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Abstract: In solid-state physics, the quantized lattice vibrations, i.e., the phonons, play
a vital role. Phonons, much like photons, satisfy bosonic commutation relations, and
therefore, various concepts well-known in quantum optics can be transferred to the emerging
field of phononics. Examples are non-classical states and, in particular, squeezed states.
We discuss the generation of phonon squeezing by optically exciting a quantum dot and
show that by excitation with detuned continuous wave laser fields, sequences of squeezed
phonon wave packets are created, which are emitted from the quantum dot region into the
surrounding material.
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1. Introduction

Phonons are the quantized vibrations of the crystal lattice. They are, in many ways, similar to
photons, i.e., the quanta of the electromagnetic field, because both phonons and photons satisfy bosonic
commutation relations. Various types of quantum states of photons have been extensively studied in the
past [1,2]. A particular class for bosons are squeezed states [3,4], which, for photons, can be routinely
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generated, e.g., by parametric down-conversion, and which can be used to provide higher measurement
precision, e.g., in gravitational wave detectors [5]. This is possible, because squeezing allows one to
reduce the quantum mechanical fluctuations of one observable below its vacuum value at the cost of
enlarged fluctuations of the conjugate observable.

The concept of squeezing can directly be transferred to other bosonic excitations, like the motion
of an atom in a trap [6,7] or the vibrations of a nanoresonator [8–11]. Furthermore, the search for
and analysis of squeezed phonon states in various solid state systems has been the subject of many
experimental [12–16], as well as theoretical [17–24] investigations in the past years. For phonons, the
lattice displacement and the momentum of the motion of the lattice ions are a conjugate pair of variables,
which enter in the Heisenberg uncertainty principle. Squeezing therefore corresponds to reducing the
fluctuations of one of these variables at the expense of the other one.

The phenomenon of squeezing is often introduced for the case of a single mode. For photons,
this can be achieved, e.g., by considering light in a microcavity [25,26]. For some phonon systems,
an effective reduction to a single mode with well-defined frequency is possible as well, such as for
longitudinal optical phonons with negligible dispersion or for phonons at van Hove singularities in the
phonon density of states. Many investigations in the past have concentrated on phonon squeezing in
such systems [12–14,19,20,24,27]. When the phonon system cannot be reduced to a single mode and
modes with a continuum of frequencies contribute to the displacement and momentum of the lattice ions,
a localized excitation leads to the creation of traveling phonon wave packets [28]. These wave packets
can also exhibit squeezing [22].

While in some ionic crystals, a direct optical excitation of some optical phonon modes by infrared
light is possible, the typical excitation of phonons occurs indirectly via an optical excitation of
the electronic system. By means of the electron-phonon interaction, the excitation is then partially
transferred to the phonon system, which opens up the possibility for an indirect, optical control of
the phonon states [16,19,22,24]. A simple, localized electronic system, which can be well controlled
optically, is given by a semiconductor quantum dot (QD). The optical excitation of the QD by laser
pulses can create wave packets or sequences of wave packets of acoustic phonons [28], which are emitted
from the QD into the surrounding material. In this paper, we will analyze the fluctuation properties of
such wave packets emitted from a QD that is driven by a continuous wave (CW) field and discuss under
which conditions squeezing can emerge. In particular, we will show that while for excitations by laser
fields resonant to the exciton-transition energy, no squeezing occurs, for detuned excitations, sequences
of squeezed wave packets can be emitted from the QD.

2. Theoretical Model

We will study the properties of phonons generated by the optical excitation of a self-assembled
semiconductor QD. Typically, in these systems, the coupling via the deformation potential to longitudinal
acoustic (LA) phonons has been found to be the most efficient one [29]. Therefore, we will restrict
ourselves to this type of phonon. The relevant quantity for the study of squeezing is the lattice
displacement û(r, t), which for LA phonons is given by:
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where b̂†q (b̂q) are the creation (annihilation) operators for a phonon with wave vector q and energy ~ωq,

satisfying the commutation relation
[
b̂q , b̂

†
q′

]
= δq,q′ , V is the normalization volume of the phonon

modes and ρ the crystal density. Assuming isotropic bulk phonons, the dispersion relation reduces to
ωq = clq, with cl being the longitudinal sound velocity. The conjugate variable to the lattice displacement
is the momentum given by π̂ = Veρ∂û/∂t with Ve being the volume of the elementary cell. We will
restrict ourselves to a system with spherical symmetry; therefore, all quantities only depend on the radial
coordinate r [22].

To study phonon squeezing, we have to look at the fluctuations of displacement and momentum given
by ∆u =

√
〈û2〉 − 〈û〉2 and analogous for π̂. The uncertainties for displacement and momentum have

to fulfill the Heisenberg uncertainty principle given by:

(∆u)2(∆π)2 ≥ 1

4
~2 (2)

Because the Heisenberg limit is given for the product of the quantities, there is the freedom to lower
the fluctuations of one variable at the cost of the other, which is often understood as squeezing. We will
take as a reference the vacuum fluctuations and define squeezing as the case when the fluctuations of one
of the variables drops below its respective vacuum value ∆uvac and ∆πvac defined by:
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For a single mode (setting Ve = V ) or optical modes with a fixed frequency ω0, the vacuum
fluctuations satisfy the minimum uncertainty product. However, for LA phonons, it turns out that already
in the case of the vacuum state, the Heisenberg limit is exceeded [22].

For our further investigations, we restrict ourselves to the lattice displacement and define the quantity
Du as the normalized deviation of the squared fluctuations of the displacement from their vacuum
value, i.e.,

Du(r, t) =
[∆u(r, t)]2 − (∆uvac)

2

(∆uvac)2
(5)

With this definition, squeezing is directly reflected by Du < 0. For brevity, we will refer to Du as
fluctuations in the following. Written explicitly in terms of expectation values of the phonon creation
and annihilation operators, Du reads:
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≡ D〈b†b〉(r, t) +D〈bb〉(r, t) (7)

In this way, the fluctuations can be separated into two parts. The first part D〈b†b〉(r, t) is the
fluctuations related to operators, which are off-diagonal generalizations of the phonon occupation
n̂q = b̂†qb̂q. It can be shown that D〈b†b〉(r, t) is always positive. The second part D〈bb〉(r, t) is the
fluctuations of a two-phonon coherence. In the case of purely incoherent phonons, i.e., 〈b̂†q〉 = 〈b̂q〉 =

〈b̂qb̂q′〉 = 0 and 〈b̂†q′ b̂q〉 = n̂qδqq′ , only the first part remains, leading to Du > 0. Squeezing therefore
requires the presence of two-phonon coherences. Indeed, it is well known from quantum optics that
operators of the form b̂2 and b̂†2 appear in the squeezing operator for a single mode and, in this way, are
crucial for the reduction of fluctuations below the vacuum limit [1].

We will study the fluctuation properties of phonons generated by optical excitation of a QD. Because
a detailed description of the theory can be found in previous papers (see, e.g., [28]), we will only
briefly summarize the main aspects here. We consider a QD in the strong confinement limit driven by a
circularly polarized light field, such that a description of the QD by a two-level system consisting of the
ground state |g〉 and the single exciton state |x〉 with the exciton energy ~ωx is appropriate. The coupling
to bulk LA phonons takes place via the pure dephasing mechanism, i.e., phonon-induced transitions
to other electronic states are neglected. The system can be optically controlled via a laser field E(t),
which is described in the usual dipole and rotating wave approximation. Then, the Hamiltonian of the
system reads:

Ĥ = ~ωx|x〉〈x| −ME(+)|x〉〈g| −M∗E(−)|g〉〈x|+
∑
q

~ωqb̂
†
qb̂q +

∑
q

~
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†
q

)
|x〉〈x| (8)

Here, gq is the exciton-phonon coupling matrix element and M is the dipole matrix element. The
excitation, which we consider here is a smoothly switched on CW excitation with the laser frequency
ωL. In terms of the Rabi frequency Ω(t) = 2

~ME(+)(t)eiωLt, the excitation is modeled by:

Ω(t) =
ΩR

2

[
erf

(
t

τ

)
+ 1

]
(9)

where τ defines the duration of the switch-on process, while ΩR determines the strength of the CW
excitation after it has been switched on.

In the system, different types of resonance conditions can be fulfilled. First, the laser excitation
is resonant, when the laser frequency ωL matches the frequency of the exciton transition. Here, the
renormalization of the exciton energy due to the electron-phonon interaction (the polaron shift) has to
be taken into account, leading to ω̃x = ωx −

∑
q |gq|

2 /ωq. Thus, the laser excitation is called resonant
if ωL = ω̃x. If this condition is not met, we call the excitation detuned and introduce the detuning
~δω = ~ωL − ~ω̃x. This is schematically shown in Figure 1a.
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Figure 1. (a) Schematic plot of the two-level model with the optical excitation; (b) phonon
spectral density for a QD with a 5-nm diameter.

A second type of resonance is introduced by the exciton-phonon coupling. The efficiency of this
coupling is quantified by the phonon spectral density:

J(ω) =
∑
q

|gq|2δ(ω − ωq) (10)

Assuming for simplicity a spherical QD geometry with harmonic confinement potentials for electrons
and holes, the spectral density reads:
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−
(

ωah
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)2
)2

(11)

whereDe (Dh) are the deformation potentials of electrons (holes) and ae (ah) are the spatial widths of the
electron (hole) wave functions. We take GaAs material parameters [29] and a QD with L = ae2

√
ln 2 =

5 nm diameter (full width at half maximum of the electron density), as well as ah = 0.87ae. Figure 1b
shows J(ω) for this QD. It is seen that J(ω) is maximal at a finite phonon frequency ωph. The coupling
between the exciton and phonon system is most efficient when the time Tph = 2π/ωph (roughly the
time the phonons need to travel across the QD) matches the period of the Rabi oscillation of the exciton
system. A more transparent interpretation of this resonance between light-induced and phonon-related
dynamics can be obtained within the dressed state picture. The dressed states are the eigenstates of the
coupled QD-light system. They are split by the energy ~Ω̃R = ~

√
Ω2

R + δω2 [30], where Ω̃R is the
effective Rabi frequency. In this picture, phonons can induce transitions between the dressed states,
and the transitions are most efficient when the splitting coincides with the maximum of the spectral
density [31–33]. For the QD parameters taken in this paper, the resonant phonon time is Tph = 2π/ωph ≈
2 ps. We note that the coupling is only efficient for phonons with frequencies between 1 and 7 ps−1.

In general, the optical excitation of the QD leads to the generation of a mean lattice displacement
〈û(r, t)〉, which, for symmetry reasons, has only a radial component and which essentially corresponds
to the dynamics of a classical strain field. In the case of a spherical QD and LA phonons, this leads
to traveling spherical waves, which decay ∼ r−1. Accordingly the fluctuations decay ∼ r−2. To
compensate for this geometrical decay, we plot the scaled quantities:

ũ(r, t) =
( r

1 nm

)
〈û(r, t)〉 and D̃u(r, t) =

(
r2

1 nm2

)
Du(r, t) (12)
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While in the case of excitation by ultrafast laser pulses, the coupled QD-phonon dynamics can be
calculated analytically [22,34], for arbitrary excitations, no exact analytical results are known. Therefore,
we use a numerical calculation on the level of a fourth-order correlation expansion [35,36], which has
been shown to provide very reliable results in the parameter range studied here [37]. The complete set
of equations for our model can be found in [36] (Equations (3)–(6) and (A1)–(A9)).

3. Results and Discussion

We will first study the fluctuation properties for two different excitation strengths. One is chosen such
that the Rabi frequency is in resonance with the phonon coupling, while the other is much stronger and
far above the resonance condition. After that, we will give an overview of the occurrence of squeezing
for various coupling strengths. To focus on the excitation-induced properties of the phonons, we restrict
ourselves to the temperature T = 0 K, such that before switching on the light field Du = 0. Initially,
both the exciton and the phonon system are taken to be in their respective ground state. The exciton is
driven by an optical CW field that is switched on according to Equation (9) with τ = 0.5 ps.

3.1. Rabi Frequency Resonant with Phonon Coupling

We start our discussion with a Rabi frequency ΩR = 3 ps−1 = ωph, which is in resonance with the
phonon coupling. Figure 2 shows the results for this excitation; it is structured as follows: The three
different detunings ~δω = +0.5, 0 and−0.5 meV are shown from left to right. In the upper row ((a), (c)
and (e)), we show the exciton occupation f(t) = 〈|x〉〈x|〉 (solid red lines), as well as the Rabi frequency
Ω(t) (dashed blue lines) in the lower panels and the mean lattice displacement ũ in the top panels. In
the lower row ((b), (d) and (f)), we show the fluctuations D̃u(r, t) in the lower panels and their temporal
profiles at r = 20 nm in the upper panels.

Let us first briefly discuss the upper row of Figure 2, i.e., (a), (c) and (e). The case of resonant
excitation with ~δω = 0 meV has been extensively studied in [28], and we refer to that paper for further
details on the dynamics of the lattice displacement. The exciton occupation f (shown in the lower panel)
performs the well-known Rabi oscillations with the Rabi frequency ΩR that are damped in time due to
the coupling to the LA phonons [30,38]. The upper panel of Figure 2c shows the lattice displacement ũ
(note that the values are scaled according to Equation (12)) plotted against time and distance from the
QD. Every excitation of the exciton leads to the emission of a wave packet with a negative amplitude.
Accordingly, each destruction of the exciton creates a wave packet with positive displacement. As the
amplitude of the Rabi oscillation decays quite fast, also the amplitudes of the emitted phonons get smaller
from one wave packet to the next one. Note that the oscillation period of the phonon wave packets
is determined by the Rabi frequency ΩR. Moving to detuned excitations in Figure 2a,e, the overall
behavior is rather similar. The oscillations now occur with the effective Rabi frequency Ω̃R ≈ 3.1 ps−1,
which is, however, only slightly different from ΩR. For positive detuning, the exciton occupation relaxes
towards a slightly higher value, and for negative detuning, a slightly lower value compared to the resonant
excitation is reached. These different long-time values can be best understood in the dressed state picture.
At low temperatures, when no phonon absorption processes are possible, only transitions from the upper
to the lower dressed state by phonon emission occur, such that, finally, only the lower dressed state is
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populated [37]. Thus, the final exciton populations seen in Figure 2 reflect the different contributions
of the exciton state to the lower dressed state: at resonance, this state is an equal superposition of the
ground and exciton state; for positive detuning, it is more exciton-like; and for negative detuning, it is
more ground state-like. Since the initial state before switching on the light field is the ground state,
phonon emission is more pronounced for positive detuning than for negative detuning.
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ũ
(p
m
)(e)

Figure 2. (a,c,e) Mean lattice displacement ũ(r, t) (upper panel); Rabi frequency Ω (dashed
blue) and occupation f of the exciton state (solid red) (lower panel); (b,d,f) fluctuations
of the lattice displacement D̃u(r, t) (lower panel), as well as their temporal profiles at r =

20 nm (upper panel): (a,b) positive detuning ~δω = +0.5 meV; (c,d) resonant excitation
~δω = 0 meV; (e,f) negative detuning ~δω = −0.5 meV.

The focus of this paper is the fluctuations of the lattice displacement D̃u, which are plotted in the
bottom row of Figure 2, i.e., (b), (d) and (f). The overall spatio-temporal structure (shown in the
lower panels) follows the behavior of the displacement. The top panels show a temporal profile of
the fluctuations at r = 20 nm. For the resonant excitation (Figure 2d), in addition to the emission of
coherent phonon wave packets, also an increase of the fluctuations above the vacuum level is found. It
can be clearly seen that the fluctuations never go below zero, thus, the state is never squeezed. Having a
more detailed look, we see that the maxima of the fluctuations appear exactly between the wave packets
in the lattice displacement, where the slope of ũ is the largest, and that the fluctuations become minimal
when there is a maximum or minimum in the displacement. This shows that the fluctuations oscillate
with twice the Rabi frequency, i.e., 2ΩR = 6 ps−1. Typically, an oscillation with twice the characteristic
frequency of the phonon system is an indicator of squeezing, in particular in single mode systems.
However, it has been found in other systems, as well, that oscillations with the double frequency may
also appear without squeezing [19].

For a positive detuning of ~δω = +0.5 meV in Figure 2b, we again see an oscillatory behavior
of the fluctuations. Also in this case, the fluctuations are strictly positive; thus, no squeezing occurs.
Furthermore, we see in the profile that the oscillation contains more than just twice the effective
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Rabi frequency, such that the oscillation looks rather irregular. In contrast, for the case of a negative
detuning of ~δω = −0.5 meV, the fluctuations clearly fall below zero on the slope of each wave
packet. This means that the emitted wave packets are squeezed, and even a sequence of squeezed
wave packets is generated by excitation with a CW light field. These findings are in line with other
studies, where squeezed phonons arising from negatively detuned excitation of an electronic system were
found [12,24]. In those studies, phonons with a fixed frequency, like optical phonons or phonons at van
Hove singularities, were investigated. This means that the phonons have a vanishing group velocity, such
that they do not move in space. The new feature in our system studied here is that the LA phonons form
squeezed traveling wave packets that leave the QD.
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D̃〈bb〉 (dotted orange) and the phonon occupation D̃〈b†b〉 (dashed green) for ~δω = 0 meV

(center), +0.5 meV (left) and −0.5 meV (right). All curves are calculated for r = 20 nm.

To analyze the fluctuations D̃u in more detail, we show the temporal profile at r = 20 nm again
in Figure 3 (solid grey line), where we now distinguish between the two contributions D̃〈b†b〉 (dashed
green line) and D̃〈bb〉 (dotted orange line) defined in Section 2. We remind that D̃〈b†b〉 describes the
fluctuations of the phonon occupations, and in this way, it includes the heating processes of the phonon
system, while D̃〈bb〉 refers to the fluctuations of the two-phonon coherence. Let us first concentrate on
D̃〈b†b〉. The behavior of these fluctuations is smooth and does not show any oscillatory behavior for any
detuning, but they form roughly the mean value of the oscillatory full fluctuations D̃u. In contrast, for
D̃〈bb〉, an oscillatory behavior is seen. For resonant excitation, we see that it goes approximately with
twice the Rabi frequency, i.e., 2ΩR. For detuned excitation, a spectral analysis shows that the oscillation
is composed of two frequencies, approximately 2Ω̃R and Ω̃R. It is interesting to note that an oscillation
of the fluctuations with double and single phonon frequency was also found for squeezed longitudinal
optical phonons after pulsed optical excitation [19].

To understand whether squeezing occurs, we have to compare the strength of the two contributions
D̃〈b†b〉 and D̃〈bb〉. For resonant excitation, the two parts have the same strength, such that they can
compensate for each other. The minima in D̃u reach exactly zero, and no squeezing occurs. For positive
detuning, as discussed above, the relaxation from the upper to the lower dressed state is associated
with an increased phonon emission. When we think of D̃〈b†b〉 to represent heating processes of the
phonon bath, it is easy to understand that for a positive detuning, the fluctuations D̃〈b†b〉 are larger
than in the resonant case. It turns out that here, the heating processes always exceed the squeezing
processes represented by D̃〈bb〉. Therefore, the total fluctuations D̃u are always positive, and no
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squeezing occurs. For negative detuning, the lower dressed state has a larger ground state contribution,
such that phonon emission processes are reduced compared to the resonant case, i.e., the heating is
suppressed. Accordingly, D̃〈b†b〉 is much smaller than D̃〈bb〉, and the total fluctuations are dominated by
the two-phonon coherence, thus leading to squeezing.

3.2. Rabi Frequency out of Resonance with Phonon Coupling

A drawback of the excitation with a Rabi frequency of ΩR ≈ ωph is the fact that the dephasing
of the exciton is quite strong, such that the dynamics is limited to a short period of time. To avoid
this pronounced damping in time, we now double the amplitude of the CW field to ΩR = 6 ps−1.
In [28], we have shown that for Rabi frequencies in this region, a long sequence of wave packets can be
emitted, because the exciton and the phonon system become increasingly decoupled and the dephasing
mechanisms are suppressed. For a discussion of the mean lattice displacement ũ we again refer to [28].
Figure 4a shows the fluctuations of the lattice displacement as a function of time and distance from
the QD for the three detunings ~δω = +0.5, 0 and −0.5 meV. For the resonant excitation (central
panel), only positive fluctuations are visible. After two large wave packets at the beginning that result
from the switch-on process, all remaining amplitudes are almost of the same size. This reflects the very
inefficient dephasing of the exciton state. Turning to detuned excitations, a surprising result is found for
the fluctuations: not only for a negative detuning (Figure 4a bottom), but also for a positive detuning
(Figure 4a top), pronounced negative fluctuations appear. We want to point out that in Section 3.1 and
in previous studies on similar systems, squeezed phonon states were only found for optical excitation
energies smaller than the exciton transition [6,24]. For positive detunings, only enhanced fluctuations
were observed [6,24].
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for a Rabi frequency ΩR = 6 ps−1; (b) temporal shape of the fluctuations of the lattice
displacement D̃u from (a) at r = 20 nm; (c) same as Figure 3 but for ΩR = 6 ps−1.
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To take a closer look at the temporal structure of the fluctuations, in Figure 4b, we have plotted the
profile of D̃u for r = 20 nm for the three cases of the detuning ~δω = +0.5 (dotted blue line), 0

(solid black line) and −0.5 meV (dashed red line). In the case of a resonant excitation (solid black),
the minima of the fluctuations again reach zero, but never become negative. The frequency of this
oscillation is approximately twice the Rabi frequency of the system, i.e., ≈ 12 ps−1. Note that, here,
Ω̃R ≈ 6.04 ps−1, which essentially agrees with ΩR. For the detuned cases (dashed red and dotted
blue lines), the overall amplitude of the oscillation is enlarged, such that both reach negative values.
Both curves look quite similar, but have a phase shift of π. It is also clearly visible that the dominant
frequency of the oscillation for the detuned cases is approximately the single Rabi frequency Ω̃R, while
the fast component with about 2Ω̃R is weaker.

We again want to analyze the separate contributions to the fluctuations D̃u. The results are shown in
Figure 4c in the same way as in Figure 3. We recover some features from the previous case of strong
phonon coupling at ΩR = 3 ps−1. The fluctuations of the phonon occupation D̃〈b†b〉 (dashed green lines)
again get larger for positive detuning and smaller for negative detuning; however, they are much smaller
than in the case of strong phonon coupling. This is due to the fact that the phonon spectral density
at ω = ΩR is much smaller now. The curves still do not exhibit a distinct oscillating structure, but
are more or less constant after the strong wave packet from the switch-on process of the optical field
that appears around t = 4 ps. It also still holds that the contributions D̃〈b†b〉 form the mean value for
the full fluctuations D̃u (solid grey lines). However, the important difference from Figure 2 is the fact
that the fluctuations of the two-phonon coherence D̃〈bb〉 (dotted orange lines) clearly get larger than
D̃〈b†b〉 for detuned excitations nearly independent of the sign of the detuning, which is quite remarkable.
Additionally, as the previous discussion still holds, the phonon wave packets are squeezed when the
two-phonon contributions dominate.

3.3. Dependence on Rabi Frequency

Let us now draw a complete picture and study the fluctuations as a function of the Rabi frequency.
In Figure 5 (left panel), we plot the profiles of the fluctuations D̃u at r = 20 nm in a contour plot
as a function of time t and Rabi frequency ΩR for the three different detunings. As expected, for
zero detuning, we do not see any squeezing. For negative detuning, we find that for almost all
Rabi frequencies ΩR, squeezing occurs. For positive detuning, the situation turns out to be more
complicated. While for small Rabi frequencies up to about ΩR = 3 ps−1, no squeezing occurs, for
higher Rabi frequencies around 6 ps−1, the fluctuations exhibit clear squeezing. We mention that also the
lattice momentum exhibits no squeezing for resonant excitation and may exhibit squeezing for detuned
excitations. We additionally plot the fluctuations of the phonon occupations D̃〈b†b〉 (middle panel) and
the fluctuations of the two-phonon coherence D̃〈bb〉 (right panel). Here, we can clearly see the difference
between the three detunings. While for negative detuning, the fluctuations of the phonon occupations
D̃〈b†b〉 are very small, for positive detuning, they become very strong. However, the important feature
is that the main contributions of D̃〈b†b〉 are restricted to frequencies around ΩR = 3 ps−1. This reflects
the fact that only in this range of Rabi frequencies does pronounced phonon emission from the upper
to the lower dressed state occur. The shape of this area in the plot does not change, but the detuning
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only contributes to a scaling of it, which can be understood from the fact that with increasing detuning,
the contribution of the exciton state to the lower dressed state increases, and thus, more phonons are
generated in the relaxation process. On the other hand, the strength of the fluctuations of the two-phonon
coherence D̃〈bb〉 are very similar for all three detunings. The main difference is that for zero detuning,
they are strongest around ΩR = 3 ps−1 and become small for ΩR & 6 ps−1, while in the detuned cases,
also significant contributions arise from larger Rabi frequencies.
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Figure 5. Fluctuations of the lattice displacement D̃u (left), D̃〈b†b〉 (center) and D̃〈bb〉 (right)
at r = 20 nm plotted against time t and Rabi frequency ΩR for the detunings δω = +0.5 meV

(top); 0 meV (middle) and −0.5 meV (bottom).

4. Conclusions

Phonon squeezing is in many ways similar to photon squeezing, but also, some pronounced
differences appear. Relevant quantities for the phonons are the lattice displacement and momentum,
which are, for LA phonons, defined by many modes. In this paper, we have analyzed the fluctuation
properties of the lattice displacement of LA phonons that are emitted from an optically-driven QD. We
have studied different excitation strengths of a CW field and different detunings. Our studies were
focused on the lattice displacement; however, the lattice momentum behaves mostly in an analogous
way. For optical excitation in resonance with the transition energy of the exciton system, no squeezing
was found; however, an oscillation of the fluctuations with twice the Rabi frequency occurred. This is
similar to the appearance of contributions with twice the phonon frequency in the case of optical phonon
fluctuations after impulsive excitation [19]. For negatively detuned excitations, we have shown that for
all excitation strengths, squeezing appears, in agreement with studies on similar systems [1,12,24]. For
positive detuning, we found that the appearance of squeezing is determined by the heating of the phonon
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system. While for strong phonon coupling, the heating dominates, and no squeezing occurs, for weak
phonon coupling at high Rabi frequencies, the squeezing prevails.
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