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Abstract: Tapered optical fibers have continuously evolved in areas such as distributed sensing and
laser generation in recent years. Their high sensitivity, ease of integration, and real-time monitoring
capabilities have positioned them as a focal point in optical fiber sensing. This paper systematically
introduces the structures and characteristics of various tapered optical fiber sensors, providing
a comprehensive overview of their applications in biosensing, environmental monitoring, and
industrial surveillance. Furthermore, it offers insights into the developmental trends of tapered optical
fiber sensing, providing valuable references for future related research and suggesting potential
directions for the further advancement of optical fiber sensing.

Keywords: tapered optical fiber sensing technology; structure of tapered optical fibers; applications
of tapered optical fibers

1. Introduction

As early as 1992, Birks et al. [1] proposed a model for stretching optical fibers into
a tapered shape using different lengths of heat sources. Subsequently, tapered optical
fibers have been explored in sensing. In recent years, optical fiber sensing technology has
experienced vigorous development in various aspects such as multimodal integration [2],
intelligence [3], adaptation [4], the introduction of new materials [5], nanotechnology [6],
and quantum optics [7]. Among these, tapered optical fibers, due to their small size and
unique tapered structure, tightly interact with external environments, demonstrating the
capability for achieving ultra-high sensitivity measurements. Traditional sensors, while
widely employed with mature manufacturing technologies, exhibit limited sensitivity, are
constrained by active measurements, and are more susceptible to electromagnetic interfer-
ence [8]. In contrast, tapered optical fiber sensors offer advantages such as being lightweight
and small, exhibiting corrosion resistance and immunity to electromagnetic interference,
as well as high measurement accuracy, low cost, and better compatibility, making them
widely applicable in areas such as biosensing [9–11], environmental monitoring [12–14],
and industrial surveillance [15,16].

The structure and performance of tapered optical fiber sensors are closely related, with
subtle changes in structure having a significant impact on sensor performance. Multimode
optical fibers with tapered structures have garnered attention in the sensing field for their
high sensitivity and robust durability. By depositing a metal layer on the surface, the
tapered structure can be adjusted to enhance measurement sensitivity [17], particularly
exhibiting strong responses to variations in the vertical direction [18], making them suitable
for various environmental monitoring applications [19,20]. Fiber Bragg Grating (FBG)
utilizes the diffraction principle to modulate the refractive index (RI) of the optical fiber
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periodically, forming a diffraction grating with high sensitivity and frequency selectivity,
suitable for precise measurements of parameters for instance temperature and stress [21,22].
Long-period fiber gratings (LPBGs) achieve periodic structural changes by adjusting the
RI, presenting a large response range and high sensitivity, which is especially suitable
for displacement and pressure measurements [23,24]. Photonic Crystal Fiber (PCF), with
its controllable microstructure arrangement, regulates the motion of photons, providing
multifunctionality and stable performance in sensing applications, applicable to the de-
tection of gases, liquids, and other media [25,26]. Optical tweezers capture microparticles
by adjusting laser power, featuring advantages such as low cost and high efficiency, and
are widely used in particle manipulation and levitation on a microscopic scale [27,28].
The Mach–Zehnder Interferometer (MZI) achieves high sensitivity sensing by measuring
relative phase changes, suitable for measuring optical path differences [29,30]. The Fiber
Loop Ringdown (FLRD) forms a light ring by connecting two optical couplers, achieving
stable signal attenuation for rapid response and high sensitivity measurements [31,32]. The
unique capabilities of these optical fiber structures play a crucial role in different applica-
tion scenarios, providing vast possibilities for the continuous development of optical fiber
sensing technology.

This paper provides a comprehensive review of tapered optical fiber sensing technol-
ogy, starting from the principles and structures of sensors, and analyzing the advantages,
potential challenges to be addressed, and parameters of different tapered optical fiber
sensor structures. Additionally, it introduces some current applications of tapered optical
fiber sensors and concludes by discussing the shortcomings of current tapered optical fiber
sensors and potential directions for their development in practical applications.

2. Different Sensor Structures

Fabrication of tapered optical fibers involves stretching and melting single-mode or
multimode fibers to form tapered structures, and the key lies in selecting appropriate
techniques. Common methods include laser ablation (utilizing CO2 [33], femtosecond
technology [34], etc.), electron beam lithography [35], gas–liquid–solid technology [36],
and fiber pulling [37], among others. Among these, flame heating technology is one of the
most commonly used methods. By controlling the position, temperature, and stretching
speed of the heating source, tapered optical fibers with different shapes can be obtained,
suitable for various application fields, as shown in Figure 1. Therefore, the improvement of
flame heating technology is particularly important. Felipe et al. [38] achieved a gradual
reduction or stepped change in fiber diameter while ensuring uniform stretching through
constant-speed flame brush scanning. Harun et al. [39] fabricated tapered optical fibers
using flame brush technology, employing a butane–oxygen torch, microcontroller, and
stepper motor. The improved system reduced the unevenness of tapered optical fibers,
enabling simple and high-quality fabrication of tapered optical fibers.
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Light propagates through the optical fiber in various modes, including core modes
and cladding modes, which are coupled to one end of the tapered optical fiber. The
other end is exposed to the test environment, such as liquids, gases, or biological samples.
Physical or chemical parameters in the environment, for instance, temperature, pressure,
RI, or chemical concentration, influence the propagation of light waves in the tapered
optical fiber, leading to changes in its optical properties. Measurement of variations in
reflected light intensity, phase changes, or spectral characteristics correlates with changes
in environmental parameters, allowing the extraction of the desired information through
analysis of the measurements.

The structure and performance of melted-tapered optical fiber sensors are closely
related, and subtle changes in structure significantly impact the sensor’s performance and
functionality. In this section, melted-tapered optical fiber sensors are categorized based on
MMFs, fiber gratings, PCFs, optical tweezers, and the principles of optical interference.

2.1. Multimode Fiber

Sensors employing a tapered structure with multimode optical fibers offer a broader
application range and lower cost compared to single-mode fibers. Currently, a trending
research direction involves the use of multimode optical fiber tapered sensors coated with
different materials. In 2014, Shabaneh et al. [41] utilized a tapered multimode optical
fiber coated with graphene oxide (GO) nanolayers to detect varying concentrations of
ethanol-water solutions. The response exhibited strong reversibility and repeatability,
with rapid response and recovery times as low as 19 s and 25 s, respectively, at room
temperature. In 2015, Ibrahim et al. [42] employed a tapered multimode optical fiber coated
with polyaniline nanofibers to differentially discern ammonia concentrations, achieving
faster response times compared to known planar waveguide-based sensors. In 2016, Qiu
et al. [43] utilized a tapered multimode optical fiber coated with a single-layer graphene
film, realizing a cost-effective and portable molecular concentration detection sensor with
reliable sensitivity, as illustrated in Figure 2. In 2023, Chauhan et al. [44] deposited a thin
layer of SnO2-NP on a tapered multimode optical fiber for ethanol sensing, achieving an
exceptionally high average sensitivity of 22 counts/ppm. This highlights the tremendous
potential of coated tapered multimode optical fiber sensors in various applications.

Photonics 2024, 11, x FOR PEER REVIEW 3 of 28 
 

 

 
Figure 1. The schematic diagram for preparation of fused-tapered optical fiber [40]. 

2.1. Multimode Fiber 
Sensors employing a tapered structure with multimode optical fibers offer a broader 

application range and lower cost compared to single-mode fibers. Currently, a trending 
research direction involves the use of multimode optical fiber tapered sensors coated with 
different materials. In 2014, Shabaneh et al. [41] utilized a tapered multimode optical fiber 
coated with graphene oxide (GO) nanolayers to detect varying concentrations of ethanol-
water solutions. The response exhibited strong reversibility and repeatability, with rapid 
response and recovery times as low as 19 s and 25 s, respectively, at room temperature. In 
2015, Ibrahim et al. [42] employed a tapered multimode optical fiber coated with polyan-
iline nanofibers to differentially discern ammonia concentrations, achieving faster re-
sponse times compared to known planar waveguide-based sensors. In 2016, Qiu et al. [43] 
utilized a tapered multimode optical fiber coated with a single-layer graphene film, real-
izing a cost-effective and portable molecular concentration detection sensor with reliable 
sensitivity, as illustrated in Figure 2. In 2023, Chauhan et al. [44] deposited a thin layer of 
SnO2-NP on a tapered multimode optical fiber for ethanol sensing, achieving an excep-
tionally high average sensitivity of 22 counts/ppm. This highlights the tremendous poten-
tial of coated tapered multimode optical fiber sensors in various applications. 

 
Figure 2. The tapered fiber core of TMMF was designed by Qiu et al. [43]. 

The Single-Mode to Multi-Mode to Single-Mode Fiber (SMF-MMF-SMF, SMS) struc-
ture, as an extension of multimode optical fiber, achieves efficient coupling between sin-
gle-mode and MMFs by sandwiching an MMF between two single-mode fibers. The SMS 
structure incorporating a tapered configuration is similar to the conventional SMS struc-
ture, but it connects single-mode and multimode fibers through the tapered structure [45]. 
Figure 3 illustrates a basic diagram of the SMS structure. 
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The Single-Mode to Multi-Mode to Single-Mode Fiber (SMF-MMF-SMF, SMS) struc-
ture, as an extension of multimode optical fiber, achieves efficient coupling between single-
mode and MMFs by sandwiching an MMF between two single-mode fibers. The SMS
structure incorporating a tapered configuration is similar to the conventional SMS struc-
ture, but it connects single-mode and multimode fibers through the tapered structure [45].
Figure 3 illustrates a basic diagram of the SMS structure.
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The design of a tapered MMF eliminates the need for complex processes such as
port reduction and offers higher durability against longitudinal strain when used in fiber
refractometers. Simultaneously, the presence of MMF introduces mode coupling effects,
enhancing the sensor’s response to external environmental changes. In the tapered SMS
structure designed by Sun et al. [18], the high resistance to a longitudinal strain of the
refractometer reaches over 4000 µε before failure. As the length of the MMF decreases,
the sensitivity of the effective RI to the external RI increases, demonstrating significant
potential applications. In the enhanced evanescent field fiber refractometer based on the
SMS structure designed by Wang et al. [46], ultra-high sensitivity in the range of 1.33–1.44
for RI measurements was achieved (superior to 1900 nm/RIU when the RI is 1.44), making
it the highest reported sensitivity in the literature at that time.

Researchers continue to explore the optimization of the tapered SMS structure. André
et al. [47] proposed and experimentally demonstrated that gradually narrowing the SMS
structure enhances sensitivity. They combined non-tapered and tapered SMS structures as
a sensing system for simultaneous strain and temperature measurements. Zhao et al. [48]
investigated a novel RI sensor based on a multi-tapered SMS fiber structure and found
that the more tapers, the higher the measurement sensitivity. Yang et al. [49] sandwiched
a balloon-shaped MMF formed by bending the tapered structure between two SMFs, as
shown in Figure 4. By leveraging the advantages of tapering and bending, they designed
a high-sensitivity refractive index sensor with a maximum sensitivity of 6909 nm/RIU
(RI = 1.42). In addition to the SMS fiber, the combination of SMS with other optical struc-
tures also holds promising prospects. For instance, Song et al. [50] discovered that the
process of writing FBG into SMS could be an effective technique for adjusting and optimiz-
ing the SMS spectrum for sensing purposes. We may anticipate witnessing examples of
introducing tapering in FBG-in-SMS structures in the future to achieve enhanced sensitivity
while optimizing the SMS spectrum.
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The MMF structure plays a significant role in optical sensors. For instance, the ex-
tended design of the MMF structure, such as the SMS structure, enables the development
of tapered optical fiber sensors with enhanced durability against longitudinal strain and
improved sensitivity. These sensors have considerable potential in practical applications.
However, this structure also requires consideration of factors such as mode overlap-induced
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interference affecting sensor accuracy and stability [51], waveguide losses reducing signal
transmission efficiency and sensor performance [52], and mode-coupling effects in MMF
segments potentially leading to wavelength dependency of optical signals [53]. Therefore,
the optimization of structures incorporating MMFs remains an ongoing area of research
that requires continuous advancement.

2.2. Fiber Bragg Grating

In modern optics and sensing technology, FBG structures have become crucial tools.
Among them, sensors based on FBG in tapered optical fibers and sensors utilizing LPBG
structures, as two specific types of fiber sensors, have garnered widespread research interest
and application exploration.

The structure combining tapered optical fibers with Fiber Bragg Gratings (FBGs)
incorporates periodic refractive index modulation FBGs as the sensing element, which
combines the large sensing area and high sensitivity of tapered optical fibers with the high
resolution, selectivity, and sensitivity of FBGs. This has made it one of the highly researched
directions in fiber optic sensing technology. Such a structure can optimize the response
characteristics of FBGs, making them more suitable for specific application scenarios and
providing more accurate measurements.

Yang et al. [54] achieved a pump efficiency higher than 0.21 ◦C/mW using gold
nanoparticle-modified tapered optical fibers with FBGs while maintaining a local tempera-
ture rise of up to 60 ◦C under aqueous conditions, as shown in Figure 5. This provides a
new approach for applications requiring local opto-thermal driving and real-time feedback
of temperature fields. Zhao et al. [55] demonstrated a strain sensor based on a tapered
FBG-capillary structure with a sensitivity of up to 1129.44 pm/µε, which is approximately
two orders of magnitude higher than that of conventional FP strain sensors. The FBG in
the capillary, without strain, perfectly compensates for temperature effects. Li et al. [56]
proposed an intensity-modulated, wide-bandwidth magnetic field fiber sensor based on
Tapered Fiber Bragg Gratings (TFBGs), with a maximum sensitivity of −0.1933 dB/Oe and
−0.1533 dB/Oe, as shown in Figure 6. It offers the advantages of no directional disturbance,
wide bandwidth, high sensitivity, and integration.
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Tapered optical fiber sensors based on FBG have injected new momentum into the
innovation and application expansion of fiber sensing technology. With technological ad-
vancements, FBG-based tapered optical fiber sensors are expected to achieve measurements
for a broader range of parameters. Simultaneously, these sensors may acquire additional
functionalities, such as structural health monitoring and environmental sensing, offering
richer solutions for complex real-world applications.

Tapered optical fiber sensors based on LPBG utilize the diffraction effect of LPBG to
couple light signals periodically with the physical or chemical parameters of the external
environment, providing sensing capabilities [57]. In contrast to FBG sensors responding
to changes at specific Bragg wavelength points, LPBG sensors typically exhibit variations
over a larger wavelength range.

As early as 2007, Bock et al. [58] proposed a tapered LPBG pressure sensor. Compared
to traditional FBG sensors, the manufacturing process of this tapered LPBG is simpler and
faster. Additionally, this sensor allows for direct high-pressure measurements without the
need to attach the grating to external strain components, thereby improving measurement
accuracy. In 2010, Lee et al. [59] innovatively investigated coated LPBGs, applying a
silicon film grating to a tapered optical fiber. The tuning efficiency of the sensor reached
62.9 nm/◦C, equivalent to a sensitivity of approximately 168.182 nm/RIU, marking the
highest sensitivity in fiber sensors at that time. The potential of tapered optical fibers
combined with LPBG is evident. In 2023, Shao et al. [60] proposed a high-sensitivity dual-
parameter tapered long-period fiber grating (MTLPG) sensor filled with magnetic fluid, as
shown in Figure 7. The sensor exhibits different response ranges and sensitivities based
on varying MF concentrations and MTLPG taper diameters, with maximum sensitivities
reaching 23.72 nm/mT and 0.52 nm/◦C, respectively. Additionally, the maximum response
ranges extend from 8.0 to 16.0 mT and from 25 to 75 ◦C. To the best of our knowledge,
this represents the highest magnetic sensitivity achieved by fiber optic sensors in weak
magnetic fields (below 3 mT).
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Tapered optical fiber sensors based on Long Period Fiber Grating (LPBG) exhibit nu-
merous advantages, such as the ability of LPBG resonance wavelength to vary with changes
in the RI of the surrounding environment. This feature enables selective identification of
different samples [61]. Moreover, these sensors typically do not require the addition of
markers to the test samples, allowing for label-free detection. Consequently, LPBG-based
tapered sensors will continue to contribute to the advancement of fiber sensing technology,
providing solutions for tackling more complex real-world problems.

2.3. Photonic Crystal Fiber

The concept of PCF can be traced back to the 1990s [62]. As a deeper understanding
of PCF microstructures and waveguide modes emerged, researchers began considering



Photonics 2024, 11, 414 7 of 28

its application in sensors. PCF tapered sensors involve the tapering of PCF with periodic
RI structures [63], offering advantages such as high sensitivity, broad wavelength range,
precise beam control, and versatility. Additionally, due to the non-conductive nature of
PCFs, they exhibit increased stability in environments with electromagnetic interference
and shielding [64].

The integration of the tapered section with the PCF occurs through different ap-
proaches. In the sensor design by Zhao et al. [65], the PCF between the upper tapered
junctions undergoes etching, allowing the cladding modes of PCF to be excited through
the upper tapered junction for RI sensing, as shown in Figure 8. Conversely, Fan et al. [66]
directly employed PCF tapering for micro-strain sensing, effectively enhancing the sensor’s
sensitivity, as shown in Figure 9. It is noteworthy that prior to tapering, the strain sensitivity
of the sensor was 2.75 µε with a linear fit of 98.35%. After tapering, when the strain range
was 5.46 pm/µε, the strain sensitivity of the sensor improved to 98.59%, with a linear fit
ranging from 109.860 µε to 559.287 µε. The improved strain sensor exhibits high sensitivity,
good stability, quick response speed, and excellent reversibility, thus holding significant
potential for broad applications.
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Combining PCF microcavities with tapered optical fibers allows for the exploitation of
the microcavity’s high-quality factor and optical characteristics, leading to sensors with
enhanced sensitivity. Dass et al. [67] devised a curvature sensor based on a cascaded
single-mode fiber with microcavities and dual-tapered spliced PCF. The dual SMF tapers
elevated the system’s curvature sensitivity while customizing the curvature sensitivity
and interference fringe contrast could be achieved by altering the taper parameters of the
second taper. With technological advancements, researchers have explored PCF sensors
capable of simultaneously sensing multiple parameters, enhancing measurement efficiency,
and broadening application possibilities. Fan et al. [25] proposed a dual-parameter sensor
for liquid level and RI using an SMF-TPCF-SMF structure. Leveraging PCF’s temperature-
insensitive characteristics, the sensor addressed crosstalk caused by temperature variations.
As a dual-parameter sensor, its structure is relatively simple, yet it exhibits excellent
sensing performance.

In addition to the two common designs mentioned above, Tu et al. [68] proposed a
non-traditional type of PCF tapered RI sensor by using atomic layer deposition to coat a
one-dimensional photonic crystal consisting of periodic TiO2 and Al2O3 on a tapered optical
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fiber. This represents the first demonstration of a fiber-based Bloch surface wave-excited
sensor for RI sensing.

Currently, there are also popular research directions in sensing based on PCF combined
structures, such as magnetic sensing based on PCF tapered Mach–Zehnder interferometer
structure [69], and surface-enhanced Raman spectroscopy sensing based on PCF [70].
With the continuous advancement of technology, PCF tapered sensors are expected to
discover opportunities in new fields such as quantum technology and photonic integration.
However, when applying PCF tapered sensors in real-world environments, consideration
must be given to factors such as stray light, humidity, and gases, which can impact the
performance of the sensor.

2.4. Optical Tweezers

The optical fiber tweezer is an optical trapping and sensing device that utilizes light
manipulation for capturing particles or micro-objects. Optical tweezers designed with a ta-
pered fiber structure can enhance trapping forces and control the position and movement of
captured particles [71], providing a powerful tool and means for research and applications
at the microscale. Figure 10 illustrates several basic schematics of optical tweezers.

Photonics 2024, 11, x FOR PEER REVIEW 8 of 28 
 

 

variations. As a dual-parameter sensor, its structure is relatively simple, yet it exhibits 
excellent sensing performance. 

In addition to the two common designs mentioned above, Tu et al. [68] proposed a 
non-traditional type of PCF tapered RI sensor by using atomic layer deposition to coat a 
one-dimensional photonic crystal consisting of periodic TiO2 and Al2O3 on a tapered opti-
cal fiber. This represents the first demonstration of a fiber-based Bloch surface wave-ex-
cited sensor for RI sensing. 

Currently, there are also popular research directions in sensing based on PCF com-
bined structures, such as magnetic sensing based on PCF tapered Mach–Zehnder interfer-
ometer structure [69], and surface-enhanced Raman spectroscopy sensing based on PCF 
[70]. With the continuous advancement of technology, PCF tapered sensors are expected 
to discover opportunities in new fields such as quantum technology and photonic inte-
gration. However, when applying PCF tapered sensors in real-world environments, con-
sideration must be given to factors such as stray light, humidity, and gases, which can 
impact the performance of the sensor. 

2.4. Optical Tweezers 
The optical fiber tweezer is an optical trapping and sensing device that utilizes light 

manipulation for capturing particles or micro-objects. Optical tweezers designed with a 
tapered fiber structure can enhance trapping forces and control the position and move-
ment of captured particles [71], providing a powerful tool and means for research and 
applications at the microscale. Figure 10 illustrates several basic schematics of optical 
tweezers. 

 
Figure 10. Tapered optical fiber based on optical tweezers structure [72]. 

By altering the arrangement and combination of fibers within the optical tweezer, the 
functionality of the optical tweezer can be modified. Huang et al. [73] achieved optical 
trapping and manipulation of Escherichia coli cells using a tapered fiber with a dual-fiber 
arrangement, forming a high-energy density crossing point and utilizing gradient forces. 
Directional control of bacterial cells was achieved by adjusting the power in the fiber probe 
to direct cells in different directions. Gao et al. [27] achieved both single-fiber gradient 

Figure 10. Tapered optical fiber based on optical tweezers structure [72].

By altering the arrangement and combination of fibers within the optical tweezer, the
functionality of the optical tweezer can be modified. Huang et al. [73] achieved optical
trapping and manipulation of Escherichia coli cells using a tapered fiber with a dual-fiber
arrangement, forming a high-energy density crossing point and utilizing gradient forces.
Directional control of bacterial cells was achieved by adjusting the power in the fiber probe
to direct cells in different directions. Gao et al. [27] achieved both single-fiber gradient
mode and dual-fiber scattering mode trapping configurations in a single optical tweezer
setup based on a tapered optical fiber, as shown in Figure 11. This configuration enables
the trapping and manipulation of at least three particles simultaneously, each of which can
be utilized for in-situ experimental activities and analyses, holding significant implications
for super-resolution imaging based on microsphere-assisted techniques.
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Additionally, changing the type of fiber can diversify the functionalities of the optical
tweezer. Liu et al. [74], by introducing radial offset between a single-mode fiber and
a graded-index MMF with a tapered tip, achieved both non-contact operation and the
capability to axially displace particles relative to the fiber tip without moving the probe.
Similarly, based on RI and MMFs, Wang et al. [75] utilized a graded RI MMF tweezer for
three-dimensional trapping of yeast cells, adjusting the position of trapped particles by
modifying the fiber tip. Rong et al. [76] developed an optical tweezer based on a large-
diameter four-mode fiber, allowing the extension of resonant fields of higher-order modes
for manipulating micro-objects. It is noteworthy that Rong et al. also demonstrated that a
larger tapered fiber diameter can prolong the lifetime of the tweezer.

In addition to the fundamental optical tweezers, Asadollahbaik et al. [77] achieved
efficient optical trapping and manipulation of micro-particles in a dual-fiber optical tweezer
by incorporating a specially shaped diffractive Fresnel lens. The diffractive structure not
only increased the trapping stiffness of the dual-fiber optical tweezer but also expanded
the operational space for optical trapping. By integrating plasmonics, Fooladi et al. [78],
leveraging the intrinsic field enhancement effects, demonstrated that the proposed tapered
dual-core fiber tweezer can exert forces on particles with a radius as small as 0.01 µm, as
shown in Figure 12.
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As a crucial experimental technique, optical tweezers have not only propelled ad-
vancements in fundamental science but also provided innovative research and application
opportunities across multiple domains. Despite significant progress in optical tweezer tech-
nology, challenges persist, such as potential sample damage due to beam energy and ther-
mal effects [79], limitations of in-depth resolution and precise control in three-dimensional
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manipulation, and the yet unrealized goals of automation and high-throughput operations.
Future research and technological innovations will focus on addressing these limitations to
further expand the applications of optical tweezers in micro-manipulation and biological
research fields.

2.5. Fiber Interferometer

Both the FLRD and MZI are optical sensors based on the interference principles of light,
exhibiting vast prospects for development in sensing performance, application domains,
and material technologies.

The FLRD is a fiber optic sensing technique employed for detecting the absorption
and scattering characteristics within a medium. In FLRD technology, optical pulses are
injected into a fiber loop, and the attenuation time of the pulses is monitored to measure
the absorption or scattering of light within the medium [80]. Early FLRD techniques were
primarily based on traditional fiber loops, used to measure the decay time of light within
the fiber loop to obtain information about the medium’s absorption and scattering [81].
Subsequently, researchers introduced tapered optical fibers into FLRD technology, where
the tapered end of the fiber can increase the interaction path between light and the medium,
thereby enhancing sensitivity to the absorption and scattering of the medium [82].

In recent years, researchers have further improved the sensitivity and detection capa-
bilities of FLRD technology by optimizing the structure, fabrication processes, and optical
parameters of tapered optical fibers. For instance, Li et al. [83] utilized a bent tapered optical
fiber to enhance the decay effect of the signal, achieving high-precision RI measurement
through the cascading of an S-shaped optical fiber taper and a Faraday rotation mirror.
Yang et al. [31] utilized a bent-annealed taper no-core fiber (NCF) immersed in magnetic
fluid (MF) as the sensing head to construct a novel FLRD-based current sensing system,
as shown in Figure 13. This configuration significantly enhances the evanescent field
effect, resulting in a measurement sensitivity of 0.1161 µs/mA for the current sensor. Their
contribution to the research and application in the field of modern electrical engineering
is substantial.
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Simple tapered single-mode fibers, when combined with other optical fibers or struc-
tures, can also enhance FLRD systems. Tian et al. [84], for example, designed a chaos-
correlated FLRD RI sensing system based on a tapered single-mode fiber. The chaotic
correlation design simplified the light source of the sensing system, eliminating the trade-
off between the length of the fiber loop and the light source and making the fiber loop length
more flexible. Meanwhile, Wang et al. [85] used a tapered single-mode fiber and a thin silica
MMF coated with polydimethylsiloxane as curvature and temperature sensors, achieving
simultaneous measurement of both variables in a quasi-distributed sensing scheme.

The combination of FLRD technology with Frequency Shift Interferometry (FSI) is
also a trending research direction, providing enhanced methods for the sensitivity, multi-
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channel monitoring, and real-time data acquisition of sensors. Cheng et al. [86] integrated
FLRD sensors with frequency-shifted interferometric measurements for large-strain mea-
surements, achieving a sensitivity of 0.34 km−1·mε−1 and a dynamic range of 5 me. Chen
et al. [87] similarly combined FLRD sensors with FSI for large-strain measurements, uti-
lizing a dual-tapered multimode optical fiber as the sensor head. They achieved strain
sensitivities of 0.51337 km−1·mε−1 and 0.8667 km−1·mε−1 within a large measurement
range of up to 6 me, surpassing the design range and sensitivity of Cheng et al., while also
enabling multi-point measurements.

In summary, FLRD systems combined with tapered optical fibers offer several unique
advantages, such as rapid response, flexible design, and real-time monitoring capabilities.
In the future, FLRD systems are expected to undergo further optimization in aspects
like multi-channel and array integration [88], real-time monitoring, and data analysis,
showcasing additional benefits and potential.

The MZI is an optical interference device typically composed of two beam splitters and
two interference arms [89]. In traditional MZIs, conventional optical fibers or waveguide
devices are used to construct the interference arms. When tapered optical fibers are
introduced, they can act as special sensing elements within the interference arms, achieving
highly sensitive sensing by intensifying the interaction between the optical field and the
external environment. For instance, Wang et al. [90] enhanced the performance of the MZI
in RI measurements by tapering the fusion point of the MZI, achieving good linearity,
repeatability, and sensitivity, as shown in Figure 14.
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In optical fiber sensing, especially in RI measurements, temperature drift significantly
impacts the accuracy and stability of the results. Mitigating the temperature drift in the
MZI is an effective approach to enhance the stability, accuracy, and reliability of fiber optic
sensors. Pawar et al. [91] reduced the temperature sensitivity of the MZI using tapered
birefringent PCFs, simultaneously improving resolution and RI measurement, as shown
in Figure 15. Yang et al. [92] achieved an MZI with lower temperature sensitivity by
embedding a refined optical fiber, exhibiting sensitivity ten times higher than conventional
tapered LPBG sensors. Additionally, Yang et al. observed that decreasing the diameter
of the refined optical fiber and increasing the interferometer length further enhanced
sensitivity. Wang et al.’s [93] research, based on folded tapered multi-mode coreless optical
fiber, overcame temperature sensitivity while utilizing the compound interference of the
MZI, significantly improving sensing performance in the low RI range. Within a linear
RI range of 1.3405 to 1.3497, a maximum sensitivity of 1191.5 nm/RIU was achieved,
surpassing traditional modal interferometer structures.
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The application of tapered optical fibers in the MZI has introduced new possibilities
in optical sensing. Its advantages lie in high sensitivity, high resolution, compact structure,
and strong adaptability. However, the challenge remains in expanding the dynamic range
while maintaining high sensitivity.

2.6. Summary

The parameters commonly used for tapered optical fiber sensors include the taper
length, sensitivity, RI or wavelength scale, waist diameter, etc. Different types of sensors
emphasize different parameters, and the specific selection depends on the requirements of
the application. Table 1 provides a classification study of tapered optical fiber structures.

Table 1. Classification study of tapered fiber structures.

Tapered
Method

Taper
Length Sensitivity RI Scale OR

Wavelength Scale
Waist

Diameter Application Ref

MMF 2500 µm 3264.01 nm/RIU 1.345–1.375 40 µm Biological and
chemical [17]

MMF —— 12145 nm/RIU 1.3345–1.339 4.2 µm Biological and
chemical [94]

MMF 160 µm 11792 nm/RIU 1.3330–1.4102 —— Biological and
chemical [95]

FBG 7.29 mm 382.83 dB/RIU and
9.893 pm/◦C 1.34974–1.35845 39 µm Biological and

chemical [96]

LPBG 2.3 mm
Peak A 1.82 pm/µϵ,
47.9 pm/◦C, Peak B

8.17 pm/µϵ, 65 pm/◦C

Peak A:
1540.3–1543.2 nm,

Peak B:
1571.4–1575.3 nm

62.5 µm
Temperature

and
strain

[97]

LPBG 1 mm 1246.594 nm/(N/mm) 1480–1640 nm 100 µm, 90 µm,
80 µm Lateral Load [23]

LPBG 690 µm 4.5 nm/(µg/mL) 1300–1620 nm 45.51 µm Biomedical [98]

PCF 10 mm 722.3 nm/RIU 1.30864–1.32014 18.1 µm Biological [99]
PCF —— 152.97 nm/RIU 1.330–1.383 40 µm RI [100]

FLRD 785 µm 2646.307 dB/(km RIU) 1.3330–1.3518 70 µm RI [83]
FLRD 340 µm 0.725 µs/m−1 —— 44.1 µm Curvature [101]

MZI 690–850 µm −15.66 nm/µC —— 28–40 µm Temperature [102]
MZI —— 103.2 pm/◦C 1.34–1.38 84.70 µm Temperature [103]
MZI 500 µm 0.116 nm/◦C —— 80 µm Temperature [104]

MZI —— 4234 nm/RIU 1.4204–1.4408 35.5 µm Biological and
chemical [105]

In summary, these fiber optic sensors exhibit high sensitivity and versatility in various
application domains. However, they also come with limitations such as specific applica-
tion requirements, complex manufacturing processes, and sensitivity to environmental
conditions. For instance, PCF tapered sensors are limited by certain length constraints,
optical tweezers require complex optical systems and are subject to sample character-
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istics, and MZIs have a complex optical layout, being sensitive to light source stability
and interference.

In addition to the mentioned tapered fiber optic sensor structures, there are other
common tapered fiber optic sensors, such as surface plasmon resonance tapered fiber
optic sensors [106], fiber optic surface-enhanced Raman scattering sensors [107], fiber optic
Fresnel diffraction sensors [108], and fiber optic microsphere resonant sensors [11]. These
tapered fiber optic sensors are currently in continuous development and research stages.
Future advancements aim to enhance performance, reduce costs, expand application ranges,
and address current limitations. They are poised to play a crucial role in various fields
such as biomedical applications, environmental monitoring, industrial applications, and
scientific research.

3. Applications

As an innovative optical sensing technology, tapered fiber optic sensors demonstrate
extensive potential across various domains. For instance, the geometric structure of tapered
fiber optics renders them highly sensitive to environmental changes, enabling real-time and
high-sensitivity monitoring of parameters such as temperature and humidity. Additionally,
by introducing specific materials or coatings to the surface of tapered fibers, accurate
monitoring and analysis of substance concentrations and gas compositions can be achieved,
providing a reliable means for biosensing and industrial production monitoring. This
chapter introduces the applications of tapered fiber optic sensors in areas such as biosensing,
environmental monitoring, and industrial surveillance.

3.1. Biosensing

In recent years, advancements in micro-nanofabrication technologies have propelled
the rapid development of tapered fiber optic sensing techniques. The small size and high
sensitivity of tapered fiber optics make them excellent candidates as sensitive detectors for
the interaction of biological molecules. Through surface modifications, tapered fiber optics
can achieve highly selective recognition of biomolecules, providing novel and crucial tools
for biological research and clinical diagnostics. This section will showcase the potential
applications of tapered fiber optic sensors in three aspects: detection of biomolecular
concentrations, targeted drug delivery to cells, and DNA hybridization.

3.1.1. Biomolecule Concentration Detection

With the increasing demand for molecular detection within medical research, re-
searchers have begun exploring the use of tapered optical fibers for the detection of biologi-
cal molecules such as the specific binding of antigens and antibodies, as well as the activity
of bacteria. Utilizing tapered optical fiber sensors, the detection of biological molecules
has streamlined experimental cycles, making it more suitable for high-throughput analyti-
cal requirements.

By modifying the surface of tapered optical fibers with antibodies, antigens, and other
biomolecules, real-time monitoring of their interactions can be achieved. This has significant
applications in immunological research, drug screening, and diagnostic testing. As early as
1992, Ogert et al. [109] developed tapered optical fiber biosensors using specific antibodies
and fluorescent signals, enabling rapid and sensitive detection of botulinum toxin. In
2019, Minkovich et al. [99] designed a non-adiabatic tapered special PCF, employing the
interaction between a thin layer coated with bovine serum albumin (BSA) antigen and anti-
BSA antibodies. This groundbreaking approach achieved a detection limit of 125 pg/mL for
anti-BSA antibody concentration at that time. In the same year, Duan et al. [110] proposed a
compact S-cone optical fiber biosensor, which marks the first integration of Hydrophobin I
(HGFI), a hydrophobic protein found in Trichoderma reesei, onto an optical fiber, enabling
label-free detection of the interaction between goat anti-rabbit immunoglobulin G (IgG)
(GAR, antibody) and rabbit anti-coagulant IgG (R, antigen). The nanolayer of HGFI on the
fiber surface provides a unique analytical platform for achieving biocompatible binding.
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In 2023, Chen et al. [111] introduced a cone-shaped optical fiber biosensor based on the
Mach–Zehnder Interferometer (MZI), incorporating a U-shaped transmission structure to
realize a miniaturized plug-in probe that is flexible, convenient, and consumes minimal
liquid, as shown in Figure 16. The cone probe achieved a sensitivity of 1611.27 nm/RIU
within the refractive index detection range of 1.3326–1.3414, with an immunoanalytical
detection limit of 45 ng/mL for different concentrations of human immunoglobulin G.
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In the realm of microbiological research, tapered optical fiber sensors find applications
in monitoring the dynamic activities of microorganisms such as bacteria and fungi. This
proves instrumental in gaining insights into the ecological characteristics and antibiotic
sensitivity of these microorganisms. In 2020, Chen et al. [112] introduced an exceptionally
sensitive sensor utilizing a coreless tapered optical fiber functionalized with guinea pig
immunoglobulin G antibodies for the detection of inactivated Staphylococcus aureus, as
shown in Figure 17. The sensor exhibited a detection limit of 3.1 CFU/mL, marking the
highest detection limit among optical fiber biosensors at that time.
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In 2021, Cui et al. [113] developed a quantum dot immunofluorescent tapered biosen-
sor probe for the detection of Staphylococcus aureus, achieving a detection limit of
1 × 104 CFU/mL, as shown in Figure 18. Moving forward to 2022, Li et al. [114] designed a
dual-cone microfiber MZI for Staphylococcus aureus detection, with a remarkable RI sensi-
tivity of 2731.1 nm/RIU. The microfiber MZI, functionalized with porcine immunoglobulin,
demonstrated specific binding to Staphylococcus aureus, achieving a low detection limit of
11 CFU/mL.
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The tapered optical fiber sensor exhibits numerous advantages in the realm of biomolec-
ular concentration detection. Its simplicity in experimental operations renders it applicable
to various settings, both within and outside the laboratory, making it suitable for diverse
applications [115]. Additionally, it requires relatively small sample volumes, making it
well suited for the analysis of precious or rare biological samples. In the future, researchers
are actively exploring the integration of tapered optical fiber sensors into compact sys-
tems, aiming to enable real-time monitoring of biomolecular concentrations in on-site or
clinical environments.

3.1.2. Cellular Realization of Targeted Drug Delivery (Cancer)

Research on tapered optical fiber sensors for DNA in situ detection in early cancer
diagnosis is extensive. However, the field of targeted drug delivery using tapered optical
fiber sensors remains an area requiring further exploration. This application aims to
combine tapered optical fiber sensors with drug carriers to enable monitoring and control
of drug release, thereby enhancing the precision and efficiency of treatment—a prospect
that should not be overlooked.

In 2019, Liu et al. [116] efficiently and accurately achieved targeted drug delivery to
individual cancer cells in vitro using tapered optical fiber probes, as shown in Figure 19.
Simultaneously, they recorded the activity characteristics of targeted cancer cells upon drug
exposure. Overcoming the challenges of low efficiency in targeted drug delivery and poor
Raman spectral stability caused by Brownian motion, they utilized another fiber tip for
optical manipulation of individual suspended cells.
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In pursuit of a more comprehensive approach to cancer treatment, in 2023, Vikas
et al. [117] designed a graphene-antimony-coated uniform waist-tapered optical fiber
surface plasmon resonance biosensor. In contrast to Liu et al.’s design, which focused on
manipulating individual cancer cells, Vikas et al.’s design can detect various cancer cells
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within the human RI range of 1.36–1.4. The high binding energy and large active surface
area of antimony for adsorbing biomolecules enhance the sensor’s performance. However,
this design still requires further exploration in terms of drug delivery functionality.

3.1.3. DNA Hybridization

DNA hybridization is a crucial step in the detection and analysis of specific DNA
sequences. Tapered optical fiber sensors, leveraging the high sensitivity of the fiber cone
structure and surface functionalization capabilities, enable monitoring and analysis of the
DNA hybridization process. There is a continuous effort to enhance the sensitivity and
detection limits of these sensors.

The detection of DNA hybridization can be achieved through various tapered optical
fiber structures. Pan et al. [118] utilized a portable and rapidly manufactured single-
mode tapered optical fiber to monitor changes in the surrounding RI, facilitating basic
DNA molecule measurements. On the other hand, Sun et al. [119] employed a reflection
microfiber Bragg grating (mFBG) structure to achieve highly specific DNA hybridization
detection. By monitoring the wavelength gap between two well-defined resonances in
the reflection provided by the mFBG, they implemented temperature-compensated RI
measurements, thereby enhancing the accuracy and reliability of the detection results.

To further optimize the sensitivity and detection limits of the sensor, Li et al. [29]
demonstrated that reducing the core size through tapered shaping significantly enhances
the RI sensitivity of the sensor. Additionally, through integration with other optical struc-
tures such as MZIs, real-time, highly sensitive, and ultra-low detection limit detection of
DNA can be achieved. Song et al. [120] proposed an unlabeled DNA biosensor based on
microfiber MZI, whose interference spectrum is highly sensitive to RI changes. With a
detection limit as low as 0.0001 pmol/µL at an RI of around 1.34.

Modifying the fiber optic structure or surface functionalization can enhance the speci-
ficity of the sensor. In 2018, Zainuddin et al. [121] functionalized the tapered region of a
fiber optic sensor using sodium hydroxide, triethoxysilane, and glutaraldehyde, achieving
highly specific detection of Helicobacter pylori DNA, as shown in Figure 20. In 2019,
Zhang et al. [122] employed a single-layer poly-L-lysine and single-stranded DNA probe
for functionalizing double-S tapered optical fibers based on microcore fibers, demonstrating
excellent specificity and reproducibility in label-free DNA hybridization detection. In 2023,
Zainuddin et al. [123] further developed a carbon quantum dot-enhanced sensor for the
detection of Helicobacter pylori DNA, as shown in Figure 21. With a detection limit of
1.0 fM, the sensor exhibited a favorable sensitivity of 1.8295 nm/nM and a low dissociation
constant. Moreover, it demonstrated higher affinity compared to biosensors without the
use of carbon quantum dots (CQDs). This sensor not only showcased the significant role of
nanomaterials in sensor enhancement but also emphasized the potential for more sensitive
and reliable diagnostics in Helicobacter pylori infections. It provides a new direction for
the development of medical sensors, highlighting the potential for enhanced sensitivity
and reliability in Helicobacter pylori diagnosis tests.
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3.2. Environmental Monitoring

Tapered optical fiber sensors enable high-precision measurements of environmental
parameters, capturing subtle changes in the surroundings and providing accurate data
support for both scientific research and practical applications. Through the adjustment
of sensitive coatings on tapered optical fibers and optimization of fiber design, real-time,
high-precision monitoring of environmental parameters such as temperature, humidity,
and water pollutants can be achieved.

3.2.1. Ambient Temperature and Humidity Sensing

The measurement of environmental temperature and humidity is not only crucial for
scientific research but also finds applications in urban planning, environmental manage-
ment, and natural resource conservation, contributing to the improvement of environmental
quality and the enhancement of overall quality of life. Tapered optical fiber sensors can
perceive changes in environmental humidity by monitoring variations in hygroscopic ma-
terials and can detect changes in environmental temperature utilizing the thermal-sensitive
characteristics of optical fibers.

As early as 1998, Bariain et al. [124] developed a novel humidity optical fiber sensor
by depositing a hygroscopic material (CoCl2) onto a small region of a tapered optical
fiber, observing a significant output optical power change of up to 5 dB. Subsequently,
researchers have enhanced sensor sensitivity by combining tapered optical fibers with
specific sensitive materials to obtain more precise environmental data. Li et al. [125]
proposed an interferometric sensor using an SMF-PCF-SMF structure, achieving humidity
measurement through the fusion of tapered coupling and graphene coating. Within a
humidity range of 36.0% RH to 75.3% RH, the sensor exhibited high sensitivity, reaching
340.13 pm/% RH. Quiñones-Flores et al. [126] designed a relative humidity (RH) sensor
based on the multimode interference (MMI) phenomenon using a coreless optical fiber
(NCF) coated with polyvinyl alcohol (PVA), as shown in Figure 22. The sensor consisted of
a segment of NCF spliced between two single-mode fibers (SMFs). The native MMI sensor
exhibited a sensitivity of 5.6 nm/RH% in the range of 87% to 93% RH, while the tapered
MMI sensor demonstrated a higher sensitivity of 6.6 nm/RH% in the range of 91.5% to
94% RH. To the best of our knowledge, the sensitivity values obtained using these MMI
sensors in similar RH ranges are at least twice that of the most sensitive fiber humidity
sensor reported in the literature.

By employing special structural designs, the performance and practical applicability
of sensors can be effectively enhanced. Le et al. [127] combined MMF and SMF cones and,
through specific knotting and PVA coating processes, designed a multimode microfiber
nodal resonator sensing probe. In a microfiber with a diameter of 4 µm, the effective RI
difference between the HE11 and HE12 modes was nearly zero. Kou et al. [128], based
on a reflective Fabry–Perot mode interferometer, designed an ultra-compact all-silicon
high-temperature sensor. The sensor head, compact and splice-free, can operate in harsh
environments with extremely large temperature gradients. However, further research



Photonics 2024, 11, 414 18 of 28

and improvement are still required for the practical implementation of this excellent
design, such as enhancing its stability and protective performance through encapsulation
techniques. Tong et al. [129] combined FBG with an internally embedded balloon-like
sensing structure for simultaneous measurement of relative humidity and temperature, as
shown in Figure 23. Compared to traditional sensing structures, the balloon-like sensing
structure not only offers better contact with the measurement environment but is also
simple to manufacture and cost-effective.
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3.2.2. Detection of Ethanol Concentration in Water

Excessive ethanol concentration in water bodies, stemming from wastewater discharge,
industrial production, and agricultural activities, can lead to pollution and harm the water
quality, impacting aquatic ecosystems and biodiversity. The real-time and high-sensitivity
monitoring of ethanol concentration in water can be achieved using tapered optical fiber
sensors, contributing to the protection of water environments.

Traditional methods rely on the absorption characteristics of optical fibers to detect
ethanol concentration. Building upon these traditional methods, Yang et al. [130], through
V-number matching and optimization of cone radius and length, enhanced the sensitivity of
ethanol concentration sensors. With technological advancements, researchers have begun
exploring the application of surface plasmon resonance (SPR) technology in fiber optic
ethanol sensing. For instance, Semwal et al. [131] designed a tapered optical fiber ethanol
sensor based on localized surface plasmon resonance, combined with gold nanoparticle
coating and enzyme immobilization. This sensor is capable of detecting ethanol in water
and measuring ethanol concentration in human bodily fluids.



Photonics 2024, 11, 414 19 of 28

Presently, researchers are incorporating nanomaterials into optical fiber sensors to
enhance sensitivity and selectivity. Azad et al. [132], by coating tapered optical fibers
with ZnO nanorods, shortened the sensor response time to 0.6 s and increased linearity
to 97%, as shown in Figure 24. Similarly, Khalaf et al. [133] coated tapered optical fibers
with carbon nanotubes and GO films, simplifying sensor implementation and ensuring
sensitivity. Simultaneously, the sensors exhibited excellent selectivity for ethanol across
various organic compounds.
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Consideration needs to be given to the fact that, in the detection of ethanol concen-
tration, sensors may be influenced by other environmental factors such as temperature,
humidity, and the presence of other gases. Future research endeavors should continue
to advance in overcoming cross-interference to enhance the robustness and accuracy of
ethanol concentration measurements.

3.3. Industrial Monitoring

Tapered optical fiber sensors exhibit high sensitivity, rapid response, high-temperature
resistance, corrosion resistance, real-time monitoring, and remote operation advantages in
industrial production monitoring and control. These attributes contribute to the optimiza-
tion of production processes and enhance production efficiency and quality control.

3.3.1. Radiation Dosimetry

Tapered optical fibers, as a highly sensitive sensing platform, exhibit extensive po-
tential in radiation dose measurements, offering high precision, spatial resolution, and
real-time monitoring capabilities. Researchers continuously explore innovative methods
for detecting charged particles of different energies and types. In 2021, Jia et al. [134]
successfully measured remote γ-ray doses by embedding Ce/Tb: YAG crystals into a
tapered optical fiber sensor. The breakthrough lies in the unique design of the tapered
optical fiber, allowing efficient coupling of the scintillation light emitted by the Ce/Tb:
YAG crystals into the tapered region, which is then conducted into the fused silica fiber.
Through fusion splicing with multimode optical fibers, a response four times higher than
traditional plastic scintillating fiber sensors was achieved. In 2022, Rajbhar et al. [135]
successfully detected ions with energies as low as 80 keV using a tapered optical fiber.
This achievement provides robust support for the development of portable devices for the
detection of charged particles in nuclear reactors and even in space.

Although tapered optical fiber sensors hold potential in radiation dose measurement,
their research has not been fully developed due to technical challenges such as accurately
measuring high-dose radiation or dealing with proton irradiation. Through continuous
innovation and optimization of designs, tapered optical fiber sensors are poised to become a
key technology in the future of radiation dose measurement, providing precise and efficient
solutions for nuclear safety and even aerospace applications.

3.3.2. Gas (Ammonia) Leak Detection

In industrial production, various harmful, combustible, or toxic gases may be involved.
Timely detection of gas leaks can prevent accidents and ensure the safety of workers.
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Tapered optical fibers have been extensively researched for their application in gas leak
detection, enabling more sensitive detection.

Ammonia is involved in various industries such as agriculture, food processing, and
chemical manufacturing, making the detection of ammonia leaks crucial for safety and
quality control. Pakdeevanich [136] developed a simple responsive sensor for trace concen-
trations of ammonia gas using a tapered optical fiber, demonstrating better interactions
compared to non-tapered optical fiber sensors. To determine the optimal geometric shape
for gas leak detection, Riahi et al. [137] introduced a step-cascading approach to study
the impact of geometric shapes on the gas detection performance of the sensor. With
the rise of nanomaterials, Fan et al. [138] utilized a thick GO film, achieving a sensitiv-
ity of 4.97 pm/ppm within the range of 0–151 ppm ammonia concentration, as shown
in Figure 25. However, the response time increased to 5 min, highlighting the need to
address the time cost. Mohammed et al. [139] coated an etched tapered FBG with polyani-
line/graphene nanofiber nanocomposites, enhancing the adsorption capacity for NH3
molecules and achieving high sensitivity and excellent selectivity for NH3 under room
temperature conditions. As shown in Figure 26, during NH3 exposure, the change in the
sensor’s output optical power was significantly higher than the response to CH4, making
this sensor practically valuable under room temperature conditions.
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3.4. Summary

From the detection of biomolecular concentrations to temperature and humidity sens-
ing, and further to ethanol concentration in water and ammonia gas leakage detection,
the unique and excellent parameters and structural characteristics of tapered optical fiber
sensors are evident in various fields. Table 2 summarizes the performance of tapered
optical fiber sensors under different biochemical parameters. Taking BSA and Staphylo-
coccus aureus as examples, variations in sensitivity, detection limits, and response times
are demonstrated with different sizes and coatings. Cancer cell sensing exhibits high
sensitivity to adrenal cancer. Additionally, for ammonia gas and ethanol, the flexibility
in gas and liquid sensing is presented through the use of different coatings and sizes of
tapered structures.
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Table 2. Summary of biochemical parameters of tapered fiber optic sensors.

Analyte Taper Length/
Waist Diameter

Sensitivity/Limit
of Detection Coating Material

Response/
Recovery

Times
Ref

Bovine serum albumin
(BSA)

Length 10 mm
Waist 18.1 µm LoD 125 pg/mL BSA antigen —— [99]

Length 1 mm
Waist 37 mm

0.0342/(mg/mL)
LoD 0.971 µg/mL Gold Response 5 s [140]

Staphylococcus aureus
Waist 10 µm LoD 3.1 CFU/mL porcine IgG

antibody Response <30 min [112]

Length 379 µm
Waist 83.3 µm

2731.1 nm/RIU
LoD 11 CFU/mL Porcine IgG Response <30 min [114]

Cancer cell
——

adrenal cancer
15.2414 µm/RIU
LoD 7.2 × 10−5

RIU

Graphene-
Antimonene —— [117]

—— 682.5 nm/RIU —— —— [141]

Ethanol concentration
(in water)

Waist 28 µm 14.9 (count/%) ZnO Response 0.6 s [132]

Waist 7 µm 0.886 nm/% TiO2 —— [142]

Ammonia (gas)

Length 2 mm
Waist 15 µm 0.72 nm/vol% PANI \GNF

Composite
Response 80 s recovery

36 s [139]

Length 30 mm
Waist 80 µm 4.97 pm/ppm GO Response 5 min

recovery 7.5 min [138]

Table 3 summarizes the performance of tapered optical fiber sensors in temperature
and humidity measurements. For temperature measurements, tapered structures of differ-
ent sizes and designs exhibit varying sensitivities, suitable for different temperature ranges.
In humidity measurements, by adjusting the size and structure, sensitivities within different
dynamic ranges, ranging from 0.1194 nm/(%RH) to 59.8 pm/(%RH), are demonstrated.
This indicates that tapered optical fiber sensors possess wide applicability and performance
flexibility in temperature and humidity measurements.

Table 3. Summary of physical parameter measurements for tapered fiber optic sensors.

Measurand Taper Length/
Waist Diameter Sensitivity Dynamic Range Ref

Temperature

Length 2.5 mm
Waist 4.9 µm −415 pm/◦C 30–50 ◦C [143]

Length 5 mm −0.0393 nm/◦C 30–90 ◦C [144]

Length 8 mm
Waist 3 µm −2.283 nm/◦C 21.5–28 ◦C [145]

Length 370 µm
Waist 90 µm 79.8 pm/◦C 25–60 ◦C [146]

Humidity

Waist 9 µm 0.1194 nm/%RH 30–90%RH [147]

Length 28 mm
Waist 9.03 µm 0.5290 RH (%) 20–99.9%RH [148]

Length 1.3 mm
Waist 7.82 µm 0.789 nm/%RH 70–89%RH [149]

Waist 8.52 µm 59.8 pm/(%RH) 35–95%RH [150]
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Different sensor applications focus on varying requirements, necessitating diverse
fiber optic structures for implementation. Biomolecular concentration detection emphasizes
low detection limits and high sensitivity, while temperature and humidity sensing pur-
sues long-term stability, high sensitivity, and a broad range of temperature and humidity.
Ethanol concentration detection aims for continuous improvement in response time and
linearity. These diverse demands drive the continuous development of fiber optic sensor
structures. We can anticipate the ongoing evolution of cone-shaped fiber optic technology,
providing highly adaptive and excellent performance sensor solutions for various fields,
such as food quality testing [151], detection of bridges, buildings, or other engineering
structures [152–154], structural health monitoring in aerospace applications [155], and
measurement of displacement [156].

4. Conclusions

Research on sensing based on fused tapered optical fibers continues to develop in both
structural innovation and application expansion. Its advantages, including high sensitivity,
real-time monitoring, immunity to electromagnetic interference, multi-parameter measure-
ment capability, high resolution, and surface functionalization, have made it a research
hotspot. This review systematically introduces common tapered optical fiber structures
and discusses the applications of current popular sensors related to tapered optical fibers,
including biosensing, environmental monitoring, and industrial monitoring.

Further exploration is needed in the fabrication of tapered structures on different
optical fibers to overcome challenges such as limitations on sample size and shape, stability
affected by the environment, and susceptibility to damage of the tapered tip. Reducing
performance fluctuations caused by manufacturing process variations is crucial to ensure
reliability and repeatability.

Overall, there is still significant research space for fused tapered optical fiber sensing to
improve sensitivity, achieve miniaturization and integration, and explore cross-disciplinary
developments with fields such as nanomaterials, quantum structures, and nanophotonics.
The emergence of new materials like graphene oxide and carbon nanomaterials, cou-
pled with ongoing technological advancements, will continue to drive the application of
fused tapered optical fiber sensors in broader fields such as life sciences, photonics, and
quantum technology, providing more possibilities for the development and innovation of
sensing technology.
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