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Abstract

Mechanical vibrations induced by electromagnetic forces during transformer operation can
lead to winding deformation or failure, an issue responsible for over 12% of all transformer
faults. While previous studies have predominantly relied on accelerometers for vibration
monitoring, this study explores the use of an optical sensor for real-time vibration measure-
ment in a dry-type transformer. Experiments were conducted using a custom-designed
single-phase transformer model specifically developed for laboratory testing. This exper-
imental setup offers a unique advantage: it allows for the interchangeable simulation of
healthy and deformed winding sections without causing permanent damage, enabling
controlled and repeatable testing scenarios. The transformer’s secondary winding was
short-circuited, and three levels of current (low, intermediate, and high) were applied to
simulate varying stress conditions. Vibration displacement data were collected under load
to assess mechanical responses. The primary goal was to classify this vibration data to
localize potential winding deformation faults. Five supervised learning algorithms were
evaluated: Random Forest, Support Vector Machine, K-Nearest Neighbors, Logistic Regres-
sion, and Decision Tree classifiers. Hyperparameter tuning was applied, and a comparative
analysis among the top four models yielded average prediction accuracies of approximately
60%. These results, achieved under controlled laboratory conditions, highlight the promise
of this approach for further development and future real-world applications. Overall,
the combination of optical sensing and machine learning classification offers a promising
pathway for proactive monitoring and localization of winding deformations, supporting
early fault detection and enhanced reliability in power transformers.

Keywords: power transformer; windings; vibration; monitoring; classification and prediction;
machine learning; fiber optic sensor; FBG

1. Introduction

Power transformer windings are critical active components designed to withstand
mechanical, thermal, and electrical stresses [1]. Despite their robustness, studies have
shown that 12-15% of transformer failures originate from winding-related issues [2]. While
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this percentage may seem modest, a single failure can cause extensive damage and often
results in complete transformer shutdown. Given the essential role and high cost of power
transformers in modern power systems, ensuring the structural integrity of their windings
is a priority, one that has driven significant research efforts in condition monitoring and
fault detection [3-5].

Several diagnostic techniques have been developed to monitor transformer health,
including vibration-based methods that measure tank or core oscillations [6-8]. More re-
cently, frequency response analysis (FRA) has gained traction as a reliable tool for detecting
winding displacements and deformation.

In our previous investigation, we demonstrated the advantages of using an optical sen-
sor placed between windings for monitoring vibration signatures associated with structural
integrity [9]. Optical sensors offer a distinct advantage in this context due to their immunity
to electromagnetic interference [10]. To eliminate external disturbances, a custom open-core
transformer was used, isolating the windings for more accurate measurement [11].

Despite these advances, one of the primary challenges that remains is the accurate,
real-time localization of winding deformation. In this study, we address this challenge by
attaching an optical sensor directly to the winding structure. Vibration signals are collected
under multiple mechanical stress scenarios and processed using advanced machine learning
algorithms. The goal is to not only detect but also localize winding deformations, laying
the groundwork for more intelligent and responsive transformer monitoring systems.

The remainder of this paper is organized as follows: Section 2 recalls some background
information on optical fiber Bragg Grating. Section 3 presents the experimental setup,
including the custom-designed transformer model, sensor placement, and test scenarios.
In Section 4, the machine learning models are introduced, along with their hyperparameter
tuning strategies. A comparative analysis of the classification results and a discussion of
the implications of the findings are also provided. Finally, Section 5 concludes the paper
with key takeaways and directions for future research.

2. Background

Real-time monitoring of power transformer accessories is essential for ensuring the
transformer’s reliability and maintaining uninterrupted service [12]. The condition moni-
toring of power transformer windings has drawn considerable attention from researchers.
Frequency Response Analysis, whether performed offline or online, is a well-established
and widely recognized technique for detecting mechanical displacements, deformations,
and structural damage [13,14]. Mechanical vibrations in transformer windings are pri-
marily caused by electrodynamic forces. These vibrations follow the behavior of a classic
mass-spring-damper system. The dynamic behavior of the winding can be described by
the equation of motion [9] in Equation (1).

2

m%—l—c%—i—kx: F(t) (1)

In this equation, m represents the mass of the winding, c is the damping coefficient,

k denotes the mechanical stiffness in newtons per meter (N/m), and F(t) is the time-

dependent electrodynamic force. This force is generally proportional to the square of the
current, expressed as Equation (2).

F(t)aI? )

Taking the Fourier transform of Equation (1) leads to the frequency-domain trans-
fer function of the windings” acceleration response to the applied force. This function,
represented by H(jw), is expressed as Equation (3) [7,9]:
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Optical sensors, particularly fiber Bragg Grating (FBG) sensors, have been explored
in prior studies as suitable tools for capturing these vibration-induced effects [15]. FBG
sensors work based on the principle of Bragg reflection, where the Bragg wavelength,
denoted by Ap is defined by the relation in Equation (4) [9].

/\B = anff/\ (4)

Here, n, ff is the effective refractive index of the fiber, and A is the spatial period of
the Bragg grating embedded within the optical fiber.

In this paper, the used vibration sensor consists of two FBGs inscribed on a single-
mode photosensitive fiber using deep-UV phase-mask technology. Each grating has
a length of 10 mm with reflectivity of 80%, and the two gratings are separated by a short
cavity of 15 mm that forms an interferometric vibration sensor. When strain ¢ is applied
along the fiber, both 7,¢f and A change, producing a wavelength shift [9]:

AAp

= (1= Pe+ (a+ QAT )
B

where AAp is Bragg wavelength shift (pm), ¢ is axial strain applied to the FBG (ue), P
introduces effective photo-elastic coefficient of the fiber (~0.22 for silica), « is known as
thermal expansion coefficient of the fiber, ¢ is the thermo-optic coefficient of silica fiber,
and AT represents temperature change (°C). In our experiments, temperature effects were
negligible or compensated, so the key relation (FBG strain—-wavelength sensitivity law)
reduces, as shown in Equation (6) [9]:

A)&B/)\B = (1 - Pg)S (6)

The central Bragg wavelength of the gratings was 1550 nm, chosen for compatibility
with standard telecommunication interrogators. The sensor was recoated using a Furukawa
S541A (Furukawa Electric Corp., Tokyo, Japan) acrylate recoated to provide mechanical
robustness and thermal stability up to 150 °C. The packaged sensor (2 mm thickness) was
specifically designed to fit inside winding spacers without bonding for repeatable installa-
tion and hard contact with winding sections. When the transformer windings experience
vibrations, dynamic mechanical stresses are transmitted to the nearby or attached FBG
sensor. These stresses lead to two key effects.

o  First, they alter the grating period A due to mechanical elongation or compression of
the fiber.
e Second, they modify the effective refractive index n,¢s through the photoelastic effect.

Both changes contribute to a measurable shift in the Bragg wavelength Ap, allowing
the FBG sensor to detect and quantify winding vibrations in real time.

3. Experimental Setup

The experimental setup consists of three essential components: a high current source,
a test transformer, and an optical sensor connected to its corresponding reading unit.
These elements work together to simulate operational conditions and capture the resulting
mechanical responses within the transformer windings. As shown in Figure 1, part (a)
presents the complete experimental setup, while part (b) displays the physical laboratory
model used for the tests. The arrangement allows accurate reproduction of electrical and
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Figure 1. (a) Experimental setup, (b) laboratory model.

The FBG sensor was interrogated using a Distributed Feedback (DFB) laser scanner,
which continuously sweeps around the Bragg wavelength and detects shifts caused by
strain or vibration. The scanner output was transferred to a computer and processed using
firmware developed in LabVIEW (v2025 Q3). The acquired signals were transformed
into the frequency domain using FFT, and the amplitude at 120 Hz was extracted as the
displacement indicator. Prior to transformer tests, the system was calibrated with a YE5503
shaker (Global sensor technology (GST), Manchester, UK) to ensure accurate conversion
between wavelength shifts and vibration displacements.

The laboratory dry-type transformer used in this experiment was previously described
in earlier investigations and applied current details [9]. Its high-voltage (HV) windings are
composed of 16 blocks, numbered 0 to 15, and are divided into four sections: P1, P2, P3,
and P4. The optical sensor was mounted on windings W4, W5, W6, W7, W8, W9, and W10.
It should be noted that the sensor was positioned on 4 sections of each winding and on
each section 5 tests were carried out, so the average of 20 tests makes it possible to obtain
the vibration amplitude of a winding in a precise configuration (Figure 2).

P3 P4
wa \
W5
weé
w7
ws P2
wo P1
w10

Figure 2. (a) Winding 4-10 and section P1 and P2, (b) top view of the four P section of the transformer.
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The connection between the windings and the current source is in section P4 to
minimize the equivalent impedance. The secondary winding of the test transformer is short-
circuited, causing the voltage across the secondary to drop to nearly zero. Consequently,
the short-circuit current becomes significantly high. This current generates a substantial
magnetic flux in the transformer’s magnetic circuit. The reactive component of the short-
circuit current, being in phase opposition to the voltage, produces a magnetic field that
counteracts the initial magnetic field generated by the primary current. This opposing
magnetic field reduces the transformer’s apparent inductance, thereby decreasing its
apparent impedance. The high-current source used in the setup is a transformer connected
to a 600 V AC supply, with its secondary winding short-circuited. Its output impedance is
0.0016 ohms. To ensure sufficient current for inducing winding vibrations, the impedance
of the laboratory transformer windings connected to the high-current source must remain
low. The experimental setup includes the dry-type transformer, the high-current source,
and a thermal camera housed within a thermal chamber. Outside the chamber, a computer
and an ammeter are used to monitor and analyze the experimental data.

To distinguish between different test cases during the experiments, each configuration
of the windings and sensor placement was labeled systematically. These labels help track
which windings were replaced by deformed ones and where the sensor was positioned
during measurement. The configurations are denoted by the prefixes E (for winding
arrangements) and Y (for sensor positions). Table 1 and Figure 3 provide a detailed
description of each designation used throughout the study [9].

Table 1. Description of winding and sensor configurations.

Label Description
EO0 Baseline configuration with all windings in healthy condition.
E1 Deformed winding D1 (shown in Figure 2a) replaces winding 7.
E2 Deformed winding D1 replaces winding 6.
E3 Deformed winding D2 (shown in Figure 2b) replaces winding 7.
E4 Deformed winding D2 replaces winding 6.
E5 Combined case: D1 replaces winding 7 and D2 replaces winding 6.
YO0 Sensor placed in a position with only healthy windings nearby.
Y1 Sensor positioned above the deformed winding.
Y2 Sensor placed directly on the deformed winding.
Y3 Sensor located beneath the deformed winding.

(a) (b)
Figure 3. Defective winding 1 (D1) in (a) and defective winding 2 (D2) in (b).

The data acquired during the tests are real-time winding vibration values that the
acquisition system processes using the fast Fourier transform. The vibration values are
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given as a function of the vibration frequency. Figure 4 presents the frequency-domain data
alongside the temperature distribution within the windings. The dominant vibration occurs
at 120 Hz, which corresponds to twice the 60 Hz power network frequency. This arises
because the mechanical forces in the transformer, generated by magnetostriction in the core
and electromagnetic forces in the windings, are proportional to the square of the magnetic
flux. Squaring a 60 Hz sinusoidal signal produces a component at 120 Hz, explaining
why the fundamental vibration appears at this frequency. The amplitudes at 120 Hz
are extracted for further analysis to assess the winding dynamics under the measured
operating conditions.
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Figure 4. Data in frequency domain and the temperature distribution.

4. Results and Discussion

The dataset is structured such that the features correspond to the vibration values
measured for each winding (denoted as W4, W5, W6, W7, W8, W9, and W10, where
W represents the winding number). The values represent displacement amplitudes (in
micrometers, um) extracted at the fundamental frequency of 120 Hz after FFT processing.
The targets are defined as the operational condition of the windings (State) together with
the associated severity level (Level). An excerpt of the dataset is presented in Table 2.

Table 2. Example of dataset structure showing vibration values of windings.

W4 W5 W6 W7 W8 W9 W10 State Level
0.011977 0.013817 0.015033 0.012935 0.012913 0.014535 0.00983 not fault Inception Level
0.02252 0.117813 0.0773 0.029075 0.055796 0.048191 0.034295 not fault Low Level
0.043571 0.171763 0.127405 0.063454 0.095052 0.088966 0.10209 not fault Intermediate Level
0.12922 0.441948 0.380467 0.194187 0.157496 0.247308 0.155581 not fault High Level
0.014252 0.066579 0.019945 0.013097 0.015708 0.013601 0.008977 W5 and W6 Inception Level

We evaluated five supervised classifiers (Logistic Regression, Linear SVM, K-Nearest
Neighbors, Random Forest, and Decision Tree) on FBG-derived vibration displacement
measured at seven sensor locations (W4-W10) across five winding configurations (E0-E4)
and four current levels. Each measurement record comprises four winding sections (P1-P4);
for analysis we adopt a per-part unit (each section as an independent sample described by
its mean and standard deviation and the operating context). Model performance is reported
using precision, recall, and the F1-score—precision is the proportion of correct positive
predictions among all positives; recall (sensitivity) is the proportion of true positives
that are correctly identified; F1 balances precision and recall (values near one indicate
strong performance, values near zero indicate poor performance). To ensure rigor and
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comparability, all scores are averaged over a stratified five-fold outer cross-validation. In
addition to per-class tables, we summarized overall macro-F1 and balanced accuracy. For
each algorithm we present results without improved hyperparameters (defaults) and with
improved hyperparameters selected by an inner three-fold grid search that maximizes
macro-F1; the corresponding hyperparameter grids are listed in Table 3, and representative
confusion matrices (without vs. with improvement) are provided for each model.

Table 3. Hyperparameter grids used for model selection (inner three-fold grid; score = macro-F1).

Classifier

Hyperparameter Grid (Candidate Values)

Logistic Regression
Linear SVM

Random Forest

Decision Tree

K-NN

C €10, 2, 10}
C €{0, 2,10}

Neighbors K € {3, 5, 7, 9}; weights € {uniform, distance}
Max depth € {3, 5, 7}; Min samples per leaf € {1, 2, 4}
Criterion € {Gini, entropy, log-loss}; Max depth € {3, 5, 7};
Min samples per leaf € {1, 2, 4}

True

15

12

23

4.1. Random Forest Classifier

The Random Forest classifier was tested for its ability to distinguish different sensor
positions relative to deformed windings using frequency and vibration features. This
algorithm, known for its robustness and ensemble learning structure, was evaluated both
before and after parameter tuning.

As shown in Figure 5, the confusion matrices highlight the performance differences
with and without hyperparameter improvement. Table 4 presents the classification metrics
without optimization, while Table 5 includes results after tuning. In both cases, the model
performed well for sensor positions Y1 and Y3, achieving a precision of 70% and 65%,
respectively, in the untuned model, and maintaining similar performance after tuning.

Confusion Matrix - Random Forest Confusion Matrix - Random Forest
100
28 17 25
o - 4 35 15 31 .
80
80
102 18 4 - 2 112 19 3
- 60
g - 60
£
13 47 23 - 40 ~ - 5 10 48 28
- 40
-20
-20
2 25 97 o 4 2 25 116
1 2 3 0 1 2 3
Predicted Predicted
(a) (b)

Figure 5. Confusion matrix of the Random Forest: (a) without improved hyperparameters; (b) with
improved hyperparameters.
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Table 4. Parameters table of Random Forest classifier without improved parameters.

Y Precision Recall F1-Score
0 0.26 0.18 0.21
1 0.70 0.75 0.73
2 0.44 0.52 0.47
3 0.65 0.66 0.66

Table 5. Parameters table of Random Forest classifier with improved parameters.

Y Precision Recall F1-Score
0 0.27 0.05 0.08
1 0.70 0.82 0.76
2 0.45 0.53 0.48
3 0.65 0.79 0.71

However, the classifier struggled with YO and Y2. In the untuned case, YO had
a precision of only 26%, and this dropped further to 27% after tuning. For Y2, the F1-score
remained low across both setups, indicating difficulty in distinguishing when the sensor
was directly on the deformed winding.

Overall, while the Random Forest algorithm demonstrated moderate success in identi-
fying deformation when the sensor was placed above or below the fault (Y1 and Y3), its
reliability significantly decreased for other positions, as reflected in both the tables and
confusion matrices.

4.2. Support Vector Classifier

The Support Vector classifier was used in this study to classify different winding con-
ditions based on features extracted from frequency response and vibration data, including
signals captured by the FBG sensor. The model learns to separate healthy and deformed
cases by identifying decision boundaries in the feature space.

Figure 6 illustrates the classification performance visually, while Tables 6 and 7 com-
pare the model’s results before and after parameter optimization. The results show that the
classifier performs well when the sensor is placed directly above or under the deformed
winding, with noticeable improvements in precision and F1-score in those cases. Parameter
tuning led to only slight variations overall and suggests that sensor placement has a more
significant impact on classification accuracy than hyperparameter adjustment.

Table 6. Parameters table of Support Vector classifier without improved parameters.

Y Precision Recall F1-Score
0 0.32 0.08 0.13
1 0.70 0.85 0.76
2 0.49 0.48 0.49
3 0.67 0.83 0.74

The precision is 70% for Y1 and 65% for Y3, indicating that the model shows promise in accurately localizing deformation.

Table 7. Parameters table of Support Vector classifier with improved parameters.

Y Precision Recall F1-Score
0 0.27 0.05 0.08
1 0.70 0.82 0.76
2 0.45 0.53 0.48
3 0.65 0.79 0.71
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Confusion Matrix - SVM (RBF Kernel)
Confusion Matrix - SVM (RBF Kernel) 120
120 o - 7 34 10 34
o - 4 33 13 35
100
100
80
~ 2 11 23 0 80 - v 14 o
é - 60 § 80
~ 2 16 36 37 o 5 16 44 26
- 40 - 40
" 0 0 16 131 2 -20
) 3 0 22
0 1 2 3 -
Predicted (') i 2' =0
Predicted
(a) (b)
Figure 6. Confusion matrix of the Support Vector classifier: (a) without improved hyperparameters;
(b) with improved hyperparameters.
4.3. K-Nearest Neighbors Classifier
The K-Nearest Neighbors (KNN) algorithm was also tested to classify winding condi-
tions based on sensor positioning. This method classifies data points by evaluating their
similarity to nearby examples in the training set and tries to make it straightforward yet
effective for certain types of patterns.
According to the confusion matrices in Figure 7, the classification behavior remained
largely unchanged before and after hyperparameter adjustment. As reflected in Tables 8 and 9,
the classifier consistently produced the strongest results for Y1 and Y3. In both configura-
tions, the precision for Y1 reached 70%, while Y3 held steady around 63-65%, showing that
the algorithm reliably identifies deformation when the sensor is positioned above or below
the fault.
Confusion Matrix - K-Nearest Neighbors Confusion Matrix - K-Nearest Neighbors
100
o J 1 34 17 25 o - 17 27 15 26
80
80
- 15 10 3 - 17 15 5 -
9 - 60 Y
g g
o S 0 o5 o5 w0 ~ - n 13 42 25 - 40
-20
-20
n 17 2 28 o - 18 2 30 97
) . . 0 1 2 3
Predicted Predicted
(a) (b)

Figure 7. Confusion matrix of the K-Nearest Neighbors: (a) without improved hyperparameters;
(b) with improved hyperparameters.
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Table 8. Parameters table of K-Nearest Neighbors classifier without improved parameters.

Y Precision Recall F1-Score
0 0.27 0.20 0.23
1 0.70 0.73 0.71
2 0.41 0.46 0.44
3 0.63 0.66 0.65

Table 9. Parameters table of K-Nearest Neighbors classifier with improved parameters.

Y Precision Recall F1-Score
0 0.27 0.20 0.23
1 0.70 0.73 0.71
2 041 0.46 0.44
3 0.63 0.66 0.65

In contrast, the performance for YO and Y2 was considerably weaker, with lower
F1-scores and little improvement after parameter tuning. This suggests the KNN model
had difficulty capturing the signal characteristics when the sensor was placed on or away
from the affected winding without distinct neighboring patterns to guide classification.

Although KNN demonstrated consistent accuracy in some cases, its sensitivity to
sensor placement and limited gains from parameter refinement highlight its dependency
on data distribution rather than model complexity.

4.4. Logistic Regression

Logistic Regression was tested to classify sensor positions based on frequency and
vibration signals collected during the experiment. This linear algorithm predicts class labels
by estimating probabilities from the weighted input features.

Figure 8 shows the confusion matrices under two conditions: part (a) illustrates the
default model, and part (b) shows the output after parameter adjustment. Tables 10 and 11
report the related classification metrics.

Confusion Matrix - Logistic Regression Confusion Matrix - Logistic Regression

120 120

o 14 33 6 32 o 14 33 6 32
100 100
- 20 108 8 0 80 - 17 112 7 0 80

3 ]

= - 60 = - 60

~ 6 19 34 32 ~ 5 21 32 33
40 - 40

-20 -20

' ! |
0 1 2
Predicted Predicted

(a) (b)

Figure 8. Confusion matrix of the Logistic Regression: (a) without improved hyperparameters;
(b) with improved hyperparameters.
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Table 10. Parameters table of Logistic Regression classifier without improved parameters.

Y Precision Recall F1-Score
0 0.32 0.16 0.22
1 0.68 0.79 0.73
2 0.53 0.37 0.44
3 0.66 0.86 0.75

Table 11. Parameters table of Logistic Regression classifier with improved parameters.

Y Precision Recall F1-Score
0 0.35 0.16 0.22
1 0.67 0.82 0.74
2 0.52 0.35 0.42
3 0.66 0.86 0.75

The model responded well when the sensor was above or under the deformed winding.
Precision reached 68% for Y1 and 66% for Y3 in the initial case, and performance remained
steady after tuning. On the other hand, the classifier struggled to identify patterns for Y0 and
Y2, where the scores remained low.

Although this model uses a simple structure, it shows consistent behavior for spe-
cific sensor locations. Its performance suggests it could be a reliable choice when fast,
lightweight fault detection is needed, and sensor placement is favorable.

4.5. Decision Tree

The Decision Tree classifier was evaluated to detect sensor position relative to de-
formed windings using extracted features from experimental data. This model operates by
splitting the data into branches based on conditions that best separate the classes.

As shown in Figure 9, the confusion matrices illustrate the model’s performance before
and after parameter adjustment. Tables 12 and 13 provide detailed classification results.

Confusion Matrix - Decision Tree Confusion Matrix - Decision Tree

21

100

16 24 o - 12 28 17 28

80

- 20 3
- 60
v
=
E
- 40
~ 5 19 - 40
-20 -20
m 13 1 32 101
|
0 1 2 3
Predicted Predicted
(a) (b)

Figure 9. Confusion matrix of the Decision Tree classifier: (a) without improved hyperparameters;
(b) with improved hyperparameters.
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Table 12. Parameters table of the Decision Tree classifier without improved parameters.
Y Precision Recall F1-Score
0 0.26 0.28 0.27
1 0.75 0.68 0.72
2 0.42 0.54 0.47
3 0.62 0.52 0.57
Table 13. Parameters table of Decision Tree classifier with improved parameters.
Y Precision Recall F1-Score
0 0.24 0.14 0.18
1 0.71 0.71 0.71
2 0.46 0.53 0.53
3 0.67 0.68 0.68

The model achieved its strongest outcome when the sensor was placed above the
deformed winding (Y1) and reached a precision of 75% in the untuned case and maintained
good balance after tuning. Y3 also showed stable performance and confirmed the classifier’s
ability to detect deformation when the sensor is near the affected area.

For Y0 and Y2, the precision and F1-scores remained lower, and even after param-
eter changes, the improvement was minor. This behavior can be explained by the vi-
bration propagation through the winding structure: when the sensor is in Y0 (healthy
region), vibration amplitudes remain close to baseline and make discrimination difficult. In
Y2 (directly on the defect), local strain distribution becomes highly nonlinear and partly
absorbed by contact that produced noisier and less distinctive features. These factors
account for the weaker classification performance observed in Y0 and Y2.

The Decision Tree, while easy to interpret, depends heavily on sensor placement. Its
results indicate it can be effective in targeted setups where faults are more directly observed.

Opverall, the results reveal that sensor position plays a critical role in classification accuracy,
regardless of the algorithm used. Across all models, sensor positions Y1 and Y3 consistently
yielded higher precision and Fl-scores, often exceeding 70%, while Y0 and Y2 resulted in
weaker performance. This outcome suggests that detecting vibration patterns above or below
the deformed winding provides clearer signals for learning-based classifiers.

Among the models tested, the SVC achieved the highest scores for Y1 and Y3, demon-
strating both stability and robustness. Logistic Regression and Decision Tree models also
produced reliable outputs, particularly in simpler deformation scenarios, whereas Random
Forest and KNN showed greater sensitivity to parameter selection and sensor location.

These findings highlight how critical sensor placement is for achieving reliable trans-
former monitoring in practical applications. They also suggest that even with modest
datasets, machine learning can offer valuable insights when combined with well-designed
sensing strategies. The proposed FBG-based sensing offers several advantages such as im-
munity to electromagnetic interference, suitability for high-voltage environments, compact
form factors enabling installation between winding spacers, and stable performance up to
150 °C. These features make optical sensing particularly attractive for online monitoring of
transformer windings, where electrical sensors face insulation, noise, and safety limitations.
This study focused on frequency-domain features derived from FFT and applied classical
supervised learning algorithms (SVM, RE, KNN, etc.) to evaluate feasibility. While this
approach is appropriate for early stage validation with limited datasets, we recognize that
more advanced methods specifically designed for time-series signals, such as recurrent
neural networks, convolutional neural networks, or transformer-based models, may better
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capture temporal vibration dynamics. Incorporating such models into future work will
likely improve classification performance and robustness in real-world transformer moni-
toring. While this study used a dry-type transformer in a lab environment, future work
should examine how these models generalize to oil-filled units or field measurements with
environmental noise. Also, expanding the dataset with more deformation types and sensor
configurations could further improve model robustness.

5. Conclusions

This experimental study presents a novel approach for the detection and localization
of winding deformations in power transformers by integrating optical vibration sensing
with machine learning classification. Five supervised learning models were evaluated, with
Support Vector Machines demonstrating the most promising performance in identifying
specific deformation scenarios (Y1 and Y3) using vibration data. While the achieved
classification accuracy of approximately 60% reflects the challenges inherent in early stage
modeling, it also establishes a solid foundation for further refinement and development.

A key contribution of this work lies in the use of fiber Bragg grating (FBG) sensors
directly mounted on the windings, enabling real-time vibration monitoring without being
affected by electromagnetic interference, unlike traditional accelerometers. The strongest
vibration signals were observed at the FBG sensors located directly at the deformation
site, while sensors positioned above or below the deformation recorded weaker but still
elevated signals compared to healthy windings. Furthermore, the farther the FBG is from
the deformation, the more damping and phase shift occurs, resulting in progressively
weaker signals. These observations confirm the sensor’s sensitivity and its suitability for
transformer diagnostics.

Moreover, the custom-designed transformer model enabled controlled simulation of
both healthy and deformed winding conditions, providing valuable insights into how me-
chanical defects influence vibration patterns. This capability to localize relative deformation
based on sensor positioning is critical for future fault diagnosis strategies.

Ultimately, this study demonstrates the feasibility of combining optical sensing with
machine learning for online transformer health monitoring. With further optimization of
the classification models and expanded datasets, this approach holds strong potential for
deployment in real-world applications, offering a cost-effective and non-invasive solution
for preventing catastrophic transformer failures.
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