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Abstract: Optical Coherence Tomography (OCT) is a growing family of biophotonic imaging tech-
niques, but in the literature there is a lack of easy-to-use tools to universally directly evaluate a
device’s theoretical performance for a given metric. Modern computing tools mean that direct nu-
merical modeling can, from first principles, simulate the performance metrics of a specific device
directly without relying on analytical approximations and/or complexities. Here, we present two
different direct numerical models, along with the example MATLAB code for the reader to adapt to
their own systems. The first model is of photo-electron shot noise at the detector, the primary noise
source for OCT. We use this firstly to evaluate the amount of additional noise present (1.5 dB) for
an experimental setup. Secondly, we demonstrate how to use it to precisely quantify the expected
shot noise SNR limit difference between time-domain and Fourier-domain OCT systems in a given
hypothetical experiment. The second model is used to demonstrate how USAF 1951 test chart images
should be interpreted for a given lateral PSF shape. Direct numerical modeling is an easy and
powerful basic tool for researchers and developers, the wider use of which may improve the rigor of
the OCT literature.

Keywords: Optical Coherence Tomography; Optical Coherence Microscopy; numerical modeling;
noise; sensitivity; line field; spectral domain; point spread function; resolution; USAF 1951

1. Introduction

Optical Coherence Tomography (OCT) [1-3] encompasses a broad family of biopho-
tonic imaging techniques that use Low-Coherence Interferometry (LCI) for axial ranging.
Different versions of the technique have been adopted for a wide range of biophotonic
applications, including retinal imaging [4], corneal imaging [5], dermatology [6], various
endoscope applications [7,8], dentistry [9], angiography [10], and optical coherence elas-
tography (OCE) [11] (and OCE-related techniques [12,13]). It has also found a range of
uses outside biophotonics [14-17]. Though the technique is now over 30 years old [18], it
is still being improved and developed for new applications, particularly with component
technological performance advances making additional measurement concepts realizable
in a real-world environment. One such concept, which we will use as an available exam-
ple here, is Spectral-Domain (SD) Optical Coherence Microscopy (OCM) [19,20], which
is essentially an SD-OCT system where microscope objectives are used to obtain higher
lateral resolution at the focal plane at the cost of a highly limited depth of field of that focal
plane. As the technology of the hardware components improves and their cost is reduced,
this technique may become an economically viable direct alternative (with additional 3D
visualization benefits) to existing clinical In Vivo Confocal Microscopy (IVCM) systems,
which have applications in identifying pathogens in infectious keratitis [21] and screening
for Diabetic Peripheral Neuropathy (DPN) [22].
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For the development of new OCT devices, tools to calculate the theoretical performance
of a system are useful for both the initial design stage and the evaluation of constructed
hardware. The vast majority of the existing OCT literature relies (at least partly) on
analytical derivations to provide theoretical comparative values. A couple of examples
outside the direct scope of this paper are provided in the following. Veselka et al. [23]
recently used extensive analytical derivations to model the amplitude of an OCT signal
as a function of surface tilt. Monte Carlo simulations of signals from scattering samples
are based on some analytical derivations [24]. Within the scope of this paper, the two
most highly cited papers [25,26] on theoretical signal-to-noise performance in OCT rely
on analytical approaches to estimate the statistical behavior of noise; these two papers
are discussed further in the discussion. Usually, analytical approaches depend on specific
assumptions, e.g., a Gaussian spectral shape (with AA << A) in the commonly quoted
“definition” of axial resolution. (The better universal numerical approach is just to take
the fast Fourier transform of the effective spectrum). Therefore, exact predictions for a
specific device are generally not practical with an analytical approach. Instead, here, we
show with two examples that direct numerical modeling can provide a direct theoretical
expectation for an exact system. These models are based just on basic/fundamental optical
laws. Modern computational tools mean that these are straightforward for the majority
of researchers to implement. For such models, any arbitrary set of parameters (e.g., any
arbitrary spectral shape or system point spread function) can be inputted to give exact
expected experimental outcomes. With this paper, we provide the novel code used for both
examples for OCT (and other biophotonic) researchers to adapt to their own needs.

1.1. SNR and Sensitivity

In the vast majority of cases, the image Signal-to-Noise Ratio (SNR) (the ratio between
the largest signal before saturation and the standard deviation of noise) and absolute
sensitivity (the ratio between a hypothetical perfect reflector and the standard deviation
of noise (with no sample present, i.e., the smallest absolute reflection detectable)) are key
performance metrics of OCT devices. The term SNR is often used loosely in the OCT
literature, including commonly to refer to absolute sensitivity. Strictly, the noise in the SNR
should be measured when the signal is present. However, for convenience in converting
between the SNR and sensitivity, we will use a modified definition with the noise measured
without any sample signal present.

The standard approach [25,26] to estimating the theoretical SNR and sensitivity is
analytically starting at the light source.

Here, instead, we can simplify it into two simple problems; the noise at the point of
detection can be numerically modeled from first principles directly and the optical energy
efficiency of all optical components (up to and including the quantum efficiency of the
detector). We can do this because, as far as the technology is concerned, any photon not
detected (i.e., lost within the system) (excluding due to relative destructive inference in
LCI) may as well have not existed, as it provides no information. Likewise, in the analytical
equations in the standard approach [25,26], a large proportion of the mathematical detail is
the calculation of the photo-electrons detected at the detector. In practice, the transmission
efficiency of photons through each part of the system can be directly measured (e.g., with a
power meter). Here, we provide a method for directly modeling the expected OCT SNR
(and sensitivity) from the (ideally averaged) measured or predicted raw signal.

In addition to its use as a practical system analysis tool, direct numerical modeling can
be used to provide detailed insight into more fundamental questions about a technology. It
has been established analytically that Fourier domain (FD) (including SD and swept-source
systems) is superior to time domain (TD) for SNR (therefore, absolute sensitivity) perfor-
mance [25,26]. For shot-noise-limited setups, it is predicted that the SNR improvement of
FD over TD should be dependent on N (the number of detection points). For any given
hypothetical experiment, direct numerical modeling can predict the outcome.
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1.2. USAF 1951 Target

For OCM, the key system performance metric is the lateral resolution. The gold-
standard method for characterizing the lateral resolution of any imaging system is the full
determination of the (lateral) Point Spread Function (PSF) (or its Fourier transform, the
Modulation Transfer Function (MTF)) [27]. However, especially in the OCT field, it is more
convenient to be able to quote a single (per dimension) resolution value, equivalent to
the PSF Full-Width at Half Maximum (FWHM), which is standard to quote for the axial
resolution. To do this, the USAF 1951 lateral resolution targets are commonly used, with
the lowest resolved 3 bar Ronchi grating element indicating a corresponding FWHM value.
Direct numerical modeling can be used to show the likely FWHM interpretation for the
smallest resolved element.

The United States Department of Defense standard MIL-STD-150A, revised in 1959 [28],
defines the “USAF 1951” lateral resolution target that is widely used today. In MIL-STD-
150A, Section 3.6.2 defines resolving power as lines per mm (pairs per mm if including
negative space as a “negative” line), and the definition of resolved is being able to count
the correct number of lines. Section 5.1.1.7 and Figure 7 of the standard define the USAF
1951 target, noting that the key parameter referred to is the line (pairs) per mm or line-pair
width. The standard does not imply that the single-line width, which is half of the line-pair
width, is equivalent to the resolution.

There are a large number of OCT papers that quote single-line width as the lateral
resolution (we will not cite these here) that can be found, while there are a few that quote
the line pair width [29,30]. Here, using direct numerical modeling of imaging PSF, we
will show that the line-pair width is the better (equivalent to the point object separation
resolution, given a PSF approximating a Gaussian) method of interpretation.

2. Materials and Methods
2.1. SNR Model

Figure 1 gives an overview of the noise modeling process. At the detector, the detected
signal(s) (average measurement or modeled) can be converted into photo-electrons. With
no pre-amplification (if pre-amplification is used, the specified electron well depth needs
to be attenuated accordingly) of the signal before Analog-to-Digital Conversion (ADC), a
pixel of a camera will be expected to use its full specified electron well depth, W. Also, in
this case, there is no zero-read offset. Therefore, the ADC output, N, can be converted into
photo-electrons with

— We
¢ s
where S is the ADC saturation count (i.e., 2B, where B is the bit depth). With an ideal
signal converted into photo-electrons, shot noise can be directly modeled by applying a
random number generator with a numerical Poisson distribution; here, we used MATLAB's
poissrnd function. This noise generation works, for each simulated raw data point, by
inputting the seed average expected number of photo-electrons (generally not an integer).
The Poisson random number generator then returns a random integer value with a Poisson
probability distribution for that seed, mimicking shot noise directly.

Here, we did not add additional noise sources, such as spectral Random-Intensity
Noise (RIN) (inherent to most current super-continuum light sources) [31] and camera
electronic read noise, into the model. Instead, we used the modeled shot noise value
to experimentally quantify the effect of other noise in the system. Alternatively, if the
statistics of these noises are adequately described, both could also be added into the
numerical simulation.

N, N¢
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Figure 1. Flowchart of the direct numerical modeling process for OCT noise.

After that, the modeled photo-electron signal can be re-binned into the detector bit
depth, though for most cases, the pseudo-noise due to the bit depth will be negligible
compared to the shot noise. The modeled raw signals are then processed in the same way
as the real signal.

For the OCT SNR, the numerical modeling follows the measurement process. As
the absolute sensitivity (smallest single reflection/backscattering that can be detected) is
usually the parameter of most interest in OCT systems, it is standard to measure the noise
level with no sample present. The modeled and measured spectra are then processed with
the same A-Scan reconstruction process, and the temporal standard deviation of the pixel
values gives the noise value.

Knowing the relative (to reference) sample amplitude at which (or just before), with
constructive interference, detector pixels start saturating (in our case a 1:1 ratio), the
expected signal can be modeled using the basic interference equation. Again, using the
same A-Scan reconstruction procedure and adjusting the modeled interference signal
to be at the same depth, the peak signal is compared between the experimental and
modeled values.

Figure A1l provides the MATLAB function to model the raw shot noise for a given
detector well depth and raw output. It demonstrates its use with a hypothetical spectral
shape for an SD-OCT system.

For a hypothetical FD vs. TD SNR experiment, the hardest (most subjective) part is to
define equivalent FD and TD setups. Here, we define that the A-Scan depth and number
of raw measurement points are equal. Due to Nyquist limitations, this means that the
resultant sampling density in the TD A-scan is twice that in the FD A-scan. The maximum
number of detected photo-electrons for a raw (interference) data point was made to be the
same; overall, this means that the total TD signal is a larger amount of light. The (arbitrarily
selected, any could be inputted) spectral shape used for the simulation was Hann. FD
A-scans were reconstructed using an FFT, while TD A-scans were reconstructed using a
Hilbert transform. The simulations were run with N values of 400 to 2000, in 200 increments.
Figure A3 contains the full code of this simulation.

2.2. Lateral Resolution Modeling

Numerically modeling the expected image of a known object (target) with an imaging
system, with an estimated PSF, is just a convolution operation. Figure 2 shows a flow
chart of our modeling method. Here, we approximate the PSF as a Gaussian function,
with different resolutions in the two dimensions. For the physical system used here for
experimental comparison, in the line field dimension (i.e., resolution determined solely by
imaging optics), the expected PSF would be an Airy function, which is well approximated
by a Gaussian function. The confocal dimension (i.e., resolution determined by illumination
gating (approximately Gaussian beam) and imaging) will also closely approximate a
Gaussian. However, for other imaging systems, any arbitrary PSF shape could be used.
With a modeled perfect image of the USAF element and PSF (each with the same model
element scaling), we used MATLAB’s conv2 function to perform the convolution. This
gives the modeled optical image; the next consideration is the finite pixel size. The image is
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binned into the pixels; for the confocal dimension, here, the galvo mirror was continually
scanned during the collection, but the duty cycle of the camera was only about 9%, so this
was also considered in the binning. In the line field dimension, we assume a negligible
boundary between pixels, i.e., 100% duty. For the confocal direction, the Nyquist sampling
limit is the main limiting factor. For the three bar gratings, within approximately £10%
of the Nyquist limit, the positioning of the pixels relative to the grating bars (phase) can
determine if the grating is resolved or not in the image. So, control of this phase is also
included in the model.

Model of optical PSF Bin into systems lateral
4| Convolve together

to get optical B
Perfect model of target being image

pixels, including
accounting for imaging

duty.
imaged. v

Figure 2. Flowchart of numerical convolution modeling of an expected target image for a given
lateral PSF.

Figure A2 includes the MATLAB code for modeling the expected output image of a
given USAF 1951 element, a Gaussian PSF of the inputted FWHM, and pixel size, duty,
and phase to grating. This is 2D, with independent parameters that are settable in both
dimensions. The example models presented in this paper are included as a demonstration.
In our case (and likely most cases), where the orthogonal lateral resolutions act indepen-
dently, simpler 1D convolutional operations can be used to give identical results to those
of full 2D modeling. We use 1D modeling to show the effect of the optical resolution of
a USAF 1951 element and two point-objects separated by its period as a Gaussian PSF
FWHM is increased to greater than the period. Figure A4 provides the MATLAB code for
this simulation.

2.3. Hardware Used for Validation

To demonstrate the use of these direct numerical models as a useful assessment tool
during system development, we have used an arbitrary optical setup that is still in the
early stages of development, which is what we had available at the time of writing this
paper. It is at a point in development where assessment against direct numerical modeling
highlights definitively where there are and are not issues in the construction so far.

In brief, Figure 3 gives a broad overview of the prototype LF-SD-OCM setup used. It is
a compacted slit-less design, which means that there is interdependence (due to the shared
final lens) between the performance of the microscope and the spectrograph. As a result, to
achieve the prospective project’s specification requirements, the design is a compromise.
This includes that the full resolution potential of the microscope objectives used will not be
used (ultimately due to Nyquist sampling limitations).
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o)
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Figure 3. Schematic diagram of the LF-SD-OCM hardware in development used for demonstration
here. CSMF—continuous single-mode fiber of a low-cost supercontinuum light source (Whitelase
Micro, Fianium, Southampton, UK), Col.—free-space collimator output of the light source. B.P.
Fil—bandpass filter (750 to 850 nm). B.E.—beam expander (x5), Cyl.—cylindrical lens (f = 50
mm), B.5.—cube beam splitter (50:50), G.M.—single-axis galvo scanning mirror, EFM.—folding mirror,
M.O.—microscope objectives (MY20X-824, Mitutoyo, Kanagawa, Japan), Ref.—glass reference surface,
Grat.—grating (300 L/mm), Cam. L.—camera lens (f = 100 mm), Cam.—CMOS camera (Alvium 1800
U-52m, Allied Vision, Stadtroda, Germany), USB 3.1—data interface for PC. Red arrows indicate
optical paths.

3. Results
3.1. OCT SNR: Practical Evaluation

The sample for the system SNR evaluation was a glass interface, identical to the
reference. The design integration time is chosen so that saturation occurs for surface
reflections greater than this. Figure 4a,b show the measured interference signal, along with
the calculated interference from the basic interference equation, after considering additional
internal reflections that are present. It can be seen that there is an apparent coherence loss
within the system. Although the apparent coherence is usually never perfect, this degree of
signal loss is excessive and will need to be investigated during the system’s development.
The signal reduction is 37% (proportional to the electric field) (4.0 dB (power)).

Figure 4c,d show the measured and (shot) modeled noise values. The measured noise
is 17% (1.4 dB) higher than the modeled noise, which is due to a combination of light-source
RIN and camera read noise. This is inherent to the system design. Overall, the measured
SNR (absolute sensitivity) is 68.5 dB (82.5 dB), while the numerical modeled shot noise
limit is 73.8 (87.8) dB. Resolving the signal issue will bring these values to as close as 1.4 dB,
which is the extra identified noise of the system.

4
12 x10 Experimental -
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2 2
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3 6 2
£ = 2000
2 a4t E
B S 1000 |
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Figure 4. Cont.
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Figure 4. (a) Measured and predicted raw interference signal and (b) resultant signal amplitude

difference after Fourier transformation. (c) An example of a measured and the corresponding directly

numerically modeled raw reference spectra (used to quantify noise for absolute sensitivity) and

(d) resultant (selected) pixel values over 100 frames.

3.2. OCT SNR: Theoretical Comparison of Time-Domain and Fourier-Domain Shot Noise Limits

Figure 5a shows the modeled raw signal for the FD and TD. Immediately, the reasoning
for the performance difference is apparent. Where all measurement pixels for the FD system
contain significant information, only three measurement pixels for the TD signal contain
significant information. Figure 5b shows that the A-Scan signals are equivalent (arbitrarily
displaced). Figure 5c shows the modeled SNR values; for the TD, the SNR is stable just
above 50 dB independent of N. This makes sense, as the number of pixels carrying signal in
the TD system for the hypothetical experiment does not change, so the extra data points do
not give any extra information. For the hypothetical FD system, the SNR is dependent on
N, as the extra pixels carry additional information. For N = 200, the improvement of the FD
OCT over the TD is just less than 15 dB; for N = 2000, this increases to over 20 dB. Figure 5d
shows how the difference factor between the (power) SNR of the FD and TD varies with
N. A dependence on N is expected, with a linear fit giving it for the modeled conditions
as 0.113 N.
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Figure 5. Cont.
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Figure 5. Direct numerical modeling of the shot noise SNR limit of Fourier domain vs. time domain
OCT. (a) An example (N = 400) of the equivalent raw signal data for the (blue line) Fourier-domain and
(red crosses) time-domain OCT A-Scans of the same scan depth, with the same number of raw data
points and the same peak raw signal (the model time domain system collects more photo-electrons
overall). (b) Both A-Scan signals after processing and normalization. (¢) Modeled SNR (intensity)
results vs. the number of measurement values (N) for both methods. (d) The signal-to-noise (power)
factor benefit of FD OCT over TD OCT for the modeled conditions.

3.3. Lateral Resolution

Figure 6 shows the numerical resolution modeling of the finest vertical (line field)
and horizontal (confocal) USAF elements that were visually resolved experimentally with
the LF-SD-OCM system, with just better than the required resolution. For the line field
dimension, element 8-5 was the smallest resolved in the image. The modeling shows that
this is just resolvable (three discrete peaks) with an optical FWHM resolution of 2.4 um and
system-estimated pixel binning. The measured resolution of the peaks is clearer than the
modeled resolution, so actual optical resolution is likely a little (but not too significantly)
better. This is a little worse than the designed target resolution (2 um) and may be indicative
of an optical misalignment(s) within the system, possibly the same cause as that of the loss
of apparent coherence.

In the confocal dimension, the limiting factor is sampling rather than optical resolution.
In fact, for the resolution in 9-3 to be as good as they are in the experimental results, the
B-Scan sampling must be denser than designed (so the overall image volume size is smaller
than designed). However, when calibrated, to meet the design specifications, the sampling
distance in the final device will be increased, decreasing the resolution. In this dimension,
the resolution of the system is already sampling limited, so, optically, there are no concerns
to address.

Figure 7a shows the 1D model version of Figure 6a, with three peaks that are visibly
resolved. Figure 7b shows the model image of two point objects separated by the period,
and two peaks are resolved. Increasing the PSF FWHM to just above the period value, both
the three bars (Figure 7c) and point objects (Figure 7d) are still resolved. However, for an
FWHM that is 20% greater than the period, both are no longer resolved (Figure 7e,f). The
period of the smallest USAF 1951 element resolved is consistent with the distance at which
two point objects can be resolved.
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Figure 6. Direct numerical (convolution) modeling of (a,b) physical optical resolution and (c,d) after

accounting for pixel binning for vertical (a,c) and horizontal (b,d) resolution elements, with the

modeled resolution being just within the resolving limit. (e, f) Intensity plot across elements in (c,d)

showing the three lines being resolved as just three peaks. (g) Experimentally measured (maximum
projection surface) image of groups 8 and 9 of the USAF 1951 target, with (h,i) showing the actual
measured intensity profile across the elements for comparison with the modeled values in (e,f). The

numbers (1., 2., 3.) indicate the three resolved peaks in the images.
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Figure 7. One-dimensional convolutional modeling of imaging (a,c,e) USAF 1951 element 8-5 (period
of 2.46 um) with a Gaussian PSF with an FWHM (a,b) less than (2.4 um), (c,d) less than 20% greater
than (2.55 um), and (e,f) more than 20% greater than (2.9 um) the period; and (b,d,f) equivalent
point objects with a separation of 2.46 pm. Black lines show the original object. Blue lines show
convolution images.

4. Discussion and Conclusions

Direct numerical modeling, starting from the detected signal, of the expected OCT
SNR (and, thus, sensitivity) is a relatively simple and useful tool for system validation
to help identify the presence of any issues. This decouples SNR considerations from
optical efficiency through the device, which can (and should be) measured and dealt
with separately.

The most cited OCT SNR papers, those of Leitgeb et al. [26] and Choma et al. [25], pro-
vide equations where the user plugs in the starting power and all the devices’ transmission
efficiencies. To give a direct comparison to this work for the shot noise SNR limit of SD-OCT,
their solution (note: linear to power, not the electric field) turns out to be half of the total
detected photo-electrons from the sample. However, for example, in the case of Figure A1,
applying this underestimates the SNR by 10 dB. Similarly, Choma et al. [25] conclude that,
for a Gaussian-like source, there should be a 0.25 N power SNR improvement for the SD
over the TD. However, under our modeled experimental conditions, as shown in Figure 5d,
we found a relationship of 0.11 N. This discrepancy is largely due to the larger overall total
light energy in our model TD system compared to the FD system (we kept the peak point
raw signal equal instead). Though not currently standard in the literature, using random
number generation with a Poisson distribution to simulate shot noise is a relatively simple
concept. Ossowiski et al. [32] and our group [33] previously used the technique in work on
other topics. However, we are not aware of prior publications specifically evaluating and
detailing the technique in the OCT field. It can be noted that, here, we did not model other
noise sources, instead quantifying it as the difference between the experimental results and
the modeled shot noise. Adding noise terms to the model directly for camera read noise
and the light source requires more data and analysis to get accurate models of each term.
Shot noise is the dominant noise source for the majority of OCT systems, and being at the
shot noise limit is the target for OCT system developers [34]. Here, we provide a simple
novel code base that can be quickly adapted and expanded to determine the theoretical
SNR performance of any OCT system. Direct numerical modeling can be applied to any
spectrum, and there are no assumptions about spectral shape.

For many conventional FD-OCT systems/applications, a performance metric of inter-
est related to the SNR is the roll-off. This is a measure of how the signal (therefore, the SNR)
is lost relative to the axial position in the image. For a real system in use, there are two
main mechanismes; firstly, confocal or quasi-confocal gating means that light is lost and not
meaningfully detected, and for OCM systems with optics with a low Depth of Field (DoF),
this is significant. However, for conventional OCT with a high-DoF optical design, the high
sensitivity of OCT (compared to the confocal effect) means that the second mechanism,
finite spectrometer resolution, dominates. In a recent publication [33], we used a direct nu-
merical model of convolving the expected signal with the measured (Gaussian fit) spectral
PSF. The measured dB SNR curve was shown to correspond to the highest-resolution part
of the spectrum (the spectral resolution was not uniform across the bandwidth), with the
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side effect that the axial resolution also deteriorated with depth due to the effective loss of
spectral bandwidth.

Numerical convolution modeling of a given imaging system’s PSF gives the expected
output image for the test target or modeled sample. Here, we used it to evidence the
better interpretation of the USAF 1951 test targets. In OCT, where the desire is to present
single resolution values, this method is sufficient to prove by modeling value interpretation.
However, full characterization of the PSF/MTF remains the (scarcely used) gold standard
for any imaging system. However, direct numerical modeling of a test target image using a
measured PSF may still be used to verify this.

Though numerical convolution can be used just as easily for any arbitrarily shaped
PSF, we note here that we used a Gaussian shape, as it was the best approximation for the
experimental apparatus used for verification and, generally, to cover most other systems.
For systems where the geometries of the optical components used are known and not
proprietary, which generally is not the case for more complex objectives, including the
ones used here, then the next possible step would be to model the geometrical and/or
physical optical PSF from a device’s optical design using software such as Zemax. Zemax,
for example, has a built-in functionality to convolve its calculated PSF with a model target
to get the estimated image. In the wider field of optics, further development of this concept
is an active area of research [35,36]. However, such rigor does not yet exist in general
in the OCT field, with examples in the peer-reviewed literature of disputable arbitrary
interpretations of the USAF 1951 test target images. However, this is not a criticism of
the USAF 1951 target itself, which is the most straightforward way of measuring unitary
resolution values as long as it is used and interpreted in the correct way and has sufficiently
high-resolution elements for the system under analysis. Historically, the lack of sufficiently
high-resolution USAF 1951 targets used in publications has been an issue, but Newport
now sells a high-resolution model (used here) that goes to a resolution beyond the reach of
any reasonably conceivable optical system.

Section 3.1 provides a comparison of experimental data verifying that the shot noise
model provides realistic outputs at all stages. The model itself is based on the basic
and established physical principle of the Poisson noise of photons and has been used
elsewhere with no issues identified. With the model established, Section 3.2 uses it to
virtually perform an experiment on a given equivalence between TD and FD OCT, which
would be impractical to do physically. The first half of Section 3.3 provides a comparison
of experimental data showing that convolution modeling gives realistic outputs. Again,
the principles of the model are well established. The second half of Section 3.3 uses the
modeling method to provide precise answers on the theoretical resolution limit for the
USAF 1951 target elements; it can resolve up to a 20% smaller period than the FWHM for a
Gaussian PSE.

Overall, direct numerical modeling is a simple (with modern computational tools) and
powerful tool for OCT system developers and researchers. Here, we have demonstrated
it to assess how close a system’s noise is to the shot noise limit, to predict the results of a
hypothetical experimental setup to compare equivalent FD vs. TD systems’ SNR perfor-
mance, and to evidence how lateral resolution test target results should be interpreted. The
models presented here should by no means be groundbreaking; however, in our experience
of the OCT literature we have not encountered similar uses within the published literature
(excluding our own work). Wider adoption would be part of the solution to provide a more
robust analysis of present systems’ performance against theoretical expectations.
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Appendix A

Figure Al provides the MATLAB code for calculating the shot noise’s absolute sensi-
tivity limit for a given experimental setup. The parameters are set similarly to those used
in the modeling in Section 3.1, but a Hann-shaped spectrum is used rather than the experi-
mentally measured one, and additional internal reflection is not accounted for. Figure A2
provides the MATLAB code for the modeled parts of Figure 6. Figure A3 provides the code
for producing Figure 5. Figure A4 provides the code for producing Figure 7.

%% Detector specs

PixelElectronWellDepth = 100000;

ADC_BitDepth = 12;

%% Calculate conversion factor

conv_fac = PixelElectronWellDepth/(2*ADC_BitDepth) ;

%% Simulated reference spectra, in ADC units

A = 1000; % with equal sample intensity, this will give a maximum raw signal just below saturation
Ref ADC = A.*hann(624); % arbitrary convenient spectral shape

%% Convert to photoelectrons

Ref = conv_fac .* Ref ADC;

%% Create signal (for simplicity here we will assume we are already in equal K/frequency space)
As = 1; % relative (to reference) sample arm amplitude (energy)

Samp = As.*Ref;

QuasiDepth = 0.2;

Signal_raw = Ref+Samp+2.*sqgrt (Ref) .*sqrt (Samp) .*cos (QuasiDepth.* (1:1length(Ref)))'; % basic interference
equation

Signal_OCT = abs(fft(Signal_raw)); % model OCT signal

[Sig,loc] = max(Signal OCT(5:end/2)); % measure peak signal and location

loc = loc+4;
%$% Model noise (no sample) at same location
Noise_data = zeros(1000,1);
for N=1:1000
temp = poissrnd(Ref);
temp = abs (fft (temp)) ;
Noise_data (N)=temp (loc) ;
end
Noise = std(Noise_data) ;
SNR_liner = Sig/Noise; % proportional to electric field
SNR_dB = 20*1ogl0(SNR_liner); % relative to power
SamplePowerReflectionCoefficient = 0.04;
AbsoluteSensitivity dB = SNR_dB - 10*1oglO (SamplePowerReflectionCoefficient)

Figure A1. MATLAB code example for a simplified ideal shot SNR (sensitivity) model.
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close all

clear

%% example vertical resolution element 8-5

% call the model code, see function below.

[out,ax xy,out_pix]=LatRes_Sim(8,5 ..
,1.5,0.8,0.000280/(1/(488/1.5)),0
,2.40,0.8,1,0.5);

% display of the output in figure 1

figure (1) ;

colormap gray

% display numerically modelled optical image

subplot (3,2,1)

imagesc (ax_xy,ax xy,out)

xlabel (' \mum')

ylabel (' \mum')

title('Element 8-5, with 2.4 \mum resolution')

% display after binning into finite pixel size and duty.

subplot (3,2, 3)

imagesc (ax_xy,ax xy,out_pix)

xlabel (' \mum')

ylabel (' \mum')

% intensity profile across the elements

subplot (3,2,5)

plot (ax_xy,out_pix(:,end/2)./max(out_pix(:,end/2)))

xlabel (' \mum')

ylabel ('Normalised amplitude (a.u.)')

% three peaks (bars) are just resolved and countable

text (3.5,0.9,'1.")

text (5,0.95,'2.")

text(7.5,0.9,'3.")

% example horizontal resolution element 9-3

Note that the moddelling code only creates the element in one direction,
so we need to rotate everything here around by 90 degrees.

call the model code, see function below.
out,ax_xy,out_pix]=LatRes_Sim(9,3

,2.4,0.8,1,0 ...
,1.5,0.8,0.000280/(1/(488/1.5)),2.0);

% display numerically modelled optical image

figure (1)

subplot (3,2,2)

imagesc (ax_xy,ax Xy, rot90 (out))
xlabel (' \mum')
ylabel ('\mum')

title('Element 9-3, with 1.5 \mum resolution')

% display after binning into finite pixel size and duty.

subplot (3,2,4)

imagesc (ax_xy,ax Xy, rot90 (out_pix))
xlabel (' \mum')
ylabel ('\mum')

% intensity profile across the elements

subplot (3,2,6)
plot (ax_xy,out_pix(:,end/2)./max(out_pix(:,end/2)))
xlabel (' \mum')
ylabel ('Normalised amplitude (a.u.)')

% three peaks (bars) are just resolved and countable
text(2.1,0.9,'1.")

text (3.5,0.95,'2.")
text (5.2,0.9,'3.")

— 00 0P o 0P

Continued on next page...

Figure A2. Cont.
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%% modelling code
function [out,ax xy,out_pix] =

LatRes_Sim(group,element,x sys res_um,x pixel size um,x pixel duty,x pixel phase...

,Y_Sys_res um,y pixel size um,y pixel duty,y pixel phase)

figure(10) % we're going to display process in seperate figures to make clear

% first, calculate target's period from group and element number.

period = le3./ (2" (group+ (element-1)/6)); % in um

% more parameters defined and calculated

model_ samps_per_period = 100; % defines granularity of model

sampling res = period./model_ samps_per period; % converts to um

width = 9*model_samps_per period./2; % width (in elements) of model image

height = width; % height is the same

ax_xy = sampling res .* (1l:width); % both image axes scalling in um

% compute x dimension PSF from input

X_sys_res = X_sys_res_um./sampling res; %$convert to sampling points

x_stdy = x_sys_res./(2*sqgrt(2*log(2)));

% std = (N-1)./(2*alpha);

x_alpha = (width-1)./(2*x_stdy);

x_spot = gausswin(width,x_alpha) ;

% compute y dimension PSF from input

y_sys _res = y sys _res um./sampling res; %convert to sampling points

y_stdy = y _sys_res./(2*sqrt(2*log(2)));

% std = (N-1)./(2*alpha);

y_alpha = (width-1)./(2*y stdy);

y_spot = gausswin(width,y alpha) ;

% combine into a two dimensional optical PSF.

spot = y spot*x spot';

% display 2D PSF

subplot (2,2,1)

imagesc (ax_xy,ax Xy, spot)

xlabel (' \mum')

ylabel (' \mum')

% create perfect target image

target = zeros(width,height) ;

target ([1.0*model samps_per period:1.5*model samps_per period...
2.0*model_samps_per period:2.5*model_samps_per period...
3.0*model_samps_per period:3.5*model_samps_per period] ...
,1.5*model samps_per period:3.0*model_ samps_per period)...
=1;

% display perfect target image

subplot (2,2,2)

imagesc (ax_xy,ax_ xy,target)

xlabel ('\mum')

ylabel (' \mum')

% compute convolution

out = conv2(target,spot, 'same') ;

% display optical image

subplot (2,2, 3)

imagesc (ax_xy,ax xy,out)

xlabel ('\mum')

ylabel (' \mum')

% display intensity profile across target to see if 3 peaks (bars) are

% optically resolved

subplot (2,2,4)

plot (ax_xy,out (:,round (height/2)) ./max (out (:,round (height/2))))

xlabel (' \mum')

% sanity plot to manually check FWHMs of PSF are what was inputted

figure (11)

subplot (1,2,1)

plot (ax_xy, spot (:,round(end/2)) ./max (spot (:,round(end/2))))
grid on

xlabel (' \mum')
subplot (1,2,2)
plot (ax_xy, spot (round (end/2), :) ./max (spot (round (end/2),:)))
grid on
xlabel (' \mum')
% check if pixel size input variables have been included to process
if ~exist('x pixel size um','var'), return; end
% calculations of pixel period, size (duty) and offset (phase) in x
X_pix period_in pixels = x pixel size_um/sampling res;
x_pix _size_in pixels = x_pixel duty*x_pix_period_in pixels;
x_off_set = (x_pixel phase/(2*pi))*x_pix period_in_pixels;
% calculations of pixel period, size (duty) and offset (phase) in y
y_pix period_in pixels = y pixel size um/sampling res;
y_pix size_in pixels = y_pixel duty*y pix period in_pixels;
y_off set = (y pixel phase/(2*pi))*y pix_period in_pixels;
% create empty output
s = size(out);
out_pix = nan(s);
% do all the binning
for y = y off set:y pix period_in pixels: (s(2)-y_pix period_in_ pixels)
yrange_in = round(y+1l:y+y pix size_in pixels+1);
yrange out = round(y+l:y+y pix period_in pixels+1);
for x = x_off_set:x pix period_in pixels: (s(1)-x_pix_period_in_ pixels)
xrange_in = round(x+1l:x+x_pix_size_in pixels+1);
xrange out = round (x+1l:x+x_pix period_in pixels+1);
out_pix(yrange_out,xrange_out) ...
= mean (mean (out (yrange_in,xrange_in)));
end
end
% display binned output
figure (12)
imagesc (out_pix)
end

Figure A2. MATLAB code for the modeling of USAF1951 target images.
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WD = 100000;
reps = 500;
nn = 0;
for N=200:200:2000
nn=nn+1;
% FD signal sim
Arm = (WD./4).*hann(N)';
Sig = 2*Arm + 2*Arm.*cos(0.5*%(1:N));
FD_Sigs = abs(fft(Sig));
[FD_Sig, loc] = max(FD_Sigs(10:end/2)); loc = loc+9;
if N==400
figure (10)
subplot (2,2,1)
hold off
plot (Sig, 'b")
subplot (2,2,2)
hold off
plot (FD_Sigs(l:end/2)./FD_Sig, 'b')
end
% FD shot noise
noises = zeros (reps,1);
for M=1l:reps
temp = poissrnd(Sig) ;
temp = abs (fft (temp)) ;
noises (M) =temp (loc) ;
end
FD_Noise = std(noises);

% TD signal sim

df = 0.5/N;

TD_Arm = ((WD./4)./sum(Arm)) .*Arm;
TD_Sigs = zeros(N+1,1);

mm = 0;

for £ = -0.25:df:0.25

mm = mm+1;
tsig = 2*TD_Arm + 2*TD_Arm.*cos (£*2*pi* (1:N));
TD_Sigs (mm) = sum(tsig);
end
TD AScan = TD Sigs - (WD./2);
TD_AScan = abs (hilbert (TD_AScan)) ;
[TD_Sig, loc_TD] = max(TD_AScan) ;
if N==400
figure (10)
subplot (2,2,1)
hold on
plot (TD_Sigs(l:end-1), 'rx')
xlabel ('Measurement number (e.g. pixel)')
ylabel ('Photo-electrons'
subplot (2,2,2)
hold on
plot(0.5:0.5:N/2,TD_AScan(l:end-1)./TD _Sig, 'r")
xlabel ('Depth (FD pixels)')
ylabel ('Signal (linear a.u.)')
legend('Fourier Domain', 'Time Domain')

end

% TD shot noise

TD Ref = (WD./4)+zeros(N,1);
noises = zeros (reps,1);

for M=1l:reps
temp = poissrnd(TD_Ref) ;
temp = abs (hilbert (temp)) ;
noises (M) =temp (loc_TD) ;

end

TD_Noise = std(noises);

% SNR

TD _SNR = (TD_Sig./TD Noise); % proportional to E

FD_SNR = (FD_Sig./FD_Noise); % proportional to E

figure (10)

subplot (2,2, 3)

hold on

plot (N,20*1ogl0 (FD_SNR), 'bx'...
,N,20%10g10(TD_SNR), 'rx')

xlabel ('N')

ylabel ('SNR (dB) ')

subplot (2,2,4)

hold on

plot (N, (FD_SNR./TD_SNR) ."2, 'kx')

drawnow

out (nn) = (FD_SNR./TD SNR)."2;

xlabel ('N')

ylabel ('FD SNR/TD SNR (power/power) ')
end

Figure A3. MATLAB code for the direct numerical modeling of the shot noise SNR limit of FD vs.
TD OCT.
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close all

clear

group = 8; element = 5;

period = le3./ (2" (group+ (element-1)/6)); % in um
model_samps_per period = 500; % defines granularity of model
sampling res = period./model_samps_per period; % converts to um

width = 9*model_samps_per period./2; % width (in elements) of model image

ax_xy = sampling res .* (1l:width);

% create perfect target images

target = zeros(width,1);

target ([1.0*model_ samps_per_ period:1.5*model_samps_per period...
2.0*model_samps_per_ period:2.5*model_samps_per_period...
3.0*model_samps_per_ period:3.5*model_samps_per_period])...
=1;

target_point_objects = zeros(width,1);

target_point_objects ([round(width/2 - model_samps_per period/2)...
round (width/2 + model_ samps_per period/2)]) = 1;

X_sys_res_um = 2.4;

X_sys_res = X_sys_res_um./sampling res;

x_stdy = x_sys_res./(2*sgrt(2*log(2)));

x_alpha = (width-1)./(2*x_stdy);

x_spot = gausswin(width,x_alpha) ;

out = conv(target,x_spot, 'same') ;

figure (1)

subplot(2,3,1)

plot (ax_xy,target, 'k-'...
,ax_xy,out./max(out), 'b-")

axis ([0 11 0 1.2])

xlabel (' \mum')

ylabel ('Amplitude (a.u.)')

text(0.5,1.1,'(a)', 'FontSize', 14, 'FontWeight', 'bold’
subplot (2,3,4)
out = conv(target_point_objects,x spot, 'same');

plot (ax_xy,target_point_objects, 'k-'...
,ax_xy,out./max (out), 'b-'

axis ([0 11 0 1.2])

xlabel (' \mum')

ylabel ('Amplitude (a.u.)')

text(0.5,1.1,'(b) ', 'FontSize', 14, 'FontWeight', 'bold’

X_sys_res_um = 2.55;

X_sys_res = x_sys_res_um./sampling res;

x_stdy = x_sys_res./(2*sqgrt (2*log(2)));

x_alpha = (width-1)./(2*x_stdy);

x_spot = gausswin(width,x_alpha) ;

out = conv(target,x_spot, 'same') ;

figure (1)

subplot (2,3,2)

plot (ax_xy, target, 'k-"'...
,ax_xy,out./max (out), 'b-"'

axis ([0 11 0 1.2])

xlabel (' \mum')

ylabel ('Amplitude (a.u.)')

text(0.5,1.1,"'(c) ', 'FontSize', 14, 'FontWeight', 'bold!’

subplot (2,3,5)

out = conv(target_point_objects,x spot, 'same');

plot (ax_xy,target_point_objects, 'k-'...
,ax_xy,out./max(out), 'b-")

axis ([0 11 0 1.2])

xlabel (' \mum')

ylabel ('Amplitude (a.u.)')

text(0.5,1.1,'(d) ', 'FontSize', 14, 'FontWeight', 'bold’

X _sys_res um = 2.9;

X_sys_res = X_sys_res_um./sampling res;

x_stdy = x_sys_res./(2*sqrt (2*log(2)));

x_alpha = (width-1)./(2*x_stdy);

x_spot = gausswin(width,x_alpha) ;

out = conv(target,x_spot, 'same') ;

figure (1)

subplot(2,3,3)

plot (ax_xy,target, 'k-'...
,ax_xy,out./max (out), 'b-'

axis ([0 11 0 1.2])

xlabel (' \mum')

ylabel ('Amplitude (a.u.)')

text(0.5,1.1,'(e) ', 'FontSize', 14, 'FontWeight', 'bold’

subplot(2,3,6)

out = conv(target_point_ objects,x spot, 'same');

plot (ax_xy,target_point_objects, 'k-'...
,ax_xy,out./max (out), 'b-"'

axis ([0 11 0 1.2])

xlabel (' \mum')

ylabel ('Amplitude (a.u.)')

text(0.5,1.1,'(f) ', 'FontSize', 14, 'FontWeight', 'bold’

Figure A4. MATLAB code for the 1D modeling of the resolution for a Gaussian PSF.
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