nodal 

spacing results in higher computational complexity compared to meshes that have nonhomogeneous 

nodal spacing [33]. Hence, adaptive mesh discretization techniques have been implemented for diffuse 

optical tomography applications. To date, these mesh optimization strategies are limited to analytical-based 

light propagation models. Especially, adaptive meshing algorithms have been developed for DE-based 

tomographic image reconstruction procedures [34–37], where the emphasis is on refining a coarse mesh 

at the region of the heterogeneity(ies). These adaptive mesh refinement techniques not only improve 

localization and quantification of sources [38,39] but also enhance the robustness and efficiency of 

reconstructions [40,41], though at an additional computational cost. In all adaptive mesh approaches, the 

Jacobian needs to be fully constructed at each iteration, leading to a significant additional computational 

cost, typically ~75% of the computation time, at any given iteration [42]. This is a critical issue when 

attempting to apply these techniques to MC based approach. 
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Indeed, Monte Carlo methods require simulating the propagation of a large number of photons  

(106–109) per simulated optode, depending on the data type, in preclinical settings [14]. As the accuracy 

of the MC-based Jacobian is dependent on the local statistics of the forward problem, coarsening or 

refining the mesh requires recomputing the Jacobian, possibly with a greater photon packet number to 

satisfy smaller discretizations. The iterative nature of adaptive mesh techniques may then lead to hours 

of computations, even in a massively parallel environment. Herein, we investigate the application of fast 

and efficient forward mesh optimization approaches for time resolved MC-based FMT. We propose a 

mesh optimization methodology in which the initial mesh and MC forward models are analytically 

rescaled at each iteration, allowing for fast computation without loss of accuracy. 

2. Methods 

2.1. Optical Inverse Problem 

The goal of FMT is to retrieve the 3-D distribution of a fluorophore typically expressed as its effective 

quantum yield: 𝜂(𝑟) [13]. This distribution can be obtained by solving the integral equation at time t: 

𝑈𝐹(𝑟𝑠, 𝑟𝑑 , 𝑡) = ∫

𝛺

𝑊(𝑟𝑠, 𝑟𝑑 , 𝑟, 𝑡)𝜂(𝑟)𝑑𝑟 (1)  

where 𝑈𝐹(𝑟𝑠, 𝑟𝑑 , 𝑡) is the fluorescence detected at the detector 𝑟𝑑  at time 𝑡  resulting from the initial 

excitation from the propagation or Jacobian. To efficiently calculate the Jacobian, 𝑊, based on the mMC 

forward model computation, we employed the forward-adjoint method [14]. In this formulation, 𝑊 is 

computed by convolving the Green functions and the fluorophore lifetime decay: 

𝑊(𝑟𝑠, 𝑟𝑑 , 𝑟, 𝑡) = ∫

𝑡

0

𝑒−(𝑡−𝑡′) 𝜏⁄ 𝑑𝑡′ ∫

t'

0

𝐺𝑥(𝑟𝑠,𝑡,𝑡′ − 𝑡′′) ∗ 𝐺𝑚(𝑟, 𝑟𝑑 , 𝑡′′)𝑑𝑡′′ (2)  

where 𝐺𝑥  and 𝐺𝑚  are time-dependent Green’s functions (the light propagation for impulse sources) 

calculated by mMC and 𝜏  is the lifetime of the fluorophore. The weight matrix and detected 

measurements at different positions can then be represented as a system of linear equations and solved 

to obtain the fluorophore biodistribution. 

2.2. Mesh-Based Monte Carlo 

The details of the mesh Monte Carlo method used here can be found in reference [24]. In brief, the 

mMC method utilizes fast ray-tracing to accelerate calculation. Our implementation allows simulation 

of arbitrary sources illuminating complex geometries with very small computational overhead compared 

to point source illumination (5%–10% increase) [26]. The method has been implemented using  

single-instruction multiple-data (SIMD) and Message Passing Interface (MPI) to allow for both 

multithreading and multiple node computation within an adaptive hybrid parallelization architecture. We 

reported that this mMC implementation is 5× faster than its voxel based counterparts, with the benefit 

of producing more accurate simulations in the case of free space pre-clinical imaging [26]. 
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2.3. Mesh Adaptation 

Mesh adaptation was achieved using the method laid out in [43] and implemented in the MeshSim 

Adapt package (Simmetrix, Inc, Clifton Park, NY, USA). This mesh adapt package allows for iteratively 

adapting a finite element mesh to fit an input size field that consists of a size factor at each node of the 

finite element mesh. The size factor associated to each node dictates the local mesh adaptation operation 

that will occur at this iteration. A flowchart of the overall optimization process is summarized in Figure 1. 

 

Figure 1. Flowchart of the mesh iterative adaptation program. 

Size factors greater than one lead to mesh coarsening whereas size factors lower than one lead to 

mesh refining. This size field is created from a solution field that is relevant to the formulation of the 

FMT inverse problem. To convert the solution field to a size field, each value of the solution field is 

compared to two thresholds: a lower one and an upper one. If the solution value is lower than the lower 

threshold, then the size factor at that node is equal to a set maximum size factor. If greater than the upper 

threshold, then the size factor is equal to a set minimum size factor. Otherwise, when between the two 

thresholds, the solution field value is converted to a size factor 𝑦 following:  

𝑦 = 𝑝𝑎𝑥; 𝑎= (
1

1.25
)

(1 1.4∗Median⁄ )

; 𝑝 =
1

1.6∗Median
 (3)  

where 𝑥 is the solution field value and 𝑦 is the resulting size factor. The foundation of the mesh adapt 

code was laid in [43]. 

The two main families of operations used to achieve adaptations are either split or collapse operations. 

Split operations introduce a new node to fragment an element of volume towards mesh refinement. A 

new node may be placed in the center of an edge, a face, or a region. New edges are then drawn 

accordingly. Thus, the number of nodes and elements are increased while also shortening the average 

attached edge lengths in the region. Figure 2a,b show an example of edge and face split in two 

dimensions. Vice versa, collapse operations are used to coarsen the mesh. Two types of collapses may 

be employed: edge and region. If an edge is selected for collapsing, one node of the edge is “pulled” 

towards the other node, eliminating one node and creating less elements in the area, as shown in  
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Figure 2c. In region collapses, one, two, or three faces bounding the region to collapse are removed to 

combine elements. 

 

Figure 2. Examples of an (a) edge split, (b) face split, and (c) edge collapse. 

The mesh adaptation is an iterative process in which the new mesh and a new solution field are used 

as inputs for the next iteration step. The process can be repeated until set stopping criteria (i.e. 

convergence in the number of elements/nodes, absolute number of elements/nodes, set element of 

volume attained, etc.) are met yielding an optimized mesh. However, at each iteration of the mesh 

adaptation, new mMC simulations should be carried out to reflect the changes in the discretization and 

hence nodal value of the Jacobian. This can become a burdensome process as, conversely to PDE-based 

problems, mMC computational burden is related to discretization level. Especially, in the case of mesh 

refinement, one can expect that increased number of photons is required to reach statistical stability to 

compute adequate Jacobians. Instead, we propose a technique to analytically rescale the forward model 

at each iteration in order to fit the new FEM mesh. 

2.4. Jacobian Rescaling 

The Jacobian is a system matrix 𝐴  that describes the relation between the fluorophore effective 

quantum yield in every 3D image element (𝑒1, 𝑒2, … , 𝑒𝑛) and measurement data set. During the mesh 

adaptation procedure, the number and location of the image element may change and thus, the Jacobian 

needs to be recomputed to maintain accuracy. Ideally, the Jacobian would be recomputed using mMC, 

but at a significant computational cost. Another approach is to identify, by comparing the old mesh and 

the new mesh, the nodes that have been modified and extrapolate analytically the value of the Jacobian 

for these nodes without new stochastic computations. For this, a transformation matrix is generated that 

links the input to the output mesh where each column represents a node in the output mesh and each row 

represents a node in the input mesh. The entries of the matrix describe the changes between the input 

and output meshes. Therefore, this matrix is used as a transformation operation which provides an 

accurate Jacobian matrix for the modified mesh by multiplying the input mesh by this  

transformation matrix. 

As each output node is compared to the input nodes, three conditions may occur. First, this node has 

not been modified during the adaptation process. The Jacobian value is simply carried over to this node 

in the new mesh (Figure 3a). Second, the output node does not correspond to any input node and falls 

within a volume element in the input mesh (Figure 3b). In this case, a new Jacobian value is extrapolated 

a) b) c)
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based on the Jacobian value of the surrounding nodes in the input mesh. Specifically, the nodes of the 

input mesh which make up the enclosing element are weighted inversely to distance and summed to 

create the new nodal value. The coefficients used to weight the Jacobian nodal values for each new node 

𝑖 are calculated as: 

𝑐𝑖 =
𝑤𝑖

∑𝑛
𝑗=1 𝑤𝑗

 (4)  

where 𝑛 is the number of nodes in the enclosing element and: 

𝑤𝑖 =
1

𝑑(𝑥, 𝑥𝑖)
 (5)  

where 𝑑(𝑥, 𝑥𝑖) is the distance from the new node 𝑥 and the 𝑖𝑡ℎ enclosing node. Each weight is placed 

in the column of the output mesh node in each of the rows corresponding to the enclosing nodes. 

Lastly, the new node may be outside the bounded region defined by the input mesh (Figure 3c). In 

this case, the same process as case two is carried out, except that the four closest nodes of the input 

mesh are found since there is no enclosing element. Once the transformation matrix is fully 

populated, the new Jacobian is computed by matrix multiplication of the input Jacobian with the 

transformation matrix. 

 

Figure 3. The possible cases in the output node positioning. The upper row corresponds to 

the input discretization and lower row to the output mesh. 

2.5. In Silico Model 

The 3D digimouse model was employed to create an anatomically accurate in silico preclinical model. 

The average optical properties of the mouse were used to compute the forward model These optical 

properties were: 𝜇𝑎 = 0.3 𝑐𝑚−1, 𝜇𝑠
′ = 15 𝑐𝑚−1, 𝑔 = 0.9, and 𝑛 = 1.37, which are typical of mouse 

tissues in the NIR spectrum [5]. The optical properties were considered homogenous over the animal as 

it is typically done in optical tomography. This simplification works well when using the Born/Rytov 

approximation experimentally in DOT, and the normalized Born formulation in FMT. Moreover, the 

optical properties of the different organs in live animals are still unknown to date. The Henyey-Greenstein 

phase function was employed to define the new photon direction after each scattering event. Overall, the 

3D digimouse mesh contains 210,161 elements and 42,301 nodes. A 3D slice of the digimouse model 

containing 2396 nodes and 7574 elements is used as the initial mesh, as shown in Figure 4a (cross section 

a) b) c)
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of the torso). Then, 7 time-resolved point sources and 7 point detectors in transmission geometry were 

simulated as depicted in Figure 4b. This simplified model allows investigation of the impact of the size 

factor and solution field on computational efficiency of adaption mesh. 

 

Figure 4. (a) The digimouse model with slice highlighted next to (b) the mesh section used 

with positions of sources (solid black) and detectors (solid grey). The slice is 4 mm thick. 

3. Results and Discussion 

Mesh adaptation in the forward model space is expected to improve the computational efficiency of 

the Monte Carlo simulations without sacrificing accuracy in the forward model or reconstruction. The 

computational cost of mMC is mainly associated with the number of photons that need to be launched 

to reach statistical stability. Among the parameters that dictate the number of photons required, the level 

of discretization plays a critical role. As element volumes diminish, less photons sample these elements, 

leading to poor statistics. Moreover, in the case of preclinical imaging in which transmission geometry 

is used for optimal tomography performances, as the element of volume farther from the source are less 

likely to be visited by photons. Even if this issue can be mitigated with adjoint methods [20] and 

specialized filtering techniques [44], it is still necessary when employing homogeneous meshes to use 

photon packets that provide good statistics for the less visited elements (typically mid-plane between 

source and detector). With mesh adaptation, the elements that receive the least photons can be increased 

in size in order to yield better statistics. Hence, fewer photons can be used in later Monte Carlo 

simulations to achieve statistics similar to higher photon counts in less time, as computational time is 

linearly related to the number of photons simulated. 

3.1. Size Factors 

The mesh adaptation process is dependent on a few parameters which are set a priori, as described in 

Section 2.3. Especially, the maximum and minimum size factors greatly impact the convergence rate of 

the adaptation process as they bound the allowed range of changes in the elements of volume. Herein, 

we investigate the impact of the maximum size factor on mesh coarsening for mesh adaptation based on 

the forward model. As the application sought is to improve computational efficiency, no refinement is 

considered, and thus, the minimum size factor is set to 1. 

To establish the best maximum size factor for our application, mesh adaptations with various 

maximum size factor values were conducted until they reached convergence using the cross sectional 

mesh configuration described in Section 2.4. Convergence is defined as the point when the output mesh 

a) b)a) b)
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of an iteration has the same number of nodes and elements as the input mesh for that iteration. The 

solution field as obtained by the sum of the Jacobian (see Section 3.3) was used with a lower threshold 

set to 20% of the median and an upper threshold 8 times the lower. Table 1 summarizes the mesh 

characteristics of each of the resulting convergence points compared to the initial mesh for three selected 

maximum size factors. 

Table 1. Mesh characteristics at convergence under various size factor ranges. 

Size Factor Iterations Nodes Elements Max. Elem. Vol. (mm3) 

Initial -- 2396 7574 0.08 

1.15 17 1332 3904 0.51 

1.25 21 777 2200 1.49 

1.35 20 612 1615 2.97 

As the maximum size factors increase, the mesh coarsening is more pronounced, as expected. The 

coarsening leads to a maximum (minimum) reduction in the number of nodes by ×4 (×2) and in the 

number of elements, by almost ×5 (×2), compared to the initial mesh. The maximum element volume is 

almost 6 times larger for a maximum size factor of 1.35 compared to 1.15. However, the element of 

volume sizes are difficult to predict as the coarsening is mainly based on the edge lengths. For instance, 

in the case of the size factor of 1.35, the change in maximum element size from one iteration to another 

can be as high as 125% and as low as 12%. Hence, the convergence rate is not as stable as for smaller 

size factors. Additionally, for the smallest size factor (1.15), even if convergence is stable and achieved 

at an earlier iteration number, the coarsening is limited. Hence, a maximum size factor of 1.25 is 

considered to be optimal as it provides stable convergence and significant reduction in the mesh elements 

(×3) and nodes (×3.5). Figure 5 provides a visualization of the mesh after adaptation at the first iteration 

and the seventeenth. 

 

Figure 5. The mesh under different maximum size factors after (a) one iteration and  

(b) seventeen iterations, the greatest iteration all meshes achieve before convergence. Maximum 

size factors are provided as subtitles (color bar corresponds to volume of elements in mm3). 
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3.2. Forward Model-Based Solution Fields 

The solution field is the input to derive the size field, and hence, the field which determines the areas 

of the mesh that should be adapted based on the solution values at each node. Herein, the solution is 

computed based on the forward model, i.e., the mMC simulations. For FMT purposes, the mMC 

simulations are used to compute the Jacobian. However the Jacobian is constructed based on numerous 

mMC forward simulations computed on the same mesh. Hence, for mesh adaptation purposes, it is 

required to obtain a solution field that represents the overall sensitivity of the forward model to the 

volume imaged, not to a specific source-detector pair. Herein, we consider five methods to derive a 

solution field based on the mMC Jacobian. First, we consider the most obvious solution field which 

consists of the sum of the rows of the Jacobian (∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛). This operation yields a solution field with 

the value at each node representing the sum of all source-detector pair sensitivities at this node. Second, 

we consider the logarithm of the sum of all rows (𝑙𝑜𝑔(∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛)). As light propagation in highly 

scattering media is characterized by an exponentially overdamped scalar wave, the dynamical range in 

the forward model is very large. Using a logarithmic scale allows for mitigation of such high dynamical 

range and provides a more linearly distributed solution field. We tested also a curvature metric derived 

from a Laplacian-type operator as described in reference [45]. This metric (𝑢) is defined as: 

𝑢 = 𝐿𝑆 ; 𝑤𝑖𝑡ℎ L = {
1,             𝑖𝑓 𝑖 = 𝑗
−1

𝑛−1
,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6)  

where 𝑆 is the sum of the rows of the Jacobian and where 𝑛 is the number of nodes in the mesh. Similar 

to the sum of ∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛, we tested also the 𝐿𝑜𝑔(𝑢). Last, we considered the sum of the rows after 

each row has been normalized to the same maximum value ( 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ∑ 𝐽 ). ss the boundary 

conditions of the model are not planar, the different source-detector pairs are visiting volumes of 

different thicknesses. Normalizing each row of the Jacobian allows for mitigation of the dynamical range 

associated with the curved boundaries to yield a more homogenous solution field. 

Once the solution field is obtained, a size field is produced to be used as an input for the mesh 

adaptation procedure. As mentioned above, the size field is computed based on the median value of the 

solution field and set thresholds. Here, the lower threshold was set to 20% of the median and the upper 

threshold to 8 times the lower. Under the varying solution fields, each mesh is brought to a unique 

convergence point as with the size factors. The characteristics of the optimized meshes at convergence 

are provided in Table 2. 

Table 2. Mesh characteristics at convergence under different solution fields. 

Field Iterations Nodes Elements Max. Elem. Vol. (mm3) 

∑Jacobian 21 777 2200 1.49 

Log(∑Jacobian) 12 1487 4335 0.25 

Normalized ∑J 21 1053 3074 0.48 

Curvature 15 447 1105 1.55 

Log(Curv.) 20 668 1651 1.37 
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Overall, the sum of ∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛  and curvature fields ( 𝑢 ) provide the most reduction in mesh 

elements/nodes. Both, 𝑙𝑜𝑔(∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛) and 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ∑ 𝐽  leads to coarsening but converge to 

maximum elements of volume that are still relatively small compared to ∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛. Hence, these two 

solution fields are less attractive than the ∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 and 𝑢 metric. To further establish the merit of each 

solution field, a stopping criteria is implemented to stop the iterative adaptation when a set maximum 

element of volume is achieved. For real applications, this element of volume would ideally be close to 

the FMT system resolution or application-required resolution, to balance computational efficiency with 

image reconstruction accuracy. Here, we set the cutoff at 0.25 mm3, the smallest maximum volumes 

achieved at convergence. This allows for comparison of all solution fields as summarized in Table 3. 

Table 3. Mesh characteristics at convergence under different solution fields. 

Field Iterations Nodes Elements Max. Elem. Vol. (mm3) 

∑Jacobian 2 1614 4872 0.26 

Log(∑Jacobian) 5 1611 4792 0.25 

Normalized ∑J 5 1457 4334 0.25 

Curvature 2 1136 3304 0.31 

Log(Curv.) 2 1608 4846 0.25 

 

Figure 6. Upper row: mesh at convergence (a) ∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 , (b) 𝑙𝑜𝑔(∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛) ,  

(c) 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ∑ 𝐽; (d) 𝑢 and (e) 𝐿𝑜𝑔(𝑢); lower row: mesh at 0.25 mm3 stopping criterion 

for the respective corresponding input fields. 

In this case, the curvature and ∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 are still the solution fields that lead to the fastest adaptation 

calculation whereas, the 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ∑ 𝐽 leads to the most reduction in elements and nodes, but only 

~10% less than ∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛. However, after only 2 iterations, the 𝑢  field led to larger elements of 

volume than the stopping criterion (26.5%). Additionally, even if the 𝐿𝑜𝑔(𝑢) metric provides similar 

outcome than the ∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛, it is more difficult to implement. Using 𝐿𝑜𝑔(𝑢) (or 𝑙𝑜𝑔(∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛)) 

leads to negative values in the input solution field, leading potentially to a negative Median  in  

Equation (3). This affects the calculation of the size factors as it is possible for a node to have a value 

which is greater than the upper threshold and lower than the lower threshold, leading to instability during 

f) g) h) i) j)

a) b) c) d) e)
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the iteration process. Thus the ∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛  is selected as the most appropriate solution among the 

investigated model-based fields for preclinical FMT applications. Figure 6 provides the different meshes 

for all cases investigated. 

3.3. Geometry-Based Solution Fields 

The solution fields which have been investigated up to this point require a pre-computed Jacobian to 

start the adaptation process. This can render the whole process computationally demanding. Another 

option for creating the solution field is to use the a priori geometrical information of the volume to image 

and optode locations to generate analytically the solution field. Keeping in mind that the goal of 

adaptation in the forward model is to optimize the stochastic stability of the MC forward model at every 

element of volume, the scaling field can be generated using the distance from these elements of volume 

to the optode location. Here, we investigate solution fields generated by two geometry-based analytical 

scaling methods. First, we compute the distance for every source and detector to each node and identify 

the minimum distance. This minimum distance at each node is our solution field. For this option, the 

size factor information is reversed because now the greatest values should be coarsened the most instead 

of the lowest values. We termed this approach 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐹𝑖𝑒𝑙𝑑 (𝐷𝑖𝑠𝑡. ). The second approach consists 

of weighting the minimum distance by an attenuation coefficient which is related to the optical properties 

of the medium. The attenuation coefficient follows a simple Beer-Lambert Law such that: 

𝐴𝑡𝑡. = 𝑒−𝜇𝑥 (7) 

where 𝐴𝑡𝑡. is the resulting solution field value, 𝑥 is the distance to the nearest source/detector and 𝜇 is 

the total attenuation coefficient (absorption and scattering attenuation). We refer to this solution field as 

𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝐹𝑖𝑒𝑙𝑑 (𝐴𝑡𝑡. ). For this field, the lowest values are coarsened the most. Table 4 summarizes 

the mesh characteristics for each cases and side by side comparison is provided in Figure 7. 

 

Figure 7. Mesh at convergence for (a) 𝐷𝑖𝑠𝑡. and (b) 𝐴𝑡𝑡. 

Table 4. Mesh characteristics at convergence under different solution fields. 

Field Iterations Nodes Elements Max. Elem. Vol. (mm3) 

∑Jacobian 21 777 2200 1.49 

Dist. 11 1675 5166 0.28 

Att. 17 699 1999 1.80 

a) b)
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At convergence, the 𝐴𝑡𝑡. field is comparable to ∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛, though the source 𝐷𝑖𝑠𝑡. is self-limited 

similarly to 𝑙𝑜𝑔(∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛). This is an expected relationship as attenuation is based on an exponential 

and is similar to the sum. At convergence, the attenuation field mesh had only 3.8% fewer nodes with a 

maximum volume 3.1% larger than the Jacobian-based field. The 𝐴𝑡𝑡. based optimization can be carried 

out in a few seconds thanks to its simplicity whereas the ∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 requires an initial MC forward 

computation that is significantly more time consuming. Hence, the 𝐴𝑡𝑡. field approach is a very attractive 

analytical approach for optimizing the mesh in mMC applications, either as a method to generate an 

initial mesh or adapt the mesh for improved computational efficiency.  

3.4. Jacobian Accuracy and Computational Efficiency 

MC based FMT reconstructions are used when the DE fails to adequately model light propagation. 

As in the proposed method, an analytical rescaling is performed locally to adjust the mMC Jacobian to 

the new discretization. It is crucial to assess if model accuracy is maintained. To do so, we consider time 

resolved data types for which the early part is known to be modeled poorly by the DE. A Temporal Point 

Spread Function (TPSF) was computed from the mMC based Jacobian (109 photons) prior to adaptation 

and from the analytically rescaled Jacobian after adaptation (109 photons). Moreover, new mMC 

simulations were computed to obtain a mMC Jacobian on the new adapted mesh. An example of TPSFs 

produced for one specific source detector pair is provided in Figure 8a) (central pair). The TPSFs 

simulated under the original and mesh adaptation conditions are matching remarkably. Furthermore, the 

error in the TPSF from the rescaled Jacobian is similar to the error in the TPSF from the recomputed 

Jacobian. Throughout all time gates that are typically employed to cast the inverse problem, the 

maximum error is less than 1.5% for late gates and below 0.5% for early gates (Figure 8b). This error 

level is similar for all 49 simulated optode combinations. These results indicate that the mesh adaptation 

and analytical rescaling methodology described above lead to optimized non-homogenous discretization 

that does not affect light propagation accuracy, even in the most challenging cases, i.e., early gates. 

 

Figure 8. Temporal Point Spread Function (TPSF) of Jacobians rescaled to a new mesh and 

the associated error at each gate. 

The goal of the mesh adaptation described herein is to conserve the stochastic reliability of the 

forward model while decreasing the computational burden. If more photons are reaching the center 

elements (ones with poor statistics in the adjoint method), lower photon packets can be simulated for 

a) b)
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each optode. The relationship of computational time against the number of photons simulated is linear, 

as shown in Figure 9b, in our mMC implementation. To assess the impact of mesh optimization as 

described above on the Jacobian stochastic stability, we computed the Error (𝑒(𝑟)) at each node 𝑟 for all 

the central nodes of the in silico model and in the case of the central source-detector pair: 

𝑒(𝑟) = |
𝑣(𝑟) − 𝑣ref(𝑟)

𝑣ref(𝑟)
| ∗ 100 (8)  

where 𝑣 is the Jacobian value and 𝑣ref is the high photon count reference Jacobian value at the specific 

node. The nodes employed to calculate the error are highlighted in Figure 9a. 

 

Figure 9. (a) Elements of volume employed to compute the error 𝑒(𝑟)  (red label);  

(b) Computation time for one forward simulation versus number of photons. 

The high photon count reference Jacobian was computed using 1010 photons per optode. The error 

was computed for the Jacobian at the time corresponding to the 25% rising gate of the TPSF. A summary 

of the 𝑒(𝑟) calculated for this configuration and for different photon packets is provided in Table 5. 

Table 5. Errors in the forward model central nodes before and after ∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛  mesh 

optimization. 

Photons Initial TG 
Final TG 

∑Jacobian 

Final TG 

𝑨𝒕𝒕. 

109 10.84% 11.71% 13.99% 

108 36.83% 31.39% 35.55% 

107 61.01% 60.13% 58.57% 

106 86.71% 90.92% 151.43% 

In all cases, except for 106 photons, 𝑒(𝑟) was similar between initial and rescaled meshes/Jacobians. 

Note that repeating 1010 photons simulations on the initial mesh led to 𝑒(𝑟)~2%. Overall, 109 produced 

the least 𝑒(𝑟) with both field metric performing well, though they had 32% (∑Jacobian) and 34% 

(Attenuation Field) less nodes. The reduction in nodes and elements is mainly achieved in the central 

part of the mesh where the elements of volume are less visited by photons. The coarsening of the mesh 

in this region leads to improved statistics as seen in 𝑒(𝑟) for early gates (note that 𝑒(𝑟) is the average 

error as computed by the mean of the error at each node). In the case of 108 photons, which is the typical 

number of photons used successfully for preclinical studies [14], the coarsening leads to a 14% reduction 

in error 𝑒(𝑟). This suggests that mesh optimization as described herein can lead to reduction of the size 

a)

b)
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of photon packets simulated and reduction in nodes/elements of volume for a more tractable  

inverse problem. 

Additionally, we estimated the computational efficiency of the analytically rescaled Jacobian 

compared to MC re-computed Jacobians at each iterations. Time-resolved MC Jacobians were computed 

on 64 nodes of the CCNI’s Blue Gene/Q system at RPI whereas Jacobian rescaling was performed on a 

personal computer (i7-4930K Six-Core 3.40 GHz 12 MB Intel Smart Cache LGA2011, 64 GB 

DDR3/1600MHz memory) using in-house Matlab codes. To provide a meaningful comparison in terms 

of application, the simulations were performed on a 3D mesh for whole-body small animal imaging. The 

small animal was discretized in 15,581 nodes and 92,713 elements. 60 wide-field sources and 96 points 

detectors were employed [23]. To compute the time-resolved Jacobian, 210 min were necessary whereas 

the analytical rescaling took less than 15 min. Hence, for the 17 iterations it took to achieve convergence 

with the Attenuation field, the analytical rescaling approach was achieved within 7% of the time required 

to compute the MC sequential computations. Note that the analytical rescaling code was not optimized 

for parallel computing and that we typically use up to 1024 nodes on CCNI. 

4. Conclusions 

Mesh-based Monte Carlo techniques are relatively recent developments that promise improved 

computational efficiency for optical tomography. However, these techniques are not currently 

benefitting from mesh optimization techniques. Herein, we tested different solution fields with the goal 

of optimizing the forward model for computational efficiency. We found that the ∑ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛  field and 

Attenuation field (𝐴𝑡𝑡.) field produced robust optimized meshes for preclinical applications. Moreover, 

we demonstrated that these solution fields maintained the accuracy of the forward model, especially for 

challenging data types such as early gates. Overall, the mesh optimization methodology described herein 

may be an attractive solution for computing initial meshes based on the attenuation field and/or rescaling 

mesh MC Jacobians for non-linear implementations in a computationally efficient framework.  
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